
PROCEEDINGS

TONGJI-YALE
NETWORKING SYSTEMS GROUP

TONGJI CONTRIBUTIONS

2016 – 2019

Jiading, Shanghai, China

New Haven, Connecticut, USA

Last update: Oct. 12, 2019

Table of Contents

Tongji First Papers

Optimizing in the Dark: Learning an Optimal Solution through a Simple Request Interface 8
Qiao Xiang (Tongji, Yale), Haitao Yu (Tongji), James Aspnes (Yale), Franck Le (IBM), Linghe
Kong (Shanghai Jiao Tong), Y. Richard Yang (Tongji, Yale)
In Proceedings of the thirty third Conference on Artificial Intelligence (AAAI) 2019.

Official Link: https://doi.org/10.1609/aaai.v33i01.33011674
Note: AAAI is a flagship conference of artificial intelligence

Unicorn: Unified Resource Orchestration for Multi-domain, Geo-distributed Data Analytics 16
Qiao Xiang (Tongji, Yale), X. Tony Wang (Tongji, Yale), J. Jensen Zhang (Tongji), Harvey
Newmanc (California Institute of Technology), Y. Richard Yang (Tongi, Yale), and Y. Jace Liu
(Tongji).
Future Generation Computer Systems 93 (2019) 188–197.

Official Link: https://doi.org/https://doi.org/10.1016/j.future.2018.09.048
Note: FGCS is a top journal of distributed computing

Fine-Grained, Multi-Domain Network Resource Abstraction as a Fundamental Primitive to
Enable High-Performance, Collaborative Data Sciences ... 26
Qiao Xiang (Tongji, Yale), J. Jensen Zhang (Tongji, Yale), X. Tony Wang (Tongji, Yale), Y. Jace
Liu (Tongji), Chin Guok (LBNL), Franck Le (IBM), John MacAuley (LBNL), Harvey Newman
(California Institute of Technology), Y. Richard Yang (Tongji, Yale)
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC) 2018.

Official Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8665783
Note: SC is a flagship conference of high performance computing

SFP: Toward Interdomain Routing for SDN Networks ... 39
Qiao Xiang (Tongji, Yale), Chin Guok (LBNL), Franck Le (IBM), John MacAuley (LBNL), Harvey
Newman (California Institute of Technology), Y. Richard Yang (Tongji, Yale)
In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos.

Official Link: https://dl.acm.org/citation.cfm?id=3234200.3234207
Note: SIGCOMM is a flagship conference of computer networking

Fine-grained, multi-domain network resource abstraction as a fundamental primitive to enable
high-performance, collaborative data sciences .. 42

https://doi.org/10.1609/aaai.v33i01.33011674
https://doi.org/https:/doi.org/10.1016/j.future.2018.09.048
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8665783
https://dl.acm.org/citation.cfm?id=3234200.3234207

Qiao Xiang (Tongji, Yale), J. Jensen Zhang (Tongji, Yale), X. Tony Wang (Tongji, Yale), Y. Jace
Liu (Tongji), Chin Guok (LBNL), Franck Le (IBM), John MacAuley (LBNL), Harvey Newman
(California Institute of Technology), Y. Richard Yang (Tongji, Yale)
In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos.

Official Link: https://dl.acm.org/citation.cfm?id=3234208
Note: SIGCOMM is a flagship conference of computer networking

JMS: Joint Bandwidth Allocation and FlowAssignment for Transfers with Multiple Sources 45
Geng Li (Tongji, Yale), Yichen Qian (Tongji), Lili Liu (Tsinghua), Y. Richard Yang (Tongji, Yale)
In Proceedings of the third International Conference on Data Science in Cyberspace (DSC)
2018.

Official Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411847

Unicorn: Unified Resource Orchestrationfor Multi-Domain, Geo-Distributed Data Analytics 53
Qiao Xiang (Tongji, Yale), Shenshen Chen (Tongji), Kai Gao (Tsinghua, Yale), Harvey Newman
(California Institute of Technology), Ian Taylor (Cardiff, University of Notre Dame), Jingxuan
Zhang (Tongji), Y. Richard Yang (Tongji, Yale)
In Proceedings of the Smart Computing Workshop on Distributed Analytics InfraStructure and
Algorithms for Multi-Organization Federations (DAIS) 2018.

Official Link: https://dais-ita.org/sites/default/files/IEEE-SWC-DAIS-18.pdf

DDP: Distributed Network Updates in SDN ... 59
Geng Li (Tongji, Yale), Yichen Qian (Tongji), Chenxingyu Zhao (Peking), Y. Richard Yang
(Tongji, Yale), Tong Yang (Peking)
In Proceedings of the third eighth International Conference on Distributed Computing Systems
(ICDCS) 2018.

Official Link: https://ieeexplore.ieee.org/document/8416414
Note: ICDCS is a top conference of distributed computing

Unicorn: Unified Resource Orchestration for Multi-Domain, Geo-Distributed Data Analytics ... 65
Qiao Xiang (Tongji, Yale), X. Tony Wang (Tongji, Yale), J. Jensen Zhang (Tongji), Harvey
Newman (California Institute of Technology), Y. Richard Yang (Tongji, Yale), Y. Jace Liu
(Tongji)
In Proceedings of the forth workshop on Innovating the Network for Data-Intensive Science
(INDIS) 2017.

Official Link: https://scinet.supercomputing.org/workshop/sites/default/files/Xiang-Unicorn_0.pdf

Game-Theoretic User Association in Ultra-dense Networks with Device-to-Device Relays 76
Geng Li (Tongji, Yale), Yuping Zhao (Peking), Dou Li (Peking)
Wireless Personal Communications: An International Journal 95 (2017) 2691-2708.

https://dl.acm.org/citation.cfm?id=3234208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411847
https://dais-ita.org/sites/default/files/IEEE-SWC-DAIS-18.pdf
https://ieeexplore.ieee.org/document/8416414
https://scinet.supercomputing.org/workshop/sites/default/files/Xiang-Unicorn_0.pdf

Official Link: https://dl.acm.org/citation.cfm?id=3134961

Auc2Reserve: A Differentially Private Auction for Electric Vehicle Fast Charging Reservation
 .. 94
Qiao Xiang (Tongji, Yale), Linghe Kong (McGill, Shanghai Jiaotong), Xue Liu (McGill), Jingdong
Xu (Nankai), Wei Wang (Tongji)
In Proceedings of the twenty second International Conference on Embedded and Real-Time
Computing Systems and Applications (RTSA) 2016.

Official Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7579930

Tongji Collaboration Papers

Update Algebra: Toward Continuous, Non-Blocking Composition of Network Updates in SDN
 .. 104
Geng Li (Yale, Tongji), Y. Richard Yang (Yale), Franck Le (IBM), Yeon-sup Lim (IBM), Junqi
Wang (Rutgers)
In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM) 2019.

Official Link: https://ieeexplore.ieee.org/document/8737618
Note: INFOCOM is a flagship conference of computer networking

On Max-min Fair Allocation for Multi-source Transmission .. 113
Geng Li (Yale, Tongji), Yichen Qian (Tongji), Y. Richard Yang (Yale)
ACM SIGCOMM Computer Communication Review 48 (2018) 2—8.

Official Link: https://ccronline.sigcomm.org/wp-content/uploads/2019/02/sigcomm-ccr-final199.pdf

An Objective-Driven On-Demand Network Abstraction for Adaptive Applications 120
Kai Gao (Tsinghua), Qiao Xiang (Tongji, Yale), Xin Wang (Tongji, Yale), Yang Richard Yang
(Yale), Jun Bi (Tsinghua)
IEEE/ACM Transactions on Networking 27 (2019) 805—818

Official Link: https://ieeexplore.ieee.org/document/8674832

Precedence: Enabling Compact Program Layout By Table Dependency Resolution 134
Christopher Leet (Yale), Shenshen Chen (Yale, Tongji), Kai Gao (Sichuan), Y. Richard Yang
(Yale, Tongji)
In Proceedings of the ACM Symposium on SDN Research (SOSR) 2019.

Official Link: https://dl.acm.org/citation.cfm?id=3314148.3314348

https://dl.acm.org/citation.cfm?id=3134961
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7579930
https://ieeexplore.ieee.org/document/8737618
https://ccronline.sigcomm.org/wp-content/uploads/2019/02/sigcomm-ccr-final199.pdf
https://ieeexplore.ieee.org/document/8674832
https://dl.acm.org/citation.cfm?id=3314148.3314348

Trident: toward a unified SDN programming framework with automatic updates 141
Kai Gao (Tsinghua), Taishi Nojima (Yale), Y. Richard Yang (Yale, Tongji)
In Proceedings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM) 2018.

Official Link: https://dl.acm.org/citation.cfm?id=3230562

Toward the First SDN Programming Capacity Theorem on Realizing High-Level Programs on
Low-Level Datapaths .. 157
Christopher Leet (Yale), Xin Wang (Tongji, Yale), Y. Richard Yang (Yale, Tongji), James
Aspnes (Yale)
In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM) 2018.

Official Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8485832

Prophet: Fast Accurate Model-Based Throughput Prediction for Reactive Flow in DC Networks
 ... 166

Kai Gao (Tsinghua, Yale), Jingxuan Zhang (Yale, Tongji), Y. Richard Yang (Yale, Tongji), Jun Bi
(Tsinghua)
In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM) 2018.

Official Link: https://ieeexplore.ieee.org/document/8486372

NOVA: Towards on-demand equivalent network view abstraction for network optimization .. 175
Kai Gao (Tsinghua, Yale), Qiao Xiang (Tongji, Yale), Xin Wang (Tongji, Yale), Yang Richard
Yang (Tongji, Yale), Jun Bi (Tsinghua)
In Proceedings of the twenty fifth International Symposium on Quality of Service (IWQoS) 2017.

Official Link: https://ieeexplore.ieee.org/document/7969117

SFP: Toward a Scalable, Efficient, Stable Protocol for Federation of Software Defined Networks
 ... 185
Franck Le (IBM), Christopher Leet (Yale), Christian Makaya (IBM), Miguel Rio (UCL), Xin Wang
(Tongji, Yale), Y. Richard Yang (Tongji, Yale)
In Proceedings of the Smart World Workshop on Distributed Analytics InfraStructure and
Algorithms for Multi-Organization Federations (DAIS) 2017.

Official Link: https://dais-ita.org/sites/default/files/IEEE-SWC-DAIS-24.pdf

Embracing Big Data with Compressive Sensing: A Green Approach in Industrial Wireless
Networks ... 191
Linghe Kong (Shanghai Jiao Tong), Daqiang Zhang (Tongji), Zongjian He (Tongji), Qiao Xiang
(Tongji), Jiafu Wan (SCUT), and Meixia Tao (Shanghai Jiao Tongji)

https://dl.acm.org/citation.cfm?id=3230562
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8485832
https://ieeexplore.ieee.org/document/8486372
https://ieeexplore.ieee.org/document/7969117
https://dais-ita.org/sites/default/files/IEEE-SWC-DAIS-24.pdf

IEEE Communications Magazine 54.10 (2016) 53-59.

Official Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7588229

Magellan: Generating Multi-Table Datapath from Datapath Oblivious Algorithmic SDN Policies
 ... 198
Andreas Voellmy (Yale), Shenshen Chen (Tongji), Xin Wang (Tongji), Y. Richard Yang (Yale)
In Proceedings of the ACM SIGCOMM 2016 Conference on Posters and Demos.

Official Link: https://dl.acm.org/citation.cfm?id=2959064

FAST: A Simple Programming Abstraction for Complex State-Dependent SDN Programming
 ... 200
Kai Gao (Tsinghua), Chen Gu (Tongji), Qiao Xiang (Tongji, Yale), Y. Richard Yang (Tongji,
Yale), Jun Bi (Tsinghua)
In Proceedings of the ACM SIGCOMM 2016 Conference on Posters and Demos.

Official Link: https://dl.acm.org/citation.cfm?id=2960424

ORSAP: Abstracting routing state on demand ... 202
Kai Gao (Tsinghua), Chen Gu (Tongji), Qiao Xiang (Tongji, Yale), Xin Wang (Tongji), Y. Richard
Yang (Tongji, Yale), Jun Bi (Tsinghua)
In Proceedings of the twenty forth International Conference on Network Protocols (ICNP) 2016
on Poster.

Official Link: https://ieeexplore.ieee.org/document/7784454

Internet Standards

ALTO Extension: Path Vector ... 204
Kai Gao (Sichuan), Young Lee (Huawei), Sabine Randriamasy (Nokia Bell Labs), Y.
Richard Yang (Yale), Jingxuan Zhang (Tongji)
IETF Internet Proposed Standard 2019.

Official Link: https://tools.ietf.org/html/draft-ietf-alto-path-vector-08

Unified Properties for the ALTO Protocol .. 239
Wendy Roome (Nokia Bell Labs), Sabine Randriamasy (Nokia Bell Labs), Y. Richard Yang
(Yale), Jingxuan Zhang (Tongji), Kai Gao (Sichuan)
IETF Internet Proposed Standard 2019.

Official Link: https://tools.ietf.org/html/draft-ietf-alto-unified-props-new-09

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7588229
https://dl.acm.org/citation.cfm?id=2959064
https://dl.acm.org/citation.cfm?id=2960424
https://ieeexplore.ieee.org/document/7784454
https://tools.ietf.org/html/draft-ietf-alto-path-vector-08
https://tools.ietf.org/html/draft-ietf-alto-unified-props-new-09

Content Delivery Network Interconnection (CDNI) Request Routing: CDNI Footprint and
Capabilities Advertisement using ALTO .. 282
Jan Seedorf (HFT Stuttgart), Y. Richard Yang (Tongji, Yale), Kevin J. Ma (Ericsson), Jon
Peterson (NeuStar), Xiao Lin (Tongji), Jingxuan Zhang (Tongji)
IETF Internet Proposed Standard 2019.

Official Link: https://tools.ietf.org/html/draft-ietf-alto-cdni-request-routing-alto-07

https://tools.ietf.org/html/draft-ietf-alto-cdni-request-routing-alto-07

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Optimizing in the Dark: Learning an
Optimal Solution through a Simple Request Interface

Qiao Xiang,1,2∗ Haitao Yu,1 James Aspnes,2 Franck Le,3 Linghe Kong,4 Y. Richard Yang1,2

1Tongji University, 2Yale University, 3IBM T.J. Watson Research Center, 4Shanghai Jiao Tong University
qiao.xiang@cs.yale.edu, haitao.yu@tongji.edu.cn, james.aspnes@yale.edu,

fle@us.ibm.com, linghe.kong@sjtu.edu.cn, yry@cs.yale.edu

Abstract

Network resource reservation systems are being developed
and deployed, driven by the demand and substantial bene-
fits of providing performance predictability for modern dis-
tributed applications. However, existing systems suffer limi-
tations: They either are inefficient in finding the optimal re-
source reservation, or cause private information (e.g., from
the network infrastructure) to be exposed (e.g., to the user). In
this paper, we design BoxOpt, a novel system that leverages
efficient oracle construction techniques in optimization and
learning theory to automatically, and swiftly learn the opti-
mal resource reservations without exchanging any private in-
formation between the network and the user. We implement
a prototype of BoxOpt and demonstrate its efficiency and ef-
ficacy via extensive experiments using real network topology
and trace. Results show that (1) BoxOpt has a 100% correct-
ness ratio, and (2) for 95% of requests, BoxOpt learns the
optimal resource reservation within 13 seconds.

1 Introduction
When facing a genie that only tells you whether it can grant
a wish or not, how can you find the best wish it can grant?

Although the question may sound like one from fairy
tales, people deal with such question in many real world sce-
narios. For example, modern distributed applications (e.g.,
(Zaharia et al. 2012; White 2012)) construct complex data
flows between end hosts, e.g., in data center networks. The
key to supporting these applications is the ability to provide
guaranteed network resources (i.e., bandwidth) for perfor-
mance predictability (Mogul and Popa 2012). As such, many
network resource reservation systems are developed and de-
ployed (Campanella et al. 2006; Guok and Robertson 2006;
Johnston, Guok, and Chaniotakis 2011; Riddle 2005; Zheng
et al. 2005; Sobieski, Lehman, and Jabbari 2004). However,
because of the underlying networks’ concern of revealing
sensitive information, existing reservation systems do not
provide applications with an interface to access informa-
tion of the underlying network infrastructure (e.g., topology,
links’ available bandwidth). Instead, networks only offer a
simple reservation interface for applications to submit re-
quests for reserving a specific amount of bandwidths for a

∗The corresponding authors are Q.Xiang and Y. R. Yang.
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

set of flows: request(flow set,bw values)), and returns ei-
ther success or failure. A major concern of this design is
its inefficiency for the applications/users to find the optimal
amount of network resources to reserve. To further illustrate
the issues, consider the example in Figure 1, where a user
(e.g., application) wants to determine and reserve the max-
imum achievable bandwidth for two flows from S1 to D1,
and S2 to D2, respectively. Using existing solutions that of-
fer only a simple reservation interface, finding the constraint
that both flows can collectively get only 100 Mbps of band-
width is already an instance of the NP-hard membership-
query based constraint acquisition problem (Bessiere et al.
2017), letting alone finding the optimal reservation for both
flows (e.g., 50 Mbps for each flow).

S1 D1

S2 D2

l1 l2 l5l3 l4

l7
l8 l11l9 l10

l12

l6

Each	link:	100	Mbps

sw2

sw1

sw5

sw6

sw7

sw8

sw3

sw4

Figure 1: An example network topology: the routes of two
flows share bottleneck links, i.e., l3 and l4, hence they can
only collectively get a 100 Mbps bandwidth.

To address this problem, researchers have proposed sev-
eral solutions, but all of them suffer limitations, and vio-
late privacy requirements. For example, to determine opti-
mal bandwidth reservations, recent proposals depart from
the simple reservation interface, and require either networks
to reveal sensitive information to users (Soulé et al. 2014;
Subramanian, D’Antoni, and Akella ; Heorhiadi, Reiter, and
Sekar 2016; Lee et al.), or vice versa (Gao et al. 2016;
Gao et al. 2017; Xiang et al. 2018). These solutions are
therefore limited to settings where the level of trust between
the applications and the underlying network is high. These
solutions cannot be deployed in general settings as malicious
parties may use the exposed network information to identify
vulnerable links and launch attacks (e.g., DDoS).

In this paper, we explore the feasibility and benefits of
learning the optimal network resource reservation for the
user without exposing the private information of the network
(i.e., bandwidth capacity region) and the user (e.g., resource
orchestration policy) to each other. In particular, we tackle
the following question: How can a user learn the optimal

1674

network resource reservation using only the simple reserva-
tion interface? This task is non-trivial due to the extremely
limited feedback (i.e., success/failure) provided by simple
reservation interface.

Our solution to this problem is BoxOpt, a novel learn-
ing system that automatically, and efficiently learns the op-
timal resource reservations for the user through the sim-
ple reservation interface, without exchanging any private
information between the network and the user (e.g., band-
width feasible region of the network and the resource or-
chestration policy of the user). Specifically, BoxOpt allows
users to include their resource reservation objectives as con-
cave utility functions of the requested resources (e.g., band-
widths) in the reservation requests. Upon receiving a reser-
vation request, BoxOpt models the simple reservation in-
terface of network resource reservation systems as a mem-
bership oracle over a polytope. It then expands oracle con-
struction techniques (Lovasz, Grotschel, and Schrijver 1993;
Lee, Sidford, and Vempala 2017) from optimization and
learning theory to construct a separation oracle through in-
voking the membership oracle in near O(n) iterations (n
being the number of flows), which when called upon will
accurately infer a search space in which the optimal reser-
vation vector lies. With such a separation oracle, BoxOpt
then constructs an optimization oracle based on ellipsoid
method, which can learn the optimal reservation vector
through O(n2) calls on the separation oracle.1 In this way,
BoxOpt not only can learn the optimal resource reservation
efficiently, but also is privacy-preserving in that no private
information is exchanged between the user and the network.

The main contributions of this paper are as follows:
• We study the important problem of learning the optimal

network resource reservation through the simple reservation
interface of network resource reservation systems. In partic-
ular, we design BoxOpt, a novel, fast, automatic, privacy-
preserving learning system. To the best of our knowledge,
BoxOpt is the first working system that solves this problem,
and can be extended to other optimization problems.

• We model the simple reservation interface as a member-
ship oracle over a polytope, and expand oracle construction
techniques from optimization and learning theory to develop
an efficient optimization oracle in BoxOpt, which learns the
optimal resource reservation in near O(n3) of calls on the
membership oracle.

• We implement a prototype of BoxOpt and demonstrate
both its efficiency and efficacy through extensive experi-
ments using real topologies and traces. Results show that (1)
BoxOpt has a 100% correctness ratio, and (2) for 95% cases,
it can learn the optimal reservation within 13 seconds.

The remaining of this paper is organized as follows. We
present an overview of BoxOpt in Section 2. We give de-
tails on how BoxOpt efficiently learns the optimal network

1We choose the ellipsoid method because it is a classic cutting
plane method. However, the design of BoxOpt is modular and other
cutting plane methods, e.g., analytic center method (Atkinson and
Vaidya 1995) and random walk (Bertsimas and Vempala), can also
be used to construct an optimization oracle from a separation ora-
cle.

Step 5

Success /
Failure

Reservation
Vector

Network Resource
Reservation Module

User ARO Controller

Network

Reservation
Vector

Inferred
Search Space

Step 1

Step 2

ARO ScoutStep 3

Optimal
Reservation

Vector

Success

Step 4

Automatic
Reservation
Optimization

Module

Resource	
Optimization	Oracle

Resource	
Separation	Oracle

Resource	
Membership	Oracle

Reservation	
Vector

Yes	/
Separation	
Half Space

Reservation	
Vector

Yes	/ No Section
3.3

Section
3.4

Figure 2: The architecture and workflow of BoxOpt.

resource reservation only using the simple reservation inter-
face in Section 3. We present the evaluation results of Box-
Opt in Section 4. We discuss related work in Section 5 and
conclude the paper in Section 6.

2 Overview of BoxOpt
In this section, we first present the architecture and the work-
flow of BoxOpt. We then give a formal, mathematical for-
mulation of the key technical challenge in BoxOpt: how to
find the optimal network resource reservation through the
simple reservation interface.

2.1 Architecture
BoxOpt is composed of two components: an automatic
reservation optimization (ARO) module for the user, and a
network resource reservation (NRR) module for the network
(Figure 2). The two components interact with each other
through the simple reservation interface commonly used in
traditional network resource reservation systems.
Automatic reservation optimization module: The ARO
module is a private component belonging to the user, and is
composed of two sub-components: an ARO controller, and
an ARO scout.

The ARO controller is the main interface for the user to
submit the resource reservation requests. A request consists
of a set of n flows, F = {f1, f2, . . . , fn}, to reserve the
resources for, and a concave utility function util(x) to max-
imize, with x = [x1, x2, . . . , xn] and each xi represent-
ing the available bandwidth that can be reserved for flow
fi ∈ F . Example utility functions include total throughput
and priority-based total throughput. Given a user resource
reservation request, the objective of the ARO controller is to
infer the optimal resource reservation to maximize util(x).
The ARO controller achieves it with the assistance of the
ARO scout: Specifically, the ARO controller iteratively se-
lects a vector x̌ of bandwidth values for F (called reserva-
tion vector) and sends it to the ARO scout. For each reserva-
tion vector, the ARO scout returns a search space where the
optimal reservation vector lies in. With the inferred search
spaces returned by the ARO scout, the ARO controller grad-
ually converges to the optimal reservation vector that maxi-
mizes util(x).

The ARO scout is the main user entity interacting with
the NNR. For each x̌ from the ARO controller, the ARO
scout infers a search space where the optimal reservation

1675

vector lies in, and returns the inferred search space back to
the ARO controller. To infer the search space where the the
optimal reservation vector lies in, the ARO scout sends a se-
quence of reservation vectors to the NRR through the simple
reservation interface. As further described in Section 3 and
Section 4, for each reservation vector submitted from the
ARO controller, the ARO scout might submit tens or hun-
dreds of reservation vectors to the NNR to get an accurately-
inferred search space, potentially, leading to a high over-
head. As such, to reduce the total latency to find the optimal
reservation vector, the ARO scout is placed with the network
instead of the user. This design decision reduces the user-
network communication latency by 20x as demonstrated in
the evaluation section. More importantly, this design does
not expose the private information of the user (i.e., util(x))
to the network, as the ARO controller does not send such
information to the scout.
Network Resource Reservation Module: The NRR mod-
ule is a private component belonging to the network. Its pri-
mary role is to verify whether the reservation vectors sub-
mitted by the ARO scout can be satisfied. Upon receiv-
ing a reservation vector from the ARO scout, the NRR ex-
tracts the relevant constraints from the network. The con-
straints include both physical network constraints (e.g., if
two flows share a same link, their allocated bandwidths can-
not exceed the link’s available bandwidth), and network
policies (e.g., rate limiting, etc.) The constraints are cap-
tured as an abstraction of linear inequalities (Gao et al. 2016;
Xiang et al. 2018). For example, to capture the physical net-
work constraints, the NNR first retrieves the routes (i.e., se-
quence of traversed links) for each flow. Then, for each link
l in the network, the NNR generates the following linear in-
equality to ensure that the allocated bandwidths to the flows
do not exceed the link’s available bandwidth:∑

xi ≤ wl, ∀fi that uses l in this route,

where wl is the available bandwidth on link l. Consider-
ing the example in Figure 1, the NRR module generates the
following linear inequalities:

x1 ≤ 100 ∀lu ∈ {l1, l2, l5, l6},
x2 ≤ 100 ∀lu ∈ {l7, l8, l11, l12},

x1 + x2 ≤ 100 ∀lu ∈ {l3, l4},
x1, x2, x3 ≥ 0.

(1)

Then, the NRR generates additional linear inequalities to
represent the network’s internal traffic engineering policies,
such as load-balancing and bandwidth limiting. For exam-
ple, suppose the network wants to limit the total bandwidth
of flows f1 and f2 to be no more than 80 Mbps even if there
is no common link in their routes. Then a linear inequality
x1 + x2 + x3 ≤ 80 is generated to represent this policy. Ge-
ometrically, the abstraction of linear inequalities represents
the bandwidth feasible region of the network for providing
bandwidths to a set of flows.

Finally, for each generated linear inequality, the NRR
checks if it is satisfied by the bandwidth values specified in
the reservation vector. If any inequality is violated, it returns
a FAILURE signal. Otherwise, it returns SUCCESS.

2.2 Workflow
Having presented the basic components of BoxOpt, we now
briefly present its workflow to automatically compute and
reserve the optimal network resources for a set of flows as
follows (Figure 2):

• Step 1: The user submits a resource reservation request
for a set of flows F to the ARO controller. The request also
includes a concave utility function util(x) of the bandwidths
of F .

• Step 2: In an outer loop, the ARO controller iteratively
selects reservation vectors to send to the ARO scout. The se-
lection of the reservation vectors is described in Section 3.4,
Algorithm 3. In return, for each reservation vector, the ARO
scout determines and replies with an inferred search space.

• Step 3: In an inner loop, upon receiving a reservation
vector from the controller, the ARO scout interacts with the
NRR, according to Algorithm 1 from Section 3.3, to infer the
next search space and send it back to the ARO controller.

The nested iteration of Step 2 and 3 stops when the ARO
controller converges to the optimal reservation vector maxi-
mizing util(x).
• Step 4: The ARO controller sends the optimal reserva-

tion vector to the NRR module to reserve the optimal re-
sources for the user.

• Step 5: The ARO controller confirms with the user that
the optimal network resource reservation has been success-
ful.

2.3 Key Challenge
Through the introduction of its architecture and workflow,
we show that BoxOpt is privacy-preserving by design: nei-
ther the user nor the network exposes the private information
(i.e., internal optimization objective of the user and the band-
width capacity region of the network) to the other party. As
such, the remaining key challenge for BoxOpt lies in Step
2 and 3: how can the ARO module interact with the NRR
module through the simple reservation interface to compute
the optimal network resource reservation?. To address this
challenge, we first give a formal, mathematical formulation.

Specifically, we first model the NRR module as a re-
source membership oracle. Without loss of generality, we
use Ax ≤ b to denote the set of linear inequalities gener-
ated by the NRR module, and use K : {x|Ax ≤ b,x ≥ 0}
to represent the bandwidth feasible region for a set of flows
F . In this way, we give the definition of resource member-
ship oracle:

Definition 1. [Reservation Membership Oracle (ReMEM)]
Given a reservation vector x̌, return YES if x̌ ∈ K, and
return NO otherwise.

ReMEM(x̌) accurately captures the interaction between
the ARO scout and the NRR module. Next, we formally de-
fine the problem of network resource reservation optimiza-
tion via simple reservation interface.

Problem 1 (Optimization via Membership Oracle). Find the
optimal solution to the following optimization problem

maximize util(x), (2)

1676

subject to,

Ax ≤ b, (3)
x ≥ 0, (4)

without the knowledge of A and b, but only using ReMEM
defined in Definition 1.

Maximizing util(x) subject to K : {x|Ax ≤ b,x ≥ 0}
is a classic convex optimization problem. There has been a
rich body of literature on how to efficiently solve such prob-
lems (Boyd and Vandenberghe 2004). However, most of the
existing algorithms require the knowledge of the feasible re-
gion (in our case Ax ≤ b). One may think of a strawman
to learn K through the ReMEM oracle, and apply the stan-
dard optimization techniques to find the optimal x. However,
finding the feasible region through a membership oracle is
NP-hard (Bessiere et al. 2017), making this strawman im-
practical. In contrast, as we will present next, BoxOpt resorts
to efficient oracle transformation techniques in optimiza-
tion and learning theory (Lee, Sidford, and Vempala 2017;
Lovasz, Grotschel, and Schrijver 1993) to solve this prob-
lem (i.e., efficiently learn the optimal resource reservation
via membership oracle).

3 Optimizing Network Resource Reservation
via Simple Reservation Interface

Having formally defined the key challenge for BoxOpt as
a problem of optimization via membership oracle, this sec-
tion discusses how we solve this problem. For presentation
clarity, this section starts by reviewing some concepts in op-
timization theory. Then, it presents the basic idea of our so-
lution, followed by its details.

3.1 Notations
Unless explicitly noted, we use v to denote a scalar and v
to denote a vector of n dimensions, where n is the number
of flows the user wants to reserve bandwidth for (see Sec-
tion 2.1). We use ∥v∥2 =

√∑
v2i to denote the Euclidean

norm of v, and use ∥v∥∞ = max |vi| to denote the max-
imum norm of v. We use B+

2 (m, η) = {x|∥x − m∥2 ≤
η,x ≥ 0} to denote the set of all positive vectors whose
Euclidean distance to m is at most η, and use B+

∞(m, η) =
{x|∥x−m∥∞ ≤ η,x ≥ 0} to denote the set of all positive
vectors whose maximum norm distance to m is at most η.

3.2 Basic Idea
Our approach to solve Problem 1 utilizes the equivalence
and polar relationships between different oracles in opti-
mization theory (Lovasz, Grotschel, and Schrijver 1993). In
particular, we focus on the relationships between ReMEM
with the following two oracles:
Definition 2. [Resource Separation Oracle (ReSEP)] Given
a reservation vector x̌, return YES if x̌ ∈ K, and otherwise
return a half space {y|pT (y − x̌) ≤ δ} that contains K but
not x̌.
Definition 3. [Resource Optimization Oracle (ReOPT)]
Given a reservation request for a set of flows F and the util-
ity function util(x), find x∗ ∈ K that maximizes util(x).

Algorithm 1: Resource Separation Oracle ReSEP (x̌)

1 Select ϵ ∈ (0, r], ρ ∈ (0, 1);
2 κ← R

r
;

3 if ReMEM returns YES for x̌ then
4 return x̌ ∈ K ;

5 else if x̌ /∈ B2(0, R) then
6 return the half space {y|x̌T (y − x̌) ≤ 0};
7 else
8 r1 ← rR− 1

3 ϵ
1
3 ;

9 g̃← Subgradient(0, r1, 4ϵ, 3κ);
10 return the half space

{y|g̃T (y − x̌) ≤ (40n+ 1)ρ−1R
2
3 κϵ

1
3 };

Given that there exist efficient algorithms (e.g., ellipsoid
method) that can construct an optimization oracle through
invoking a separation oracle with a polynomial number of
iterations, if we can construct a separation oracle through a
polynomial number of calls to a membership oracle, we will
be able to solve Problem 1.

One may think classic half space learning techniques can
achieve such a construction of separation oracle via mem-
bership oracle. However, the problems are different. In half
space learning, the goal is to compute a hyperplane to sepa-
rate a set of given samples (in our case, the reservation vec-
tors) from two predefined classes. In contrast, the goal of
ReMEM to ReSEP construction is to compute a hyperplane
separating K and a reservation vector not belonging to K
by strategically choosing a minimal number of reservation
vectors to send to ReMEM.

Specifically, we develop our solution to Problem 1 in two
phases. First, we leverage recent progress on geometric al-
gorithms (Lee, Sidford, and Vempala 2017) to develop an
efficient algorithm that constructs ReSEP through invoking
ReMEM for a polynomial number of times. Specifically, our
algorithm expands the weak membership/separation oracle
construction in (Lee, Sidford, and Vempala 2017) to strong
membership/separation oracle construction. Second, we de-
velop an ellipsoid-method-based algorithm that constructs
ReOPT through local feasibility checks and invoking Re-
SEP for a polynomial number of times. Mapping these two
phases to Step 2 and 3 in the workflow of BoxOpt, we see
that the ARO scout is essentially the separation oracle Re-
SEP, and the ARO controller is the optimization oracle Re-
OPT (Figure 2). Next, we give the details of each phase.

3.3 From Resource Membership Oracle to
Resource Separation Oracle

To construct ReSEP from ReMEM, we first define two aux-
iliary functions on vector d ∈ K given a reservation vector
x̌:

αx̌(d)← max
d+αx̌∈K

α, (5)

hx̌(d)← −αx̌(d)∥x̌∥2 (6)

We see that given a vector d ∈ K, d+αx̌(d) is the last vec-
tor on the line from d to d+ x̌ that is in K, and that −hx̌(d)

1677

Algorithm 2: Computing the subgradient of hx̌(d)
Subgradient(d, r1, τ, L)

1 r2 ←
√

τr1√
nL

;

2 Randomly select y from B∞(d, r1) following a uniform
distribution;

3 Randomly select z from B∞(y, r2) following a uniform
distribution;

4 for i← 1, . . . , n do
5 Define line segment B∞(y, r2) ∩ z+ sei, where s ∈ R

and ei is a vector whose elements are all zeros except
the ith one;

6 Denote the endpoints of this line segment as si and ti,
respectively;

7 Evaluate hx̌(ti) and hx̌(si) using binary search and
ReMEM;

8 g̃i =
hx̌(ti)−hx̌(si)

2r2
;

9 return g̃;

is the Euclidean distance from d to this point. Without loss of
generality, we assume that B+

2 (0, r) ⊂ K ⊂ B+
2 (0, R) for

some positive numbers r,R and such an assumption can be
trivially satisfied in practice. Extending the proof technique
in (Lee, Sidford, and Vempala 2017) for an n-dimensional
ball to only a partial ball on the first orthant, we get
Lemma 1. Given x̌, hx̌(d) is convex on K, and is R+θ

R−θ

Lipschitz in B+
2 (0, θ) for 0 < θ < r.

With these auxiliary functions and a theorem that for any
Lipschitz function, it is linear on a small ball (Bubeck and
Eldan 2016), we can construct ReSEP by computing the sub-
gradient of hx̌(d) at d = 0, which can be computed by bi-
nary search and invoking ReMEM. The constructed separa-
tion oracle is presented in Algorithm 1, and the computation
of the subgradient of hx̌(d) is presented in Algorithm 2.

A key insight in Algorithm 1 is that it expands the ap-
plicability of similar construction process from weak mem-
bership/separation oracles to strong membership/separation
oracles (i.e., ReMEM and ReSEP). In particular, we have
Lemma 2. There is a random variable φ with expectation

E(φ) ≤ 2n
√

τL
r1

such that ∀q ∈ K,

hx̌(q) ≥ hx̌(d) + g̃T (q− d)− φ∥q− d∥∞ − 4nr1L.

With this lemma, we show the correctness of Algorithm 1
in the following theorem.
Theorem 1. If x̌ /∈ K, Algorithm 1 yields a half space con-
taining K but not x̌ with probability 1− ρ.

Proof. When x̌ /∈ B+
2 (0, R), it is easy to see that the re-

turned half space {y|x̌(y)− x̌ ≤ 0} (Line 6 of Algorithm 1)
contains K but not x̌. When x̌ /∈ K but x̌ ∈ B+

2 (0, R),
from Lemma 1, we know that hx̌(d) has a Lipschitz con-
stant of 3κ on B+

2 (0, r
2). By selecting ϵ ∈ (0, r] and setting

r1 = rR− 1
3 ϵ

1
3 (Line 1 and 8 of Algorithm 1, respectively),

we can get B+
∞(0, 2r1) ⊂ B+

2 (0, r
2). As such, we can apply

Lemma 2 and get that ∀q ∈ K

hx̌(q) ≥ hx̌(0) + g̃T · q− φ∥q∥∞ − 12nr1κ. (7)

Next, because x̌ ∈ B+
2 (0, R), we have − 1

κ x̌ ∈ K and
hx̌(− 1

κ x̌) = hx̌(0)− ∥x̌∥2

κ . Then we use Lemma 2 to get

hx̌(−
1

κ
x̌) ≥ hx̌(0)+ g̃T ·− 1

κ
x̌− φ

κ
∥x̌∥∞− 12nr1κ, (8)

As such, we then get

g̃T · x̌ ≥ ∥x̌∥2 − φ∥x̌∥∞ − 12nr1κ
2. (9)

Next, because ϵ ∈ (0, r], x̌ /∈ K and B+
2 (0, r) ⊂ K, we

have (1− ϵ
r)K ⊂ K. By definition of hx̌(d), we have

hx̌(0) ≥ −(1− ϵ

r
)∥x̌∥2 ≥ −∥x̌∥2 + ϵκ. (10)

Adding Equations (9) and (10) and then subtracting 2ϵκ on
the right hand side, we get

hx̌(0) + g̃T · x̌ ≥ −φ∥x̌∥∞ − 12nr1κ
2 − ϵκ. (11)

Next, we add Equation (11) to Equation (7) and get that
∀q ∈ K,

hx̌(q) ≥ g̃T (q− x̌)− φ∥q∥∞ − φ∥x̌∥∞
−12nr1κ− 12nr1κ

2 − ϵκ
≥ g̃T (q− x̌)− 2φR− 24nr1κ

2 − ϵκ.
(12)

∀q ∈ K, we have hx̌(q) ≤ 0, and then we can have φ̃ ≥
g̃(q− x̌), where φ̃ is a random scalar independent of q that
satisfies

E(φ̃) ≤ 4

√
12ϵκ

r1
nR+ 24nr1κ

2 − ϵκ. (13)

Putting r1 = rR− 1
3 ϵ

1
3 into Equation (13), we get

E(φ̃) ≤ 40nϵ
1
3R

2
3κ+ ϵκ. (14)

Further leveraging ϵ ≤ r ≤ R, we get

E(φ̃) ≤ (40n+ 1)ϵ
1
3R

2
3κ. (15)

Then we can finish the proof using Equation (15) and
Markov inequality.

In addition, observing Algorithm 1 and Algorithm 2, we
see that the bottleneck to construct ReSEP is to compute hx̌

using binary search and ReMEM (Line 4-8 in Algorithm 2).
As such, we give the following theorem on the complexity
of Algorithm 1.
Theorem 2. Algorithm 1 constructs the reservation sepa-
ration oracle (ReSEP) through an O(n logR) calls on the
reservation membership oracle (ReMEM).

3.4 From Resource Separation Oracle to
Resource Optimization Oracle

Having constructed ReSEP from ReMEM, we next develop
an ellipsoid-method algorithm to construct ReOPT from Re-
SEP, which is summarized in Algorithm 3.

This algorithm adopts a binary search strategy to find the
largest util(x) that is feasible on K. In each main iteration
(Line 3-24), it constructs a feasible problem

util(x) ≥ unext,
K : Ax ≤ b,x ≥ 0,

(16)

1678

and uses ellipsoid method to test if this problem is feasible.
One difference from the classic ellipsoid method is: when
evaluating if the center p of an ellipsoid Ei is a feasible so-
lution, we first evaluate if p is feasible for util(x) ≥ unext,
and only invoke ReSEP if util(p) ≥ unext. This is be-
cause util(x) is kept at the ARO controller, where ReOPT
runs, but not shared to ARO scout, where ReSEP resides.
This would not affect the correctness of the ellipsoid method
for verifying the feasibility of Equation (16) because a half
space containing util(x) ≥ unext will also contain the fea-
sible region defined in Equation (16). In the meantime, the
privacy of user is also preserved.

Algorithm 3: Reservation Optimization Oracle
ReOPT (util(x)).

1 Compute the maximum and minimum of util(x) subject to
xi ∈ [0, R] where i = 1, . . . , n and denote the value as
umax and umin;

2 ul ← umin, ur ← umax;
3 while ul < ur do
4 unext ← (ul + ur)/2;
5 Build an ellipsoid E0 bounding B+

2 (0, R);
6 Vl ← V ol(B+

2 (0, r)), i← 0;
7 feasible← false;
8 while V ol(Ei) ≥ Vl do
9 p← center of Ei;

10 if util(p) < unext then
11 feasible← false;
12 H ← {y|(∇util(p))T (y − p) >= 0};
13 else if ReSEP (p) returns a half space H then
14 feasible← false;

15 else
16 feasible← true;
17 x∗ ← p;
18 break;

19 Ei+1 ← the minimum-volume ellipsoid containing
Ei ∩H;

20 i← i+ 1;

21 if feasible == false then
22 ur ← unext;

23 else
24 ul ← unext;

25 return x∗;

We present the following theorem on the optimality and
efficiency of Algorithm 3.

Theorem 3. Algorithm 3 finds x∗ that maximizes util(x)
subject to K through an O(n2) calls on the reservation sep-
aration oracle (ReMEM).

Proof. The complexity result in this theorem follows the
classic ellipsoid method. For the optimality claim, we ob-
serve that even if util(x) is concave, K is still a polytope. As
such, x∗ will be a vertex of this polytope. In this way, the op-
timality of Algorithm 3 can be proved in the same way as the
ellipsoid method optimally solves linear programming.

Putting Theorems 2 and 3 together, we get the following
theorem on the optimality and efficiency of BoxOpt.

Theorem 4. BoxOpt finds x∗ that maximizes util(x) sub-
ject to K through an O(n3 logR) calls on the reservation
membership oracle (ReMEM).

4 Performance Evaluation
We implement a prototype of BoxOpt and evaluate its per-
formance on an operational federation network supporting
large-scale distributed science collaborations, and using real
traffic traces from recent science experiments. We first de-
scribe our setup, followed by the detailed results.

4.1 Methodology
We evaluate the performance of BoxOpt on the topol-
ogy from LHC Open Network Environment (LHCONE), a
global science network consisting of 62 institutes (Martelli
and Stancu 2015). We randomly select a topology for each
institute from the Topology Zoo (Knight et al. 2011), and
then assemble the connections and topologies from previ-
ous steps into a unified large network. We replay the actual
trace from the CMS experiment (cms-dashb), a main source
of traffic in LHCONE. We focus on a 48-hour trace starting
from December 14, 2017, consisting of 716 resource reser-
vation requests. The number of flows in each request varies
between 1 and 7. Because the CMS experiment is one of
the largest ongoing distributed scientific experiments with
complex, distributed analytics across tens of geographically
distributed locations, we believe the trace is representative
of complex data flow of modern distributed applications.

4.2 Results
In our experiments, we set R and r in Algorithm 1 to be the
maximum and minimum of link bandwidth in the network
topology. We run extensive experiments by choosing differ-
ent values of ϵ and ρ and different utility functions. In what
follows, we present the results of one setting: maximizing
total throughput when ρ = 0.001 and ϵ = 1

5r. Results of
other settings are highly similar as this setting, hence are
omitted due to page limit.
Correctness of BoxOpt: For each reservation request, we
compare the optimal resource reservation computed by Box-
Opt with the optimal solution to the problem util(x) sub-
ject to K computed by a state-of-the-art optimization solver
(e.g., CPLEX (CPLEX 2018)). We find that in all 716 re-
quests, BoxOpt outputs the same optimal solution as the
solver does, i.e., BoxOpt has a 100% correctness ratio.
Efficiency of BoxOpt: As illustrated in Figure 2 (Section 2),
the main bottleneck of BoxOpt is the communication latency
between the optimization oracle at the ARO controller in-
voking the separation oracle at the ARO scout as the compu-
tation latency is ignorable. As such, we use the total commu-
nication latency to find the optimal resource reservation for
each request to represent the efficiency of BoxOpt. Specif-
ically, we assume the user is located at New York and the
network is in Los Angeles. For each invocation of ReSEP at
ARO scout, we assign it a round trip time (RTT) randomly
chosen from the statistic RTT data collected in (global-ping

1679

). Then the communication latency to find the optimal re-
source reservation for a given request is the sum of all RTTs
incurred by corresponding ReSEP invocations.

Figure 3a plots the CDF of communication latency of all
requests in the experiment. We observe that for 95% of the
requests, BoxOpt is able to learn the optimal resource reser-
vation within 13 seconds. This demonstrates the efficiency
of BoxOpt to swiftly learn the optimal resource reserva-
tion via the simple reservation interface. Figure 3b plots the
statistics of the communication latency for different sizes of
reservation requests. The nonlinear increase of the latency
is consistent with conclusion in Theorem 3. However, com-
pared with the lasting time of network resource reservation
(e.g., hours and days) and the amount of data being trans-
mitted (e.g., TBs), BoxOpt is highly efficient.

0 1 2 3 4

Latency (ms) 104

0

0.2

0.4

0.6

0.8

1

(a) CDF of the communication la-
tency of BoxOpt.

1 2 3 4 5 6 7

Number of flows

0

1

2

3

La
te

nc
y

(m
s)

104

(b) Communication latency of Box-
Opt with different sizes of request.

Figure 3: Efficiency of BoxOpt: total communication la-
tency to compute the optimal resource reservation.

Efficiency of ReOPT: We next study the efficiency of the
ReOPT oracle to learn the optimal resource reservation. To
this end, we count the number of ReSEP invocations (i.e.,
the bottleneck operation of the ReOPT oracle) for each re-
quest. Figure 4a gives the CDF of the number of ReSEP
invocations. We observe that for 95% requests, the ReOPT
learns the optimal reservation within 200 ReSEP calls. Fig-
ure 4b further breaks down the statistics based on the size of
requests. We observe that the nonlinear increase of ReSEP
invocations is consistent with Theorem 3 and Figure 3b.

0 100 200 300 400

Number of ReSEP calls

0

0.2

0.4

0.6

0.8

1

(a) CDF of the number of ReSEP in-
vocations.

1 2 3 4 5 6 7

Number of flows

0

100

200

300

N
um

be
r

of
 R

eS
E

P
 c

al
ls

(b) Number of ReSEP invocations
with different sizes of request.

Figure 4: Efficiency of ReOPT: number of ReSEP invoca-
tions to learn the optimal resource reservation.

Efficiency of ReSEP: In the end, we study the efficiency of
the ReSEP oracle to infer the search space for ReOPT. To
this end, we count the number of ReMEM invocations (i.e.,
the bottleneck operation of the ReSEP oracle) for each re-

0 2 4 6 8 10

Number of total ReMEM calls 104

0

0.2

0.4

0.6

0.8

1

(a) CDF of the number of ReMEM
invocations.

1 2 3 4 5 6 7

Number of flows

0

2

4

6

8

N
um

be
r

of
 to

ta
l R

eM
E

M
 c

al
ls

104

(b) Number of ReMEM invocations
with different sizes of request.

Figure 5: Efficiency of ReSEP: number of ReMEM invoca-
tions to learn the optimal resource reservation.

quest. Figure 5a gives the CDF of the number of ReMEM
invocations. We observe that for 95% requests, the total
ReMEM invocations required is within 30000. This large
number demonstrates the necessity and benefits of putting
ReSEP (i.e., the ARO scout) with the network. Integrating
this observation from Figure 4a and Figure 3a, we can con-
clude that this design improves the efficiency of BoxOpt
(i.e., the communication latency) by 20 times. Figure 5b fur-
ther breaks down the statistics based on the size of requests.
We observe that the almost linear increase of ReMEM invo-
cations is consistent with Theorem 2.

5 Related Work
Many network resource reservation systems have been de-
veloped and deployed (Campanella et al. 2006; Guok and
Robertson 2006; Johnston, Guok, and Chaniotakis 2011;
Riddle 2005; Zheng et al. 2005; Sobieski, Lehman, and Jab-
bari 2004). However, existing systems either are inefficient,
or cause private information to be exposed. In contrast, Box-
Opt adopts a novel approach to efficiently learn the optimal
resource reservation through the limited feedback from the
simple interface provided by reservation systems.

One area closely related to our problem is constraint
learning (De Raedt, Passerini, and Teso 2018; Bessiere et al.
2017; Ruggieri 2012; Bessiere et al. 2004; Ruggieri 2013).
We refer readers to (De Raedt, Passerini, and Teso 2018)
for a comprehensive survey. Instead of learning all linear
inequalities that compose the bandwidth feasible region, in
BoxOpt, we show that the optimal solution to an optimiza-
tion problem can be learnt efficiently and accurately with-
out knowing any constraints. One future direction is to in-
tegrate constraint learning into BoxOpt to further accelerate
the learning of the optimal resource reservation.

BoxOpt leverages several powerful tools from optimiza-
tion theory (Lovasz, Grotschel, and Schrijver 1993; Boyd
and Vandenberghe 2004; Lee, Sidford, and Vempala 2017).
We expand the recent theoretical progress on efficient oracle
constructions to a broader scenario. To the best of our knowl-
edge, BoxOpt is the first working system that demonstrates
the feasibility and benefits of learning the optimal solution
of an optimization problem with only membership oracle. In
addition to network resource reservation, it also sheds light
for other areas such as multi-domain traffic engineering and
collaborative data analytics.

1680

6 Conclusion
We design BoxOpt, a novel, automatic learning system to
efficiently learn the optimal resource reservations through
the simple reservation interface of network resource reser-
vation systems, without exposing the private information of
network or user. We demonstrate its efficiency and efficacy
through extensive evaluation using real network topology
and trace.

Acknowledgment
The authors thank Christian Bessiere, Haizhou Du, Kai Gao, Chin
Guok, Max Del Giudice, Chris Harshaw, Amin Karbasi, Yin Tat
Lee, Geng Li, Yang Liu, John MacAuley, Harvey Newman, Lam
M. Nguyen, Salvatore Ruggieri, Mudhakar Srivatsa, Xin Wang,
Jingxuan Zhang and Rui Zhang for their help during the prepa-
ration of this paper. The authors also thank the anonymous review-
ers for their valuable comments. This research is supported in part
by NSFC grants 61702373, 61672385, 61701347, and 61672349;
China Postdoctoral Science Foundation 2017-M611618; NSF
awards CCF-1637385, CCF-1650596, OAC-1440745; Google Re-
search Award; and the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-
3-0001.

References
Atkinson, D. S., and Vaidya, P. M. 1995. A cutting plane algorithm
for convex programming that uses analytic centers. Mathematical
Programming 69(1-3):1–43.
Bertsimas, D., and Vempala, S. Solving convex programs by ran-
dom walks. In Proceedings of the 34th ACM STOC.
Bessiere, C.; Hebrard, E.; Hnich, B.; and Walsh, T. 2004. Disjoint,
partition and intersection constraints for set and multiset variables.
In International Conference on Principles and Practice of Con-
straint Programming, 138–152. Springer.
Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B. 2017.
Constraint acquisition. Artificial Intelligence 244:315 – 342.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization. Cam-
bridge university press.
Bubeck, S., and Eldan, R. 2016. Multi-scale exploration of con-
vex functions and bandit convex optimization. In Conference on
Learning Theory, 583–589.
Campanella, M.; Krzywania, R.; Reijs, V.; Wilson, D.; Sevasti, A.;
Stamos, K.; and Tziouvaras, C. 2006. Bandwidth on demand
services for european research and education networks. In IEEE
Bandwidth on Demand 06, 65–72. IEEE.
CMS Task Monitoring. http://dashb-cms-job.cern.ch/.
2018. Ilog cplex.
De Raedt, L.; Passerini, A.; and Teso, S. 2018. Learning constraints
from examples. In Proceedings in Thirty-Second AAAI Conference
on Artificial Intelligence, AAAI, New Orleans, USA, 02–07.
Gao, K.; Gu, C.; Xiang, Q.; Wang, X.; Yang, Y. R.; and Bi, J. 2016.
ORSAP: abstracting routing state on demand. In 24th IEEE Inter-
national Conference on Network Protocols, ICNP 2016, Singapore,
November 8-11, 2016, 1–2.
Gao, K.; Xiang, Q.; Wang, X.; Yang, Y. R.; and Bi, J. 2017. Nova:
Towards on-demand equivalent network view abstraction for net-
work optimization. In IWQoS’17, 1–10.
Global Ping Statistics - WonderNetwork, 2018. https://
wondernetwork.com/pings/.

Guok, C., and Robertson, D. 2006. Esnet on-demand secure cir-
cuits and advance reservation system (oscars). Internet2 Joint 92.
Heorhiadi, V.; Reiter, M. K.; and Sekar, V. 2016. Simplifying
software-defined network optimization using sol. In NSDI, 223–
237.
Johnston, W.; Guok, C.; and Chaniotakis, E. 2011. Motivation, de-
sign, deployment and evolution of a guaranteed bandwidth network
service. In Proceedings of the TERENA Networking Conference.
Knight, S.; Nguyen, H. X.; Falkner, N.; Bowden, R.; and Roughan,
M. 2011. The internet topology zoo. 29(9):1765–1775.
Lee, J.; Turner, Y.; Lee, M.; Popa, L.; Banerjee, S.; Kang, J.-M.;
and Sharma, P. Application-driven bandwidth guarantees in data-
centers. In SIGCOMM’14.
Lee, Y. T.; Sidford, A.; and Vempala, S. S. 2017. Efficient
convex optimization with membership oracles. arXiv preprint
arXiv:1706.07357.
Lovasz, L.; Grotschel, M.; and Schrijver, A. 1993. Geometric
algorithms and combinatorial optimization - 2nd corrected edition.
Springer.
Martelli, E., and Stancu, S. 2015. Lhcopn and lhcone: status and
future evolution. In Journal of Physics: Conference Series, volume
664, 052025. IOP Publishing.
Mogul, J. C., and Popa, L. 2012. What we talk about when we talk
about cloud network performance. SIGCOMM CCR 12 42(5):44–
48.
Riddle, B. 2005. Bruw: A bandwidth reservation system to sup-
port end-user work. In TERENA Networking Conference, Poznan,
Poland.
Ruggieri, S. 2012. Deciding membership in a class of polyhedra.
In ECAI, 702–707.
Ruggieri, S. 2013. Learning from polyhedral sets. In 23rd Int.
Joint Conference on Artificial Intelligence (IJCAI 2013), 1069–
1075. AAAI Press.
Sobieski, J.; Lehman, T.; and Jabbari, B. 2004. Dragon: Dynamic
resource allocation via gmpls optical networks. In MCNC Optical
Control Planes Workshop, Chicago, Illinois.
Soulé, R.; Basu, S.; Marandi, P. J.; Pedone, F.; Kleinberg, R.; Sirer,
E. G.; and Foster, N. 2014. Merlin: A language for provisioning
network resources. In CoNEXT’14, 213–226. ACM.
Subramanian, K.; D’Antoni, L.; and Akella, A. Genesis: Synthe-
sizing forwarding tables in multi-tenant networks. ACM POPL’17.
White, T. 2012. Hadoop: The definitive guide. O’Reilly Media,
Inc.
Xiang, Q.; Zhang, J. J.; Wang, X. T.; Liu, Y. J.; Guok, C.; Le, F.;
MacAuley, J.; Newman, H.; and Yang, Y. R. 2018. Fine-grained,
multi-domain network resource abstraction as a fundamental prim-
itive to enable high-performance, collaborative data sciences. In
Proceedings of the ACM SIGCOMM 2018 Conference on Posters
and Demos, 27–29. ACM.
Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley,
M.; Franklin, M. J.; Shenker, S.; and Stoica, I. 2012. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI’12, 2–2. USENIX Association.
Zheng, X.; Veeraraghavan, M.; Rao, N. S.; Wu, Q.; and Zhu, M.
2005. Cheetah: Circuit-switched high-speed end-to-end transport
architecture testbed. IEEE Communications Magazine 43(8):S11–
S17.

1681

http://dashb-cms-job.cern.ch/
https://wondernetwork.com/pings/
https://wondernetwork.com/pings/

Future Generation Computer Systems 93 (2019) 188–197

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Unicorn: Unified resource orchestration for multi-domain,
geo-distributed data analytics
Qiao Xiang a,b,∗, X. Tony Wang a,b, J. Jensen Zhang a, Harvey Newman c, Y. Richard Yang a,b,∗,
Y. Jace Liu a

a Tongji University, China
b Yale University, United States
c California Institute of Technology, United States

h i g h l i g h t s

• First unified resource orchestration framework for multi-domain data analytics.
• Resource state abstraction for accurate, minimal resource information discovery.
• Prototype evaluation and full demonstration at SuperComputing 2017.

a r t i c l e i n f o

Article history:
Received 31 January 2018
Received in revised form 25 June 2018
Accepted 19 September 2018
Available online 1 November 2018

a b s t r a c t

As the data volume increases exponentially over time, data-intensive analytics benefits substantially from
multi-organizational, geographically-distributed, collaborative computing, where different organizations
contribute various yet scarce resources, e.g., computation, storage and networking resources, to collabo-
ratively collect, share and analyze extremely large amounts of data. By analyzing the data analytics trace
from the Compact Muon Solenoid (CMS) experiment, one of the largest scientific experiments in the
world, and systematically examining the design of existing resourcemanagement systems for clusters, we
show that the multi-domain, geo-distributed, resource-disaggregated nature of this new paradigm calls for
a framework to manage a large set of distributively-owned, heterogeneous resources, with the objective
of efficient resource utilization, following the autonomy and privacy of different domains, and that the
fundamental challenge for designing such a framework is: how to accurately discover and represent resource
availability of a large set of distributively-owned, heterogeneous resources across different domains with
minimal information exposure from each domain? Existing resource management systems are designed
for single-domain clusters and cannot address this challenge. In this paper, we design Unicorn, the first
unified resource orchestration framework for multi-domain, geo-distributed data analytics. In Unicorn,
we encode the resource availability for each domain into resource state abstraction, a variant of the
network view abstraction extended to accurately represent the availability of multiple resources with
minimal information exposure using a set of linear inequalities. We then design a novel, efficient cross-
domain query algorithm and a privacy-preserving resource information integration protocol to discover
and integrate the accurate, minimal resource availability information for a set of data analytics jobs across
different domains. In addition, Unicorn also contains a global resource orchestrator that computes optimal
resource allocation decisions for data analytics jobs. We implement a prototype of Unicorn and present
preliminary evaluation results to demonstrate its efficiency and efficacy.We also give a full demonstration
of the Unicorn system at SuperComputing 2017.

© 2018 Elsevier B.V. All rights reserved.

∗ Corresponding author at: Department of Computer Science, YaleUniversity, 51
Prospect Street, New Haven, CT, 06511, United States.

E-mail addresses: qiao.xiang@cs.yale.edu (Q. Xiang),
13xinwang@tongji.edu.cn (X. Tony Wang), jingxuan.zhang@tongji.edu.cn
(J. Jensen Zhang), newman@hep.caltech.edu (H. Newman), yry@cs.yale.edu
(Y. Richard Yang), yang.jace.liu@linux.com (Y. Jace Liu).

1. Introduction

As the data volume increases exponentially over time, data-
intensive analytics benefits substantially from multi-
organizational, geographically-distributed, collaborative comput-
ing, where different organizations (also called domains) contribute
various yet disaggregated resources, e.g., computation, storage and
networking resources, to collaboratively collect, share and analyze

https://doi.org/10.1016/j.future.2018.09.048
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.09.048
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.048&domain=pdf
mailto:qiao.xiang@cs.yale.edu
mailto:13xinwang@tongji.edu.cn
mailto:jingxuan.zhang@tongji.edu.cn
mailto:newman@hep.caltech.edu
mailto:yry@cs.yale.edu
mailto:yang.jace.liu@linux.com
https://doi.org/10.1016/j.future.2018.09.048

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 189

extremely large amounts of data. One important example of this
paradigm is the Compact Muon Solenoid (CMS) experiment at
CERN [1], one of the largest scientific experiments in the world.
The CMS data analytics system is composed of over 150 partici-
pating organizations, including national laboratories, universities
and other research institutes. By analyzing the data analytics trace
from the Compact Muon Solenoid (CMS) experiment over a 7-
day period and systematically examining the design of existing
resource management systems for clusters, we show that the
multi-domain, geo-distributed, resource-disaggregated nature of this
new paradigm calls for a framework to manage a large set of
distributively-owned, heterogeneous resources, with the objective
of efficient resource utilization, following the autonomy and privacy
of different domains.

In particular, our trace analysis shows that (1) over 35% of data
analytics jobs are remote jobs, i.e., jobs that require different types
of resources from different domains for execution; (2) the 90%
quantile of the job execution time of remote jobs is approximately
38.9% longer than that of local jobs, i.e., jobs that only require
resources from a single domain for execution; and (3) the data
transfer traffic is saturating the CMS network, leaving limited
networking resources (i.e., less than 15%) for data analytics traffic.
These observations show that resources in multi-domain, geo-
distributed analytics are highly disaggregated, i.e., unbalanced dis-
tributed across domains. Although there is much related work on
resourcemanagement for clusters and data centers, such as [2–12],
they aremostly designed formanaging resources in single-domain
clusters, and cannot accomplish the aforementioned goal formulti-
domain, geo-distributed data analytics. In particular, these systems
typically adopt a graph-based abstraction to represent the resource
availability in clusters. In this abstraction, each node in the graph
is a physical node representing computation or storage resources
and each edge between a pair of nodes denotes the networking
resource connecting two physical nodes. This abstraction is inade-
quate for multi-domain, geo-distributed data analytics systems for
two reasons. First, it compromises the privacy of different domains by
revealing all the details of resources in each domain. Secondly, the
overhead to keep the resource availability graph up to date is too ex-
pensive due to the heterogeneity and dynamicity of resources from
different domains. Some systems such as HTCondor [2] adopts a
simpler abstraction that only represents computation and storage
resources inmulti-domain clusters. This approach, however, leaves
the orchestration of networking resources completely to the trans-
mission control protocol (TCP), which has long been known to be-
have poorly in networks with high bandwidth-delay products in-
cludingmulti-domain, geo-distributed data analytics systems, and
hence is inefficient. Through trace analysis and relatedwork study,
we identify the fundamental design challenge for designing an
orchestration framework for multi-domain, geo-distributed data
analytics is the accurate discovery and representation of resources
across different domains with minimal information exposure.

In this paper, we design Unicorn, the first unified resource
orchestration framework for multi-domain, geo distributed data
analytics. In Unicorn, the resource availability of each domain is
abstracted into resource state abstraction, a variant of the net-
work view abstraction [13] extended to accurately represent the
availability of multiple resources with minimal information ex-
posure using a set of linear inequalities. With this intra-domain
abstraction, Unicorn uses a novel, efficient cross-domain resource
discovery component to find the accurate resource availability
information for a set of data analytics jobs across different domains
with minimal information exposure, while allowing each domain
tomake andpractice their own resourcemanagement strategies. In
addition, Unicorn also contains a global resource orchestrator that
computes optimal resource allocation decisions for data analytics
jobs.

Themain contributions of this paper are as follows:

• we study the novel problem of resource orchestration for
multi-domain, geo-distributed data analytics and identify the
cross-domain resource discovery challenge as the fundamental
design challenge for this problem through systematic trace-
analysis and vigorously related work investigation;
• we design Unicorn, the first unified resource orchestration

framework for multi-domain, geo-distributed data analytics.
Unicorn provides the resource state abstraction for each do-
main to accurately represent its resource availability with
minimal information exposure in the form of a set of linear
equalities, a novel, efficient cross-domain resource discovery
component to provide the accurate, minimal resource avail-
ability information across different domains, and a global re-
source orchestrator to compute optimal resource allocations
for data analytics jobs;
• we implement a prototype of Unicorn and perform prelim-

inary evaluations to demonstrate its efficiency and efficacy.
We also present a full demonstration of Unicorn at Super-
Computing 2017.

The rest of the paper is organized as follows. We analyze the
data analytics trace of the CMS experiment, discuss the inadequacy
of existing resource management systems and identify the key
design challenge for multi-domain, geo-distributed data analytics
systems in Section 2. We introduce the system setting and give
an overview of the Unicorn framework in Section 3. We then
present the details of two key components of Unicorn, cross-
domain resource discovery and representation and global resource
orchestration, in Section 4 and 5, respectively. We discuss the
implementation details in Section 6 and evaluate the performance
of Unicorn in Section 7.We conclude the paper and discuss the next
steps of Unicorn in Section 8.

2. Motivation and challenge

Analytics trace from the CMS experiment. We collect the trace
of approximately 479 thousand data analytics jobs from the CMS
experiment, one of the largest scientific experiments in the world,
over a period of 7 days. From this trace,we find that over 35%of jobs
consumes resources across different domains, i.e., these jobs use
the computation node and the storage node located at different do-
mains which are connected by networking resources across mul-
tiple domains. We call these jobs remote jobs, compared with local
jobswhich only use resourceswithin one single domain. This result
indicates the resource disaggregation in the CMS network, i.e., the
unbalanced distribution of storage and computation resources.We
also plot the cumulative distribution function of job execution time
for this set of traces as shown in Fig. 1. We observe that the 90%
quantile of job execution time for remote jobs has an extra 38.9%
higher latency than local jobs. In addition, we observe that the
cross-domain networking resources available for data analytics are
very limited because the CMS data transfer traffic is saturating the
limited networking resources, e.g., the cross-domain data transfer
network traffic of the same7-day period has a total amount of 8785
terabyteswhile the cross-domain data analytics traffic is only 1404
terabytes. This observation indicates the scarcity of networking
resources available for data analytics in the CMS network. All these
results demonstrate that in order to support low-latency, multi-
domain, geo-distributed data analytics, it is not only necessary, but
crucial to design a multi-domain resource orchestration system.
Related work. There exists a rich literature in the field of resource
management of clusters [2–12]. YARN [4] is the core resourceman-
agement framework of Hadoop. Mesos [3] is a platform designed
to share resources amongmultiple cluster computing frameworks,
e.g., MapReduce [14], Spark [15], MPI and etc. Google designs a
system called Borg [5] to orchestrate the cluster resources for its

190 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

Fig. 1. The CDF of job latency local and remote jobs.

proprietary data analytics frameworks. Microsoft (i.e., Apollo [6])
and Facebook (i.e., Corona [7]) also develop similar systems tailored
to their data analytics needs. These systems are all designed for
managing resources in single-domain clusters and adopt a graph-
based abstraction to represent the resource availability in clusters.
In this abstraction, each node in the graph is a physical node repre-
senting computation or storage resources and each edge between
a pair of nodes denotes the networking resource connecting two
physical nodes. This abstraction is inadequate for multi-domain,
geo-distributed data analytics systems for because (1) it compro-
mises the privacy of different domains by revealing all the details
of resources in each domain; and (2) the overhead to keep the
resource availability graph up to date is too expensive due to the
heterogeneity anddynamicity of resources fromdifferent domains.

There are also some efforts towards resource management for
multi-domain clusters. HTCondor [2] proposes a ClassAds pro-
gramming model, which allows different resource owners to ad-
vertise their resource supply and the job owners to advertise
the resource demand. The CMS [1] experiment currently uses
HTCondor and glideinWMS [8] to manage a set of distributively
owned computing resources in a globally distributed system. These
systems only focus on managing storage and computing resources
in clusters, while the recent study shows that computation, storage
and networking resources have approximately the same probabil-
ity to become the bottleneck affecting the performance of data-
intensive analytics jobs [16]. By leaving the orchestration of net-
working resources completely to TCP, which has been known to
behave poorly in networks with high bandwidth-delay products
including multi-domain, geo-distributed data analytics systems,
the abstraction adopted by these systems is also inefficient.

Another line of work called geo-distributed data analytics is
also related. Solutions in this field include (1) moving the input
dataset to a single data center before the computation [17,18] and
(2) placing different amounts of tasks at different sites depending
on dataset availability to achieve a better parallelization and hence
a lower latency [9–12]. The main focus of these solutions is to
optimize the usage of a set of dedicated networking resources.
The design of these systems cannot be applied to multi-domain,
geo-distributed data analytics where different types of resources
owned by different owners need to be orchestrated.
Design challenge. The discussion above shows the urgent need
for an efficient resource orchestration framework to supportmulti-
domain, geo-distributed data analytics systems such as CMS. And
by investigating the limitations of existing resource management

Fig. 2. An example of multi-domain, geo-distributed data analytics system. Do-
mains A, B, E and F are leaf domains. Domains C and D are transmission domains.

systems,we identify the key design challenge for such a framework
is how to achieve resource discovery and representation across
different domains with minimal information exposure. To this
end, we design the Unicorn framework to manage a large set of
distributively-owned, heterogeneous resources for multi-domain,
geo-distributed data analytics systems. Unicorn achieves efficient
resource utilization while allowing the autonomy and privacy of
different domains through a novel resource state abstraction, an
efficient cross-domain discovery and representation component
and a global resource orchestration component, which will be
discussed in the next few sections.

3. Overview

In this section, we introduce the system setting for multi-
domain, geo-distributed data analytics and give an overview of the
Unicorn framework and its workflow.
System settings. We consider a data analytics system composed
of multiple organizations (domains). Each domain contributes a
certain amount of computation, storage and networking resources
for all the users in the system to store, transfer and analyze large-
volume datasets. The storage and computation resources are typ-
ically physical servers, virtual machines or containers. The net-
working resources are typically switches and links. Domains that
only contribute networking resources are called transmission do-
mains and domains that also contribute computation and storage
resources are called leaf domains. Fig. 2 gives an example of such a
system. In this example, domain A, B, E and F are all leaf domains
while domain C and D are transmission domains.

A data analytics task is typically decomposed into a set of jobs J
whose precedence relation is specified by a directed acyclic graph
(DAG). A task is finished if and only if the last job in the decom-
posed DAG is finished. Each job j has requirements on storage and
computation resources, e.g., number of CPUs, size ofmemory, input
dataset and etc. We use (stg, comp) to denote a pair of candidate
storage and computation resources satisfying the requirement of j.
The orchestration system is in charge of selecting one (stg, comp)
pair for each job j and allocating the selected storage and computa-
tion resources and the networking resources connecting them for
executing j.
Unicorn architecture. We present the architecture of Unicorn in
Fig. 3. On top of all the domains, Unicorn provides a logically cen-
tralized controller to orchestrate resources for data analytics jobs.
This controller includes a cross-domain resource representation
anddiscovery component and a global resource orchestration com-
ponent. Residing in each domain are a domain resource manager
and a set of job execution agents.

Unicorn provides a novel abstraction called resource state ab-
straction, a variant of network view abstraction [13]. This abstrac-
tion uses a set of linear inequalities to accurately represent the

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 191

Fig. 3. The architecture of Unicorn.

availability of different resources in each domain with minimal
information exposure. When a set of data analytics jobs J are
submitted to the Unicorn controller, the cross-domain resource
discovery and integration component issues discovery queries,
i.e., path queries and resource queries, to the domain resource
manager at each domain to retrieve the intra-domain resource
view of each domain encoded in the resource state abstraction.
It then assembles and compresses the responses into an accurate,
minimal cross-domain resource view. This view, together with the
resource requirements of j, is then used by the global orchestration
component to make global, optimal resource allocation decisions
and send to the job execution agents at corresponding domains.
The execution agents enforce the received decisions, e.g., start-
ing the corresponding program, rate limiting the data accessing
bandwidth and etc., and send the job execution status back to the
Unicorn controller as feedback. In the next few sections,wepresent
the design details of key components of Unicorn.

4. Cross-domain resource discovery and representation

In this section, we present our design to address the funda-
mental challenge of accurately discovering and representing a
large set of distributively-owned, heterogeneously resources with
minimal information exposure of resource owners. In particular,
we introduce a novel abstraction to represent intra-domain re-
source availability and design an efficient discovery mechanism to
discovery resource availability across different domains.

4.1. Intra-domain resource state abstraction

Basic idea. Unicorn framework provides an abstraction called
resource state abstraction to accurately represent the availability
of multiple resources for a set of data analytics jobs using a set of
linear inequalities. This is a variant of the network view abstrac-
tion [13]. In particular, we consider a set of data analytic jobs J that
wants to consume a set of physical resources R (i.e., computation,
storage and networking) based on a set of pre-defined policies P .
If a resource attribute attr is capacity-bounded, i.e., a resource r
can only provide this attribute with a certain capacity (denoted as
C r,attr) and each job j consuming r can only get a portion of this
attribute (denoted as cr.attrj), the resource availability of R for J on
this attribute can be expressed as:∑
j∈J(P,r)

cr,attrj ≤ C r,attr ,∀r ∈ R, (1a)

Fig. 4. An example to illustrate the resource state abstraction.

cR,attrj = f (P, attr, cr,attrj),∀(j, r ∈ R), (1b)

cr,attrj = g(P, attr, cr
′,attr

j),∀(j, r ∈ R, r ′ ∈ R {r}). (1c)

In this representation. Eq. (1a) indicates that the total amount
of attr of resource r consumed by all the jobs cannot exceed the
supply capacity of r on attr , where J(P, r) is the set of jobs that are
allowed to consume j based on the policy set P . Eq. (1b) represents
the total capacity of attr that j can get from the whole set of
resources R (denoted as cR,attrj) by a pre-defined linear function
of cr,attrj , whose form depends on attr and P . Eq. (1c) represents
the relation between the amount of attr a job j can get from two
resources r and r ′ by a pre-defined linear function, whose form
depends on attr and P . One of themost common capacity-bounded
resource attributes is bandwidth.

If a resource attribute attr is capacity-free, i.e., each j consuming
r who provides this attributes can get the same capacity C r,attr at
the same time, the resource availability of R for J on this attribute
can be expressed as:

cR,attrj = h(P, R, attr, j),∀j ∈ J, (2)

where the value of cR,attrj is computed by a pre-defined function
h(P, R, attr, j) whose form depends on attr and P . Note that this
function does not need to be linear because the value of the right-
hand side can be directly computed in this availability represen-
tation. Examples of such capacity-free resource attributes include
propagation delay, hop-count, and etc.
Example. We use the physical topology in Fig. 4 to illustrate how
resource state abstraction works. Suppose two jobs j1 and j2 need
to read data from storage node eh1 to computation node eh3 and
from eh2 to eh4, respectively. The routing policy for the data flow of
each job is also shown in the figure. For simplicity, we only focus on
the bandwidth attribute for each resource, i.e., end host, switch and
link. Following the definition in Eq. (1), the resource availability of
this topology for j1 and j2 can be expressed as:

c lij1 ≤ 100 Mbps, i = {1, 3},
c lij2 ≤ 100 Mbps, i = {4, 5},

c lij1 + c lij2 ≤ 100 Mbps, i = {2},
cswk
j1
+ cswk

j2
≤ 10 Gbps, k = {1, 2},

cehmj1
≤ 10 Gbps, m = {1, 3},

cehmj2
≤ 10 Gbps, m = {2, 4},

cRj1 = c lij1 = cswk
j1
= cehmj1

, i = {1, 2, 3},∀k,m = {1, 3},
cRj2 = c lij2 = cswk

j2
= cehmj2

, i = {2, 4, 5},∀k,m = {2, 4},
c lij1 = cehmj1

= 0, i = {4, 5},m = {2, 4},
c lij2 = cehmj2

= 0, i = {1, 3},m = {1, 3},

(3)

Computingminimal, equivalent resource state abstraction. The
representation of resource availability defined in Eqs. (1)(2) is
accurate and complete, but may result in a large set of linear
inequalities with redundant information. In a simple topology in
our illustration example, there are already over 20 inequalities. Di-
rectly sharing themwith a centralized controller or other domains
would introduce a large communication overhead and expose
unnecessary private information about each domain, e.g., domain
topology and policies. We define a metric called compression ratio

192 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

to measure the exposure of private information of resource state
abstraction.

Definition 1 (Compression Ratio). Given an original resource state
abstraction with M linear inequalities, a compressed, equivalent
resource state abstractionwithN linear inequalities, which has the
same feasible region as the original resource state abstraction, has
a compression ratio of N

M .

In Unicorn, the domain resource manager adopts a lightweight,
optimal algorithm that compresses the original resource state ab-
straction into an equivalent resource state abstraction with the
minimal compression ratio. The basis of this compression algo-
rithm is simple: given an original set of linear inequalities C : Ax ≤
b, we iteratively select one constraint c ∈ C : aTx ≤ b and calculate
the optimal solution of problem y← max aTx, subject to, C −{c}.
If b is smaller than the resulting y, c is an indispensable constraint
in determining the feasible region andwill be put into theminimal,
equivalent constraint set C ′. Otherwise, c is a redundant constraint.
We propose the following proposition for this compression algo-
rithm.

Proposition 1. Given an original resource state abstraction, the
proposed compression algorithm computes an equivalent resource
state abstraction with the minimal compression ratio.

This proposition can be proved via contradiction. Applying this
algorithm to the example above, we may find that the minimal,
equivalent set of linear inequalities has only one inequality: cRj1 +
cRj2 ≤ 100 Mbps. In other words, our compression algorithm
achieves the minimal compression ratio of 1

31 .

4.2. Cross-domain resource discovery

The resource state abstraction allows each domain to represent
the accurate resource availability for a set of data analytics jobs us-
ing a set of linear inequalities with minimal information exposure,
but it still requires the knowledge of all available computation,
storage and networking resources, i.e., the domain topology, and
the domain policy to construct the original abstraction. As a result,
it is non-trivial to extend it for resource discovery cross-domains,
when a job needs to consume resources located in different do-
mains, e.g., the storage node and computation node assigned to
the same job may be located in two different domains and are
connected by network links across multiple domains. This is be-
cause information such as domain topology and policy is usually
private to each domain itself and is not allowed to be passed
arounddifferent domains. In this subsection,wepresent the details
of our design to tackle this challenge and extend resource state
abstraction for cross-domain resource discovery.
Basic idea. The key insight of our design is simple yet powerful: if
we can partition the networking resources connecting a (str, comp)
candidate pair for job j based on the domains they belong to, as
shown in Fig. 5, we can then ask the domain resource manager of
each domain to compute and represent the resource availability for
j in each domain independently.

With this insight, we design the cross-domain resource dis-
covery process of Unicorn whose workflow is shown in Fig. 6. In
particular, Unicorn performs cross-domain resource discovery for
a set of candidate (stg, comp) pairs for a set of job J in four key
steps. The first step is the path query process, in which the Unicorn
controller issues path queries to the domain resource manager to
recursively get a domain path in the form of

(dom1, srcIP, egress)→ (dom2, ingress, egress)
→ . . . , (domN , ingress, dstIP), (4)

Fig. 5. Partition the networking resources by domain.

Fig. 6. Workflow of cross-domain resource discovery.

for each candidate (storage, computation) node pair. The path query
can be executed either recursively or iteratively. The second step
is the partition process, which transforms the domain paths for
all the (stg, comp) candidate pairs, into a set of segments, i.e., the
partition results, with the form of

(domi, Fi, Fi.ingress, Fi.egress), (5)

for each domain, where Fi denotes the set of all (stg, comp) can-
didate pairs whose connection use the network resource in do-
main i. Thirdly, the Unicorn controller sends each partitioned seg-
ment to the corresponding domain resource manager to issue
one resource query for each segment, which asks each domain
to compute the minimal, equivalent single-domain resource state
abstraction. Fourthly, a privacy-preserving resource information
integration protocol will be executed between all the domains
to compute the accurate, minimal cross-domain resource view
representing the cross-domain resource availability for a set of
candidate (stg, comp) pairs for a set of job J .
Path query. We present the pseudocode of the path query process
in Algorithm 1. The path query is a recursive query process. In
particular, the path query algorithm requires the input of domain,
which domain the query should be sent to, F , a set of (stg, comp)
candidate pairs whose connection use the network resource in
domain, and Ingress, the set of ingress points each candidate pair is
entering domain from. It starts from the Unicorn controller group
the whole set of F into multiple disjoint subsets based on where
the storage resources for this subset of pairs are located, and send
one path query for each subset to each corresponding domain.
When a domain resource manager receives such a query, it first
computes the egress point, the next domain, and the ingress point
of next domain for each candidate pair f (Line 3–4). Then the set F
is grouped into several disjoint subsets based on the next domain
of each pair f (Line 5). For each subset Fi whose next domain is
not null, the current resource manager adds the current domain
into the domain path for Fi and issues another path query to the
domain resource manager at Fi.nextDom to get the remaining part
of the whole domain path (Line 8–12). If the next domain of Fi is

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 193

null, it means that the computation resources of these (stg, comp)
pairs are in the current domain, i.e., the domain path reaches the
destination, and the domain manager simply returns such infor-
mation to the querying party. During the path query process, each
domain only provides the egress points, the next domains and the
ingress points for (stg, comp) candidate pairswithout revealing any
topology or policy information.

Algorithm 1: The algorithm of path query.
1 Function domPathQuery(domain, F , Ingress)
2 domPathResponse← ∅;
3 foreach f ∈ F do
4 (f .egress, f .nextDom, f .nextDomIngress)← getNextDomain(f);

5 {F1, F2, . . . , } ← F .groupBy(f .nextDom);
6 foreach Fi do
7 if Fi.nextDom! = null then
8 domPathResponse←
9 domPathResponse∪

10 (domain, Fi.egress)⊕
11 {domPathQuery(Fi.nextDom, Fi,
12 Fi.nextDomIngress)};

13 else
14 domPathResponse←
15 domPathResponse ∪ {(Fi, null)};

16 return domPathResponse;

Resource query. For the sake of integrity, we present the pseu-
docode of partition and resource query together in Algorithm 2.
In particular, when the Unicorn controller receives the domain
path for each (stg, comp) candidate pair, it can use this information
to partition each path by domains and get the partition results
in Eq. (5) (Line 5–12). Then the Unicorn controller can perform
efficient resource queries to ask each domain to compute the intra-
domain resource view (Line 13–14).

This resource query process is efficient due to the following
proposition:

Proposition 2. Given a set of candidate (storage, computation) node
pairs for a job set of J , Unicorn achieves the minimal number of
resource queries at each domain.

Proof. With the domain path for each (str, comp) candidate pair,
the partition process yields a set of segments defined in Eq. (5), one
segment for each domain. Hence the Unicorn controller only needs
to generate one resource query for each domain if the correspond-
ing Fi is not empty, which completes our proof.

Algorithm 2: The algorithm of partition and resource query
and.
1 Function resourceQuery(F , F .domainPath)
2 resourceView← ∅;
3 foreach domain do
4 domain.F ← ∅;

5 foreach f ∈ F do
6 hIdx← 0;
7 dom← getDom(f .domainPath, hIdx);
8 do
9 dom.F ← dom.F ∪ {f };

10 hIdx← hIdx+ 1;
11 dom← getDom(f .domainPath, hIdx);
12 while dom ̸= null;

13 foreach domain do
14 resourceQueryByDomain(domain, F)

Privacy-preserving resource information integration. During
the resource query phase, each domain d computes the equivalent
resource state abstraction that is only minimal to d itself. When

the controller collects the resource state abstraction from every
domain, a linear inequality that was from domain d1 may be a re-
dundant one due to the existence of another linear inequality from
domain d2. For instance, d1 may return f1+f2 ≤ 10 to the controller
while d2 may return f1 + f2 ≤ 5. It is easy to see that the cross-
domainminimal, equivalent resource state abstraction would only
contain f1 + f2 ≤ 5, not f1 + f2 ≤ 10. A strawman approach
to compute the cross-domain minimal, equivalent resource state
abstraction is to have the controller run the MECS algorithm with
all the resource state abstraction from every domain as input. This
approach, however, would force each domain to expose unneces-
sary resource information, i.e., the redundant linear inequality, to
the controller, leading to unnecessary privacy leaks.

In Unicorn, we design a privacy-preserving resource informa-
tion integration protocol that allows every domain to discover
linear inequalities in its own domain that are redundant to the
minimal cross-domain resource state abstraction. This protocol
involves two steps. In the first step, each domain d uses the classic
pivoting algorithm [19] to compute all the vertices of the convex
polyhedron defined by all the linear inequalities of its own single-
domain resource state abstraction. In the second step, each domain
d peers with every other domain d′ ∈ D, and uses a customized
secure two-party computational geometry protocol to decide if all
the vertices computed by d are on the same halfspace defined by
a given linear inequality c in the resource state abstraction of d′.
If this is true, then c is a redundant inequality in the final cross-
domain resource state abstraction, hence will not be sent from
domain d′ to the controller. The privacy-preserving property of this
protocol is summarized in the following proposition.

Proposition 3. Given two domains d and d′, the proposed protocol
ensures that d knows which linear inequalities in its own single-
domain resource state abstraction are redundant to the single-domain
resource state abstraction of d′ without knowing what the resource
state abstraction of d′ has, and vice versa.

We leave the details of this protocol in [20] due to the space
limit.
Schedulability. The cross-domain resource discovery process in
Unicorn provides an accurate view of resource availability across
domains with minimal exposure of private information. One im-
portant question left, however, is whether this view provides a full
schedulability of resources for a logically centralized orchestrator.
We answer this question with the following theorem.

Theorem 1. When all the resources represented in the final resource
state abstraction queried from the cross-domain discovery process
in Unicorn can be fully controlled on the edge, i.e., all the attributes
of each resource can be controlled by end host, the resource view
provided by resource state abstraction provides a full schedulability
of resources to a centralized resource orchestrator.

We omit the proof of this theorem due to the space limit.

5. Global resource orchestration

With the accurate, minimal cross-domain resource view, Uni-
corn performs global resource orchestration to compute optimal
resource allocation decisions for a given set of jobs J . The mod-
ular design of Unicorn allows different allocation algorithms to
be deployed. For simplicity, we consider a set of jobs J with no
precedence from the same task, i.e., all the jobs can be executed in
parallel. We leave a more generic problem formulation as future
work. We assume that each computation resource has infinite
computation power, i.e., the data accessing delay reading data
from storage resources over networking resources to computation
resources is the only bottleneck determining the delay for each

194 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

workflow. For each job j ∈ J , let Stgj denote the set of storage
resources storing a copy of the input dataset of j, Compj denote
the set of computation resources that can execute j, vj denote
the volume of input dataset of j, and tj denote the data accessing
delay of j. We also use bmn

j to denote the data access bandwidth
for job j from storage resource m to computation resource n, and
a binary variable Imn

j to denote if j is assigned storage resource
m and computation resource n simultaneously or not. Note that
the global resource orchestration component relies heavily on
the cross-domain resource discovery component in Section 4. To
illustrate this argument, we first give a formulation of the global
optimal resource allocation problemwithout cross-domain resource
discovery as follows:

minimize maxj∈J{tj} (6)

subject to∑
{j∈J|n∈Compj}

∑
m∈Stgj

Imn
j ≤ 1, ∀n ∈ N, (7a)

∑
m∈Stgj

∑
n∈Compj

Imn
j = 1, ∀j ∈ J, (7b)

vj∑
m∈Stgj

∑
n∈Compj

bmn
j Imn

j
= tj, ∀j ∈ J, (7c)

A1(BI) ≤ C1. (7d)

A2(BI) ≤ C2. (7e)

. . . (7f)

AK (BI) ≤ CK . (7g)

In this formulation, Eq. (6) indicates that the global resource
allocation problem aims to minimize the data accessing delay for
the whole set of jobs F . Eq. (7a) ensures that for each computation
resource, atmost one job can be assigned. Eq. (7b) ensures that only
one computation resource and one storage resource are assigned
for each job j. Eq. (7c) calculates the data accessing delay for each
job j. These constraints, i.e., Eqs.(7a)–(7c) are job-specific, i.e., they
express the requirements of data analytics jobs and can be changed
accordingly based on different job requirements. The constraints
in Eqs. (7d)–(7g) are resource-specific, which depends not only on
jobs’ resource requirements, but also on the attributes provided by
resources from each domain.

Though this formulation is accurate itself, its key limitation
is that without a cross-domain resource discovery process, it is
infeasible to find the resource-specific constraints in Eqs. (7d)–
(7g). On the contrary, the cross-domain resource discovery in Uni-
corn copes with this issue by providing the following constraint to
accurately represent the resource availability for a given set of jobs
with minimal information exposure.

A(BI) ≤ C . (8)

With this formulation, the global optimal resource allocation
problem with cross-domain resource discovery can be precisely de-
fined as:

minimize maxj∈J{tj} (9)

subject to

Eqs. (7a)(7b)(7c)(8). (10a)

Solution. The multi-domain resource allocation problem defined
above is complex in that it involves binary decisions, non-linear
constraints and a complex objective function. To solve this prob-
lem,we first linearize the binary decision variables, thenuse a stan-
dard optimization solver to find the solution to the relaxed non-
linear optimization problem, and then round-up the linearized

Table 1
Unicorn resource discovery protocol.
Service Path Query Resource Query
HTTP Method POST POST
Media Type application application
Accept Subtype alto-flowfilter+json alto-flowfilter+json
Content Subtype alto-nextas+json alto-pathvector+json
Function Implement

getNextDomain() in
Algorithm 1.

Implement
resourceQueryByDomain()
in Algorithm 2.

decision variables back to the {0, 1} feasible space to get the final
resource allocation decisions. Because the cross-domain resource
discovery process in Unicorn provides the resource view across do-
mains with a minimal set of linear inequalities, the time overhead
to solve the relaxed non-linear optimization problem is typically
reasonable. We leave the task of finding a more efficient algorithm
for this problem as future work.

6. Implementation

In this section, we discuss the implementation details of the
Unicorn framework. The system implementation includes the fol-
lowing components:
Resource discovery protocol. We design and develop a query-
based resource discovery protocol by extending the Application-
Layer Traffic Optimization (ALTO) protocol [21], to deliver the
resource state abstraction from each domain to the Unicorn con-
troller. The protocol provides twomajor services: path query service
and resource query service. The former is used for delivering next
hop information to from domain resource managers the Unicorn
controller. The latter is used for executing intra-domain resource
queries. Table 1 summarizes the basic view of the two services.
Domain resourcemanager. We build the prototype implementa-
tion of the domain resource manager on top of the OpenDaylight
SDN controller [22]. From the view of the Unicorn controller, the
domain resource manager works as a web service which provides
the resource discovery protocol. From the view of the OpenDay-
light controller, the resource manager is a consumer to re-process
the topology, the traffic statistics, the intra-domain resource infor-
mation and the inter-domain routing information.

The implementation includes two sub components: An Open-
Daylight application running in the Karaf container; and a Python-
based web service to provide the resource discovery protocol. The
OpenDaylight application uses the API provided by Model-Driven
SAL framework to read the real-time network information from
the OpenDaylight DataStore. The two sub components commu-
nicate via RPC with each other. So the web service component is
decoupled with the OpenDaylight and can be adapted to any other
network management platform.

To implement the resource query service, we use the Python
web service to look up the raw resource state for the given flow
set from the OpenDaylight back end. Our native OpenDaylight
application collects the topology and forwarding rules from the
network-topology and opendaylight-inventory model of
the DataStore, and computes the intra-domain resource state from
these information. In our Python web service, we use GLPK as
the underlying LP solver to calculate the minimal equivalent re-
source state abstraction described in Section 4.1. The solver API is
wrapped by PuLP so that we could switch to other LP solvers like
CPLEX and Gurobi without many modifications.

We implement the path query service as a BGP compatible ser-
vice. The domain resourcemanager reads the inter-domain routing
information from the OpenDaylight DataStore and converts it to
the BGP RIB (Routing Information Base) format to respond the

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 195

path query. The native OpenDaylight could support multiple inter-
domain routing protocols by implementing their adaptors. In this
prototype, we only implement the BGP adaptor which feeds the
next-hop information of the inter-domain routing from the bgp-
ribmodel.

Cross-domain resource discovery. The cross-domain resource
discovery implements the two algorithms, path query (Algorithm
1) and resource query (Algorithm 2) and aggregate resource state
abstraction from multiple domains to provide a aggregated re-
source state abstraction to the Global Resource Orchestration. It
provides a high-level API getGlobalResourceView which ac-
cepts a set of node pairs (srcIP, dstIP) as the queried flow set,
and returns a set of linear inequalities as the global resource
view. In addition, it also provides some low-level APIs including:
getDomainPath that implements the Algorithm 1 and returns
the domain path; and getDomainResource that retrieves the
intra-domain resource view from a domain via resource discovery
protocol.

Global resource orchestration. We implement the global re-
source orchestrator to subscribe to the analytics job management
database. Once new jobs are inserted into the database, the orches-
trator fetches them, performs cross-domain resource discovery
and thenmake resource allocation decisions. It provides numerous
Python APIs for developing new resource allocation algorithms.
Therefore it is flexible for administrators to update the resource al-
location policy. Our current orchestratormakes resource allocation
decisions by solving the optimization problem defined in Section
5.

7. Performance evaluation

We evaluate the performance of Unicorn through trace-based
simulations. In particular, we focus on the efficiency of Unicorn in
(1) discovering and represent a cross-domain resource view with
minimal information exposure; and (2) performing global resource
allocation decisions for data analytics jobs. All the simulations are
conducted on a laptop with two 1.6 GHz Intel i5 Cores and a 4 GB
memory.

7.1. Methodology

We emulate three multi-domain data analytics networks with
different number of domains and topologies. For each setting, we
first randomly select one topology from Topology Zoo [23] and
let that topology be the domain-level topology with each node
represent a single domain. And we also generate the intra-domain
topology, i.e., switches and the intra-domain links, for eachdomain.
The emulated multi-domain topologies are labeled as Arpanet
(composed of 4 domains), Aarnet (composed of 19 domains) and
Chinanet (composed of 42 domains). The scale of these multi-
domain topologies reflects the scenario of high-energy physics
researchprograms.We leave the evaluation of largermulti-domain
topologies (e.g., hundreds or thousands of domains from the CAIDA
datasets) as future work. We set the available link bandwidth
within each domain to be 0.2–1 Gbps and the available link band-
width between domains to be 2–4 Gbps. And we assume the I/O
bandwidth of storage and computation resources are way larger
than the bandwidths of links. We assume each domain’s intra-
domain and inter-domain routing policies both use the typical
routing policies, i.e., the shortest path routing, except that the
former is on the router level and the latter is on the domain level.
We vary the number of data analytics jobs J from the same task to
be from 5 to 30, each of which requires reading 1000 GB of data.

Fig. 7. Compression ratio of intra-domain resource view and cross-domain re-
source view with varying numbers of jobs.

Fig. 8. Compression ratio of intra-domain resource view and cross-domain re-
source view with different topologies.

7.2. Results

Cross-domain resource discovery and representation. We first
present the compression ratio of the Unicorn in discovering and
representing the accurate, minimal intra- / cross-domain resource
views. This result is computed based on Definition 1 in Section 4.1.
Fig. 7 shows this compression ratio in a 19-domain data analytics
network derived from the Aarnet topology [23] with different
number of data analytics jobs, and Fig. 8 shows this ratio under
different number of domains when fixing the number of jobs to be
20. From these results we observe that the average compression
ratio of intra-domain resource view is only around 60%–70% while
that of the cross-domain resource view is around 25%–45%. These
show thatUnicornprovides a highly compact viewof cross-domain
resource availability for data analytics jobs. The higher compres-
sion ratio in the cross-domain view is because amulti-domain data
analytics network provides more resources for data analytics jobs,
i.e., there are fewer jobs sharing the same set of resources. On the
other hand, the fact that the highest cross-domain compression
ratio is still 45% shows that evenwithmore resources, jobs sharing
the same set of resources is still a common situation, indicating
the necessity and importance for discovering the accurate,minimal
resource availability across domains.

We also plot the number of linear inequalities in the intra-
/cross-domain view discovered by Unicorn in Figs. 9 and 10. We
see that as the number of domains and the number of jobs grow,
the number of linear inequalities in the accurate, minimal resource
view computed by Unicorn increases at a very slow rate, which
demonstrates the scalability of Unicorn.
Global resource orchestration. We next demonstrate the effi-
ciency of Unicorn in performing global resource orchestration for
data analytics jobs. In particular, we focus on the latency of a

196 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

Fig. 9. Number of linear inequalities in intra-domain resource view and cross-
domain resource view with varying numbers of jobs.

Fig. 10. Number of linear inequalities in intra-domain resource view and cross-
domain resource view with different topologies.

Table 2
The reduction of task latency of Unicorn over the domain-path allocation scheme
with max–min fairness..
Topology #Jobs

5 10 20 30

Arpanet 31% 24% 27% 65%
Aarnet 27% 46% 55% 10%

task composed of a job set J , which is computed as the longest
execution time of all jobs. In our evaluation, we assume all the
computation nodes have the same computation power, hence we
only need to focus onminimizing themaximal data accessing delay
among all jobs, as defined in Eq. (6). We compare the task latency
provided by Unicorn with that provided by a domain-path based
resource allocation scheme,which allocates computation and stor-
age resources for a job based on the shortest AS path and use the
classic max-in fairness mechanism to allocate bandwidth among
data accessing flows of analytics jobs. We summarize the results
under the combinations of different multi-domain topologies and
different numbers of jobs in Table 2. We see that Unicorn provides
an up to 65% task latency reduction in all cases. This shows that
Unicorn provides a significant latency reduction for multi-domain
data analytics.

8. Conclusion and future work

Summary. In this paper, we identify the objective and the fun-
damental challenge for designing a resource orchestration system
for multi-domain, geo-distributed data analytics system through
analyzing the data analytics trace from one of the largest scientific
experiments in the world and examining the design of existing

resource management systems for single-domain clusters. We de-
sign Unicorn, the first unified resource orchestration framework
for multi-domain, geo-distributed data analytics systems. Unicorn
realizes the accurate, cross-domain resource availability discovery
with minimal information exposure of each domain through the
resource state abstraction and a novel, efficient cross-domain re-
source availability query algorithm. Unicorn also provides a global
resource orchestrator to compute optimal resource allocation de-
cisions for data analytics tasks. We present the implementation
details and the preliminary evaluation results of Unicorn.
Prototype and full demonstration at SuperComputing 2017.
The source code and more comprehensive evaluation results of
Unicorn will be open-sourced at [24]. A full demonstration of the
Unicorn prototype has been given at SuperComputing 2017. In
this demonstration, we demonstrate the efficiency and efficacy of
Unicorn on cross-domain resource discovery and global resource
allocation in amulti-domain, geo-distributeddata analytics system
involving the Caltech booth, the USC booth and the UNESP booth
at the conference exhibition, the SCinent network, and the Caltech
testbed at Pasadena.

Acknowledgments

We thank Shenshen Chen, Shiwei Chen, Haizhou Du, and Kai
Gao for helpful discussion during thework. The Tongji team is sup-
ported in part by NSFC #61702373, #61672385 and #61701347;
and China Postdoctoral Science Foundation #2017-M611618. The
Yale team is supported in part by NSF grant #1440745, CC*IIE In-
tegration: Dynamically Optimizing Research Data Workflow with
a Software Defined Science Network; Google Research Award, SDN
Programming Using Just Minimal Abstractions. The Yale team is
also sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
hereon. The Caltech team is supported in part by DOE/ASCR project
#000219898, SDN NGenIA; DOE award #DE-AC02-07CH11359,
SENSE, FNAL PO#626507; NSF award #1246133, ANSE; NSF award
#1341024, CHOPIN, NSF award #1120138, US CMS Tier2; NSF
award #1659403, SANDIE.

References

[1] The CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3
(08) (2008) http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[2] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the
Condor experience, Concurr. Comput. Pract. Exp. 17 (2–4) (2005) 323–356.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.
Shenker, I. Stoica, Mesos: A platform for fine-grained resource sharing in the
data center, in: NSDI, 2011.

[4] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, et al., Apache Hadoop YARN: Yet another
resource negotiator, in: SoCC, ACM, 2013, p. 5.

[5] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-
scale cluster management at Google with Borg, in: EuroSys, ACM, 2015, p. 18.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, L. Zhou, Apollo:
Scalable and coordinated scheduling for cloud-scale computing, in: OSDI,
2014, pp. 285–300.

[7] Under the hood: Scheduling MapReduce jobs more efficiently with Corona,
http://on.fb.me/TxUsYN. [Online; accessed: 09-May-2017].

[8] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The
pilot way to grid resources using glideinWMS, in: CSIE, IEEE, 2009, pp. 428–
432.

[9] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Varghese, WANalytics:
Analytics for a geo-distributed data-intensive world, in: CIDR, 2015.

http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://on.fb.me/TxUsYN
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 197

[10] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, I. Stoica,
Low latency geo-distributed data analytics, in: SIGCOMM, ACM, 2015, pp.
421–434, http://dx.doi.org/10.475/123.

[11] C.-C. Hung, L. Golubchik, M. Yu, Scheduling jobs across geo-distributed data-
centers, in: SoCC, ACM, 2015, pp. 111–124.

[12] Y. Zhao, K. Chen,W. Bai,M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, S.Wang, Rapier:
Integrating routing and scheduling for coflow-aware data center networks,
in: INFOCOM, 2015.

[13] K. Gao, Q. Xiang, X. Wang, Y.R. Yang, J. Bi, NOVA: Towards on-demand
equivalent network view abstraction for network optimization, in: IWQoS
2017, 2017.

[14] D. Jeffrey, G. Sanjay, MapReduce: simplified data processing on large clusters,
Commun. ACM (2008).

[15] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster
computing with working sets, in: HotCloud’10.

[16] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.G. Chun, V. ICSI, Making
sense of performance in data analytics frameworks, in: NSDI, 2015, pp. 293–
307.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.
Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed
software defined WAN, in: SIGCOMM’13.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Watten-
hofer, Achieving high utilization with software-driven WAN, in: SIGCOMM,
ACM, 2013.

[19] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumer-
ation of arrangements and polyhedra, Discrete Comput. Geom. 8 (3) (1992)
295–313.

[20] Privacy-preserving resource information integration: Details, https://www.
dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0.

[21] R. Alimi, Y. Yang, R. Penno, RFC 7285, Application-layer Traffic Optimization
(ALTO) Protocol, IETF ALTO, 2014.

[22] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: Towards amodel-driven
SDN controller architecture, in: IEEE WoWMoM, 2014.

[23] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The Internet
Topology Zoo, 29(9) 1765–1775.

[24] Public Repository of Unicorn, https://github.com/snlab/Unicorn.

Qiao Xiang is an associate research scientist in the De-
partment of Computer Science at Yale University. His
research interests include software defined networking,
resource discovery and orchestration in collaborative
data sciences, interdomain routing, and wireless cyber-
physical systems. From 2014 to 2015, he was a postdoc-
toral fellow in the School of Computer Science at McGill
University. He received his master and Ph.D. degrees in
computer science at Wayne State University in 2012 and
2014, respectively, and a bachelor degree in information
security and a bachelor degree in economics fromNankai

University in 2007.

X. Tony Wang is a Ph.D. candidate in the Department of
Computer Science and Engineering at Tongji University.
His research interests include software defined network-
ing, interdomain routing and distributed computing. He
received a bachelor degree in engineering from the De-
partment of Computer Science and Engineering at Tongji
University in 2014.

J. Jensen Zhang is a Ph.D. candidate in the Department
of Computer Science and Engineering at Tongji Univer-
sity. His research focuses on network resource discovery,
abstraction and programming consistency for large-scale
data analytics systems. He is also an active member of
the IETF ALTOworking group and the OpenDaylight open
source community. He received a bachelor degree in en-
gineering from the Department of Computer Science and
Engineering at Tongji University in 2015.

Harvey Newman (Sc. D, MIT 1974) is the Marvin L.
Goldberger Professor of Physics at Caltech, and a faculty
member since 1982. In 1973–4 he co-led the team that
discovered fourth quark flavor known as ‘‘charm’’. He co-
led the MARK J Collaboration that discovered the gluon,
the carrier of the strong force in 1979. Since 1994 he
has been a member of CMS that discovered the Higgs
boson at LHC in 2012. Newman has had a leading role
in originating, developing and operating state of the art
international networks and collaborative systems serving
the high energy and nuclear physics communities since

1982. He served on the IETF and the Technical AdvisoryGroup that led to theNSFNet
in 1985–6, originated theworldwide LHC ComputingModel in 1996, and has led the
science and network engineering teams defining the state of the art in long distance
data transfers since 2002.

Dr. Y. Richard Yang is a Professor of Computer Science
and Electrical Engineering at Yale University. Dr. Yang’s
research is supported by both US government funding
agencies and leading industrial corporations, and spans
areas including computer networks, mobile computing,
wireless networking, and network security. His work has
been implemented/adopted in products/systems of ma-
jor companies (e.g., AT&T, Alcatel-Lucent, Cisco, Google,
Microsoft, Youku), and featured in mainstreammedia in-
cluding Economist, Forbes, Guardian, Chronicle of Higher
Education, Information Week, MIT Technology Review,

Science Daily, USA Today, Washington Post, and Wired, among others. His awards
include a CAREER Award from the National Science Foundation and a Google
Faculty Research Award. Dr. Yang’s received his B.E. degree in Computer Science
and Technology from Tsinghua University (1993), and his M.S. and Ph.D. degrees in
Computer Science from the University of Texas at Austin (1998 and 2001).

Y. Jace Liu is a research assistant in the Department of
Computer Science and Engineering at Tongji University,
China. His research interests include software defined
networking, large-scale data analytics systems and high-
performance computing. He received a bachelor degree
in engineering from the Department of Computer Science
and Engineering at Tongji University in 2017.

http://dx.doi.org/10.475/123
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
https://github.com/snlab/Unicorn

Fine-Grained, Multi-Domain Network Resource
Abstraction as a Fundamental Primitive to Enable
High-Performance, Collaborative Data Sciences

Qiao Xiang[‡, J. Jensen Zhang[, X. Tony Wang[, Y. Jace Liu[,
Chin Guok†, Franck Le�, John MacAuley†, Harvey Newman∗, Y. Richard Yang[‡,

[Tongji University, ‡Yale University, †Lawrence Berkeley National Laboratory,
�IBM T.J. Watson Research Center, ∗California Institute of Technology,

{qiao.xiang, yry}@cs.yale.edu, {jingxuan.zhang, 13xinwang}@tongji.edu.cn,
yang.jace.liu@linux.com, {chin, macauley}@es.net, fle@us.ibm.com, newman@hep.caltech.edu

Abstract—Multi-domain network resource reservation systems
are being deployed, driven by the demand and substantial
benefits of providing predictable network resources. However,
a major lack of existing systems is their coarse granularity,
due to the participating networks’ concern of revealing sensitive
information, which can result in substantial inefficiencies. This
paper presents Mercator, a novel multi-domain network resource
discovery system to provide fine-grained, global network re-
source information, for collaborative sciences. The foundation of
Mercator is a resource abstraction through algebraic-expression
enumeration (i.e., linear inequalities/equations), as a compact rep-
resentation of the available bandwidth in multi-domain networks.
In addition, we develop an obfuscating protocol, to address the
privacy concerns by ensuring that no participant can associate the
algebraic expressions with the corresponding member networks.
We also introduce a super-set projection technique to increase
Mercator’s scalability. Finally, we implement Mercator and
demonstrate both its efficiency and efficacy through extensive
experiments using real topologies and traces.

Index Terms—Multi-domain networks, resource discovery, pri-
vacy preserving

I. INTRODUCTION

Many of today’s premier science experiments, such as
the Large Hadron Collider (LHC) [1], the Square Kilo-
metre Array (SKA) [2], and the Linac Coherent Light
Source (LCLS) [3], rely on finely-tuned workflows that co-
ordinate geographically distributed resources (e.g., instrument,
compute, storage) to enable scientific discoveries. An example
of this is the movement of LHC data from Tier 0 (i.e., the data
center at European Organization for Nuclear Research, known
as CERN) to Tier 1 (i.e., national laboratories) storage sites
around the world. This requires deadline scheduling to keep up
with the amount of information that is continually generated
by instruments when they are online. Another example is
the “superfacility” model being developed by LCLS to allow
streaming of data from instruments, across the Wide-Area
Network (WAN), directly into supercomputers’ burst buffers
for near real-time analysis. The key to supporting these dis-
tributed resource workflows is the ability to reserve and guar-
antee bandwidth across multiple network domains to facilitate
predictable end-to-end network connectivity. As such, several

The corresponding authors are Qiao Xiang and Y. Richard Yang.

D2

D3D1
S

40Gbps
40Gbps

10Gbps
10Gbps100Gbps

10Gbps
100Gbps

10Gbps 10Gbps

100Gbps

Member Network𝕄" Member Network𝕄# Member Network𝕄$

Fig. 1: A motivating example where a user wants to reserve bandwidth
for three source-destination pairs: (S,D1), (S,D2) and (S,D3), across 3
member networks M1, M2 and M3.

Research and Education (R&E) networks have deployed inter-
domain circuit reservation systems. For example, the Energy
Sciences Network (ESnet), a network supporting the LHC
experiments, has deployed an On-Demand Secure Circuits and
Advance Reservation System called OSCARS [4].

However, due to networks’ concern of revealing sensitive
information, existing systems do not provide a network inter-
face for users to access network resource information (e.g.,
network capabilities). Instead, they only allow users to submit
requests for reserving a specific amount of bandwidth, and
return either success or failure [4]–[10]. This approach, which
we call “probe requests” in the rest of this paper, often results
in poor performance and fairness. Specifically, while solutions
for reserving bandwidth within a single member network,
can be very efficient, solutions for discovering and reserving
bandwidth for correlated and concurrent flows across multiple
member networks face unique challenges. In particular, solu-
tions to reserving bandwidth within a single member network
are often provided with the member network’s topology, and
links’ availability. In contrast, because this information is
typically considered sensitive, member networks do not reveal
internal network details to external parties. As a result, existing
multi-domain reservation systems treat each member network
as a black box, probe their available resource by submitting
varied circuit reservation requests, and receive boolean re-
sponses. In other words, current solutions perform a depth-first
search on all member networks, and rely on a trial and error
approach: to reserve bandwidth, repeated, and varied attempts
may have to be submitted until success.

To illustrate the limitations of existing systems, we consider
a collaboration network composed of three member networks
running OSCARS [4], as shown in Fig. 1. A user may
submit a request to reserve bandwidth for three circuits, from
source host S to destination hosts D1, D2 and D3. Given the

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

capabilities of the source host (e.g., the source host may have
a 100 Gbps network card), and to ensure fairness across the
circuits, the user may request 33.33 Gbps for each circuit.
Upon receiving this request, OSCARS processes the circuits
sequentially, for example, in the order of (S,D1), (S,D2) and
(S,D3). For each circuit, it uses a depth-first search approach
to probe if each member network can provide the requested
bandwidth. In this example, there is no path with 33.33 Gbps
of bandwidth from S to D1, and hence OSCARS notifies the
user that this request fails.

The user can then adjust the requested bandwidth. However,
with the limited feedback in OSCARS, the user does not
know the amount of available bandwidth from S to D1.
Consequently, the user may use a cut-to-half-until-reserved
search strategy. As a result, after 12 attempts, the networks
allocate 8.33 Gbps (33.33 → 16.67 → 8.33) for (S,D1), 8.33
Gbps (33.33 → 16.67 → 8.33) for (S,D2) and 1.04 Gbps
(33.33→ 16.67→ 8.33→ 4.17→ 2.08→ 1.04) for (S,D3).
In addition to requiring a large number of search attempts,
the approach may obtain a bandwidth allocation that is far
from optimal. For example, given the links’ capacities and
availability, a fair optimal bandwidth allocation is actually
5 Gbps for each circuit. Without a network interface to
provide network resource information, designing an algorithm
using existing systems to identify this solution can lead to
substantially more complexity and churns.

In addition to multi-domain circuit reservation systems,
multiple multi-domain resource discovery systems have been
developed and deployed (e.g., [11]–[17]). However, these
systems focus on the discovery of endpoint resources (i.e.,
computation and storage resources) and their availability for
different services. They do not provide a network interface for
applications to discover the network resource availability and
sharing properties [18]–[20].

In this paper, we present Mercator, a novel multi-domain
resource discovery system designed to optimize large, multi-
domain transfers, and address the limitations of current reser-
vation systems through three main components. The first and
core component of Mercator is a resource abstraction through
algebraic-expression enumeration (i.e., linear inequalities and
equations), which provides a compact, unifying representation
of multi-domain network available bandwidth. For example,
considering the same example of Fig. 1, the resource ab-
straction captures the constraints from all networks using the
set of linear inequalities depicted in Fig. 2. Specifically, the
variables x1, x2, x3 represent the available bandwidth that can
be reserved for (S,D1), (S,D2) and (S,D3), respectively.
Each linear inequality represents a constraint on the reserv-
able bandwidths over different shared resources by the three
circuits. For example, the inequality x1 + x2 + x3 ≤ 100
indicates that all three circuits share a common resource and
that the sum of their bandwidths can not exceed 100 Gbps.
With this set of linear inequalities, the user does not need to
repeatedly probe the domains, but can immediately derive the
bandwidth allocation to satisfy its own objective (e.g., same

𝑥" + 𝑥$ + 𝑥% ≤ 100,
𝑥" + 𝑥$ + 𝑥% ≤ 40,
𝑥" + 𝑥$ + 𝑥% ≤ 100,

𝑥$ + 𝑥% ≤ 40,					𝑥" ≤ 10,
𝑥$ + 𝑥% ≤ 100,					𝑥" ≤ 10,

𝑥$ + 𝑥% ≤ 10,
𝑥$ ≤ 10,
𝑥% ≤ 10,

𝕄": 𝕄$: 𝕄%:

Fig. 2: Illustration of resource abstraction for the reservation request from
Fig. 1.

rate for each transfer, different ratios according to demand
ratios, or a fairness allocation such as max-min fairness).

Second, Mercator introduces a resource abstraction obfus-
cating protocol to ensure that member networks and other
external parties cannot associate an algebraic expression with
a corresponding member network, leading to a complete
unified aggregation of multiple domains, appearing as much as
possible as a single (virtual) network. Although such complete
integration may not be needed in all settings, it can be highly
beneficial in settings with higher privacy or security concerns.
For example, in the scenario of Fig. 1, this protocol ensures
that (1) the user cannot infer that the constraint x2 + x3 ≤
10 comes from network M3, and (2) that neither network
M1 nor M2 knows the existence of this constraint. Finally,
Mercator also introduces a super-set projection technique,
which substantially improves the scalability and performance
of Mercator through pre-computation and projection.

The main contributions of this paper are as follows:
• We identify the fundamental reason of the poor perfor-

mance of current reservation systems for multi-domain data
transfers as the lack of visibility of network topology and link
availability of each member network, and design Mercator,
a novel multi-domain network resource discovery system, to
address this issue;
• In Mercator, we propose a novel, compact resource

abstraction to represent the network resource availability
and sharing, e.g., bandwidth, among virtual circuit requests
through algebraic-expression enumeration;
• We design a resource abstraction obfuscating protocol

to prevent the user from associating the received algebraic
expressions with their corresponding member networks;
• We develop a super-set projection technique to substan-

tially improve the scalability of Mercator;
• We fully implement Mercator and conduct extensive

experiments using real network topologies and traces. Results
show that Mercator (1) efficiently discovers available network-
ing resources in collaborative networks on average 2 orders
of magnitude faster, and allows fairer allocations of network
resources; (2) preserves the member networks’ privacy with
little overhead; and (3) scales to a collaborative network of
200 member networks.

The remaining of this paper is organized as follows. We
give an overview of Mercator in Section II. We give the
details of the algebraic-expression-based resource abstraction
in Section III. We discuss the resource abstraction obfuscating
protocol and the super-set projection technique in Section IV
and Section V, respectively. We present the evaluation results
of Mercator in Section VI. We discuss the related work in
Section VII and conclude the paper in Section VIII.

II. MERCATOR OVERVIEW

This section presents the basic workflow and the architecture
of Mercator, and a brief overview of its three main compo-
nents: the resource abstraction through algebraic-expression
enumeration, the resource abstraction obfuscating protocol and
the super-set projection technique.

Mercator	
Domain
Server

Reservation
System

Step 2

Step 1

Step 3

𝕄" 𝕄#

UserAggregator

Routing Protocol Routing Protocol

Step 4

Mercator	
Domain
Server

Reservation
System

Fig. 3: The architecture and basic workflow of Mercator.

A. Basic Workflow

Mercator introduces and relies on a logically centralized
aggregator, and a Mercator domain server in each member
network. Consider a multi-domain network of N member
networks Mi, where i = 1, . . . , N (Fig. 3). The basic workflow
of Mercator to discover the multi-domain network bandwidth
availability and sharing for a set of requested circuits is:
• Step 1: A user (e.g., an application) submits a resource

discovery request for a set of circuits to the aggregator by
specifying the source and destination endpoints of each circuit.
• Step 2: After authenticating and verifying the authoriza-

tion of the request, the aggregator determines the member
networks that the circuits traverse, and queries the Mercator
domain server in each of these member networks to discover
their resource abstractions. The determination of the relevant
member networks for the aggregator to contact is further
described in Section II-B.
• Step 3: Upon receiving the query from the aggregator,

each Mercator domain server computes the resource abstrac-
tion (Section II-C, Section III) of the corresponding member
network, and executes an obfuscating protocol (Section II-C,
Section IV) to send the obfuscated resource abstraction to the
aggregator.
• Step 4: The aggregator collects the obfuscated resource

abstractions from the relevant member networks, and derives
the original resource abstractions to present to the user. Based
on the received information, the user determines the bandwidth
allocation for each circuit, and sends a reservation request to
the underlying reservation system.

The above workflow illustrates the main steps for a user
to discover the available network bandwidth and properties
for a set of circuits traversing multiple member networks.
To further improve the scalability of Mercator, Section V
introduces the super-set projection technique. It allows the
aggregator to proactively discover the resource abstractions for
a set of circuits between every pair of source and destination
member networks, and project the pre-computed result to get
the resource abstraction when receiving actual requests from
users. The super-set projection technique can significantly

reduce the delay, as well as number of messages, of resource
discovery, and allows the aggregator to process multiple re-
quests concurrently.

B. Architecture

This section describes the roles of the aggregator and
Mercator domain servers in further details (Fig. 3).
Aggregator: The aggregator is the main interface of Mercator.
It is responsible for authenticating and verifying the autho-
rization of users’ resource discovery requests (e.g., through
PKI [21])1, querying Mercator domain servers in member net-
works to discover network resource information, and returning
the collected abstractions to users.

The aggregator has connections to Mercator domain servers
in all member networks. It also acts as a Border Gateway
Protocol (BGP) [24] speaker, and has BGP sessions to all
member networks. Consequently, given a request for a set of
circuits F , the aggregator can infer the member-network path
for each circuit, i.e., the list of member networks a circuit will
traverse, and the ingress points of the circuits to each member
network2 (as described in Step 1 of workflow). As such, for
this request, the aggregator can also infer the set of circuits
traversing and consuming resources in each Mi, denoted as
Fi. It can then queries the Mercator domain servers at each
Mi by providing Fi and their ingress points to enter Mi.
Mercator domain server: Given a Mercator domain server
in member network Mi, its primary role is to compute the
resource abstraction of Mi. To achieve it, Mercator follows
the layering design principle to separate the routing protocol
and the available network resources. In this way, given a set of
circuits sent by the aggregator, their routes in Mi are computed
and provided by the routing protocol in Mi. The Mercator
domain server in Mi takes these routes as inputs, and derives
the available bandwidth and shared properties for the requested
flows along those routes. After computing the abstraction, the
Mercator domain server executes an obfuscating protocol to
send the obfuscated resource abstraction to the aggregator,
which addresses member networks’ privacy concern.

C. Key Design Points

Having illustrated the high-level workflow of Mercator, we
next give a brief overview on its key design points.
Resource abstraction through algebraic-expression enu-
meration (Section III): Mercator follows two important
principles in human-computer interaction, familiarity and uni-
formity, to design a unifying abstraction that captures the

1Mercator may adopt different authentication/authorization systems, e.g.,
OpenID [22] and SAML [23], depending on the specific requirements of
different collaborative science programs. We leave the detailed investigation
of this issue in Mercator as future work.

2In BGP glossary, such a path is also called an autonomous-system-path,
or an AS-path, which is announced in BGP update messages along BGP
sessions. The Route View Project [25] relies on a similar architecture with
BGP speakers establishing sessions with hundreds of peering networks to
collect BGP updates, and provides a real time monitoring infrastructure. In
particular, we observe that the AS path for each destination prefix is currently
already collected and made publicly available. As such, Mercator does not
introduce additional privacy issues.

properties (e.g., available bandwidth) of resources shared –
within and between member networks – by a set of requested
circuits. This novel, compact resource abstraction is the core
component of Mercator, and relies on algebraic expressions
(i.e., linear inequalities / equations), a concept familiar to
scientists and network engineers [26], to express the available
bandwidth sharing for a set of requested circuits to be reserved.

Existing resource abstractions, including graph-based ab-
stractions [27], [28] and the one-big-switch abstractions [29],
[30], either fail to protect the private, sensitive information
of each member network, or fail to capture the resource
sharing between virtual circuit requests. In contrast, the re-
source abstraction of Mercator, expressed through algebraic-
expression enumeration, naturally and accurately captures
the available bandwidth of shared resources by a set of
circuits without requiring member networks to reveal their
network topology. Compared with the Boolean response of
current resource reservation systems such as OSCARS, the
user receives the complete bandwidth feasible region of the
collaboration networks for the requested circuits represented
through algebraic expressions. A point in that feasible region
represents a feasible allocation of bandwidth for the different
circuits in the request. In other words, the user can choose any
point in the returned region as the bandwidth parameters for
the circuits to be reserved, using his own resource allocation
strategy (e.g., max-min fairness [31]).
Resource abstraction obfuscating protocol (Section IV):
The algebraic-expression-based abstraction provides a com-
pact, unifying representation of the multi-domain network
resource information. It does not require member networks
to reveal their network topologies and link availabilities.
However, it does expose the bandwidth feasible region of each
member network (illustrated by the examples in Section I
and Section III). Some member networks might prefer not
to expose such information, as malicious parties may use
it to identify links where to launch attacks (e.g., DDoS).
To address this issue, we develop a resource abstraction
obfuscating protocol. More specifically, the protocol prevents
the resource discovery aggregator from identifying the source
of each received resource constraint. The key idea consists of
having each Mercator domain server obfuscate its own set of
linear inequalities as a set of linear equations through a private
random matrix of its own and a couple of random matrices
shared with few other Mercator domain servers from other
member networks (e.g., through a consensus protocol), and
then sends the obfuscated set of linear equations back to the
aggregator using symmetric-key encryption, e.g., Advanced
Encryption Standard (AES) [32]. We demonstrate that from
the received obfuscated equations, the aggregator can retrieve
the actual bandwidth feasible region for the circuits across
member networks, but cannot associate any linear inequality
with its corresponding member network. As a result, even if a
malicious party obtains the bandwidth feasible region across
member networks, launching attacks to all member networks
is much harder than attacking a particular member network.

Super-set projection (Section V): To improve the scalability
of Mercator, we introduce the super-set projection technique.
The main idea consists of having the aggregator periodically
query Mercator domain servers to discover the resource ab-
straction for a set of circuits between every pair of source
and destination member networks. With these precomputed
abstractions, when a user submits a resource discovery re-
quest, the aggregator does not need to query the Mercator
domain servers to compute the abstraction for each received
request. Instead, the aggregator performs a projection on the
precomputed abstractions based on the source and destination
member networks of each circuit in the actual user request, to
get the abstraction for this request. For example, consider a
network of 2 member networks M1 and M2. Using super-set
projection, the aggregator queries the Mercator domain servers
at both member networks for a set of 2 circuits, one from M1

to M2 and the other from M2 to M1, and gets a set of linear
inequalities {x12 + x21 ≤ 100, x12 ≤ 50}. Suppose later a
user submits a request for 1 circuit, with the source being an
endpoint in M2 and the destination being an endpoint in M1,
to the aggregator. The aggregator projects the precomputed
set of linear inequalities by removing all variables that are not
x21, and returns the result {x21 ≤ 100} to the user.

Such projection is much more efficient than having Mercator
domain servers compute the abstraction for each received
circuit request. With this technique, when a user submits a
resource discovery request to the aggregator, the aggregator
does not need to query Mercator domain servers (Step 2 in
Section II-A), and the Mercator domain servers do not need to
compute and obfuscate the resource abstraction for the request
(Step 3 in Section II-A). Only when the user fails to reserve the
resource based on the projected abstraction will the aggregator
query the Mercator domain servers to obtain an up-to-date
abstraction for the user. As such, servers in the aggregator
pool can process requests concurrently (e.g., using optimistic
concurrency control), significantly improving the scalability,
fault-tolerance, and performance of Mercator.

After an overview of the key design points in Mercator, we
discuss these designs in detail in the next few sections.

III. RESOURCE ABSTRACTION THROUGH

ALGEBRAIC-EXPRESSION ENUMERATION

In this section, we give the details of the resource abstraction
through algebraic-expression enumeration, the core component
of Mercator. We first discuss the limitations of existing design
options. Then we give the specifications of this abstraction. We
also discuss how it handles important use cases, e.g., multicast,
multi-path routing and load balancing, in Appendix A.
Basic issue: As illustrated by the example in Section I,
the fundamental reason for the poor performance of existing
circuit reservation systems is they are lack of the visibility of
properties, e.g., bandwidth, of shared network resources for a
set of circuits to be reserved. One may think of a strawman to
let each member network provide the full topology information
to the aggregator in a graph-based abstraction [27], [28]. This
design, however, exposes all the sensitive, private information

of each member network, i.e., network topology and links’
availability, to external parties, leading to security breaches.

A second strawman is to use a one-big-switch abstraction
to provide simplified views of network information [29], [30],
which protects the privacy of each member network. However,
this abstraction fails to capture the information of shared
resource among virtual circuit requests and thus is inaccurate.
Consider the example in Fig. 4, where the user wants to reserve
two circuits from S1 to D1 and S2 to D2, respectively. Using
the one-big-switch abstraction in the P4P system [29], the
user will get the information that each circuit can reserve a
bandwidth up to 100 Gbps (Fig. 4a). However, the routes for
the two circuits – computed by the underlying routing protocol
– share common links l3 and l4 (Fig. 4b), making it infeasible
for both circuits to each reserve a 100 Gbps bandwidth.

S1 D1

S2 D2

100Gbps

100Gbps

(a) The one-big-switch
shows that each circuit can
get a 100 Gbps bandwidth.

S1 D1

S2 D2

l1 l2 l5l3 l4

l7
l8 l11l9 l10

l12

l6

Each	link:	100	Gbps

sw2

sw1

sw5

sw6

sw7

sw8

sw3

sw4

(b) The physical topology shows that the route of two
circuits share bottleneck links, i.e., l3 and l4, hence they
can only collectively get a 100 Gbps bandwidth.

Fig. 4: A running example for illustrating the inefficiency of one-big-
switch abstraction and the basic idea of resource abstraction through algebraic-
expression enumeration, where two circuits (S1, D1) and (S2, D2) need to
be reserved.

In some recent studies [33], [34], a variation of the one-big-
switch abstraction was proposed to define the resource sharing
among different traffic flows as operations defined in different
algebra fields. However, this abstraction is too complex and
can only handle single-path routing policies.
Basic idea: Different from the graph-based abstraction and
the one-big-switch abstraction, the basic idea of the resource
abstraction in Mercator is simple yet powerful: given a set of
requested circuits to be reserved, capture the properties (e.g.,
available bandwidth) of relevant shared resources, through a
set of algebraic expressions.

Specifically, suppose the Mercator domain server at a mem-
ber network receives the resource discovery request of a set
of circuits F entering this member network. For each circuit
fj ∈ F , we use xj to denote the available bandwidth the user
can reserve for this circuit. Upon receiving this request, the
Mercator domain server first checks the intradomain route of
each circuit fj . Then the server enumerates all the links in
the member network. For each link lu, it generates a linear
inequality:∑

xj ≤ lu.bandwidth,∀fj that uses link lu in its route.

Revisit the example in Fig. 4, the Mercator domain server
will generate the following set of linear inequalities Π(F):

x1 ≤ 100 ∀lu ∈ {l1, l2, l5, l6},
x2 ≤ 100 ∀lu ∈ {l7, l8, l11, l12},

x1 + x2 ≤ 100 ∀lu ∈ {l3, l4},
(1)

which accurately captures the bandwidth sharing among two
circuits’ routes.

Removing redundant linear inequalities: Observe the set of
linear inequalities in the above example. One may realize that
this set has redundancies, e.g., there are 4 same inequalities
x1 ≤ 100 in this set. Given Π(F), a linear inequality
y ∈ Π(F) is redundant if and only if the optimal solution of
any optimization problem with Π(F) as the constraint is the
same as that with Π(F)−{c} as the constraint. In our system,
the Mercator domain server adopts a classic compression
algorithm [35] to remove the redundant linear inequalities.
In this example, the compressed Π(F) will only contain one
inequality, i.e., x1 + x2 ≤ 100.
Geometric interpretation of resource abstraction: Given
Πi(F), the resource abstraction of Mi for a set of F circuits,
from the geometric perspective, represents the bandwidth
feasible region of Mi for providing bandwidths to this set of
circuits. Therefore, given a set of F circuits spanning over N
member networks, the union of Πi(Fi), where Fi ⊂ F is the
set of circuits that will consume resources in Mi, represents the
complete bandwidth feasible region of all N member networks
for the requested circuits.

Through algebraic-expression enumeration, the resource ab-
straction can handle not only unicast, as shown above, but
many other settings. In Appendix A, we show how it handles
three important use cases in collaborative data sciences.

IV. PRIVACY-PRESERVING RESOURCE ABSTRACTION
Given a member network, the algebraic-expression-based

resource abstraction accurately captures the shared available
bandwidth among virtual circuits without exposing its network
topology and links’ availability. However, as shown in Sec-
tion III, the geometric interpretation of a resource abstraction
is that it represents the bandwidth feasible region of the
corresponding member network for a set of circuits. Such
information is still private and sensitive, and a malicious
party who acquires it may use it to launch attacks to the
corresponding member network. To preserve the privacy of
bandwidth feasible region of member networks while still pro-
viding the accurate bandwidth sharing information for circuits,
we develop a resource abstraction obfuscating protocol in
Mercator. In this section, we first formally define the privacy-
preserving resource abstraction problem. Next, we present the
details of our protocol. We also conduct a rigorous analysis
of our protocol in Appendix B.

A. Privacy-Preserving Resource Abstraction Problem
Basic issue: We use the example in Fig. 5 to illustrate the
privacy concern of the resource abstraction, where Mercator
tries to discover the shared bandwidth of two virtual circuits
(S1, D1) and (S2, D2) across 3 member networks. In this
example, all links in black line are 1 Tbps aggregating links.
The inter-member-network-paths of two circuits are [M1,M2]
and [M1,M3], respectively. And two circuits share the same
intra-domain path in M1.

When receiving the resource discovery request, the Mercator
domain server at each member network will abstract the band-
width sharing of both circuits into a set of linear inequalities.
After removing the redundant inequalities of each member

D1

D2

S1
100Gbps

30Gbps
𝕄"

𝕄#

S2

𝕄$
30Gbps

1Tbps link

Fig. 5: A running example to illustrate the resource abstraction obfuscating.

network, the resource abstraction of each member network is:

Π1(F1) : {x1 + x2 ≤ 100}
Π2(F2) : {x1 ≤ 30}
Π3(F3) : {x2 ≤ 30}.

(2)

If each Mercator domain server directly sends its own
resource abstraction to the aggregator, the aggregator will have
the knowledge of the bandwidth feasible region of each indi-
vidual member network. This makes the whole collaboration
network vulnerable because the aggregator is a single point
of failure possessing the private information of all member
networks. In other words, if an attacker gains the control to
the aggregator, he can leverage such specific information to
attack any member network.
Problem definition: To make Mercator functional and secure,
therefore, we need a solution that provides the accurate band-
width sharing information for the set of virtual circuits to be
reserved, and at the same time protects each member network
from exposing its private bandwidth feasible region. To this
end, we first give a formal definition of privacy-preserving,
equivalent resource abstraction:

Definition 1 (Equivalent, Privacy-Preserving Resource Ab-
straction): Given a set of circuits F that span over N > 1
member networks, the resource abstraction Πp(F) collected
by the aggregator is equivalent and privacy-preserving if (1)
the bandwidth feasible region represented by Πp(F) is the
same as that represented by ∪iΠ(Fi) where i = 1, 2, . . . , N ;
and (2) for any linear inequality c ∈ Πp(F), the aggregator
cannot associate it with a particular member network.
In this definition, Π(Fi) ∪ Π(Fj) means the union of two
sets of linear inequalities. Geometrically speaking, it means
the intersection of the feasible regions represented by Π(Fi)
and Π(Fj). With this definition, we further define the privacy-
preserving resource abstraction problem:

Problem 1 (Privacy-Preserving Resource Abstraction Prob-
lem): Given a set of circuits F that span over N > 1
member networks, design a security protocol in the resource
discovery system to ensure that (1) the aggregator receives
the equivalent, privacy-preserving resource abstraction Πp(F);
and (2) for any Mi, it does not know any linear inequality from
any other Πj(Fj), where j 6= i.
Security model: In this paper, we assume a semi-honest
security model, i.e., the aggregator and all member networks
will not deviate from the security protocol, but merely try to
gather information during the execution of the protocol [36].
This is sufficient for collaboration science networks where
member networks share resources to collaboratively conduct
common tasks such as data transfers, storage and analytics.
B. Resource Abstraction Obfuscating Protocol

There are different design options for Problem 1, e.g.,
garbled circuit based protocols [37]. However, these designs

(1) All member networks agree on k;
(2) Each𝕄" generates Ci and Di and shares with𝕄"#$;

(3) Each𝕄" transforms 𝑨𝒙 ≤ 𝒃 into augment form, and
obfuscates it using Ci, Di, Ci+1, Di+1 and a private Pi;

(4) Each𝕄" encrypts the obfuscated linear equations and
transmits to the aggregator;
(5) The aggregator decrypts and unmasks the bandwidth
feasible region across all member networks.

Initialization

Obfuscation

Transmission

Fig. 6: The resource abstraction obfuscating protocol.

would incur expensive computation and communication over-
head, hence are not suitable for the need of multi-domain
resource discovery. In this paper, we tackle this problem by
designing a novel resource abstraction obfuscating protocol
that only requires simple operations on matrices, i.e., addition
and multiplication.
Basic idea: Our protocol leverages random matrix theory [38],
[39]. In particular, each Mi independently computes and sends
to the aggregator a set of disguised linear equations, which are
derived from the private Πi(Fi), a random matrix Pi known
only to Mi, two random matrices Ci and Di known only to Mi

and Mi−1, and two random matrices Ci+1 and Di+1 known
only to Mi and Mi+1.
Protocol: The protocol is composed of three phases: initial-
ization, obfuscation and transmission, as shown in Fig. 6. For
the simplicity of presentation, we let mi = |Πi(Fi)|, i.e.,
the number of linear inequalities in Πi(Fi) after redundancy
removal, and Mi =

∑i
j=1 mj . During the initialization phase,

all member networks agree on a common k >
∑

mi. For
each Mi where i = 1, 2, . . . , N − 1, it generates a k-by-
(|F |+mi +mi+1) random matrix Ci = [C

|F|
i Ci

mi Ci
mi+1],

and a k-by-1 random matrix Di, and sends to Mi+1. And we
define C0, D0, CN and DN as zero matrices. As we will
illustrate in the remaining of this section, these zero matrices
are used for presentation completeness and will not affect the
correctness of the obfuscating protocol.

During the obfuscation phase, each Mi introduces mi slack
variables, denoted by xs

i , to transform Πi(Fi) = Aix ≤ bi

from the standard form to the augment form and gets the
following equivalent linear system:[

Ai Imi

] [
x, xs

i

]
= bi. (3)

We then add slack variables introduced by all other member
networks with zero coefficients into the linear system in
Equation (3) and get the following equivalent linear system:[

Ai 0Mi−1
Imi 0

] [
x, xs

1, . . . , xs
i , . . . , xs

N

]
= bi. (4)

Next, each Mi generates a private random matrix Pi ∈
Rk×mi , and left-multiplies both sides of Equation (4) to get:[

PiAi 0Mi−1
Pi 0

] [
x, xs

1, . . . , xs
i , . . . , xs

N

]
= Pibi. (5)

Then each Mi adds

[C|F|i −C
|F|
i−1 0Mi−2

−C
mi−1
i−1 −Cmi

i−1 + C
mi
i C

mi+1
i 0] ,

to the coefficient matrix of the left-hand-side (LHS) of Equa-
tion (5), and adds −Di−1 + Di to its right-hand-side (RHS)
to get Equation (6) where it can be observed that for each Mi,

[
PiAi + C

|F|
i −C

|F|
i−1 0Mi−2

−Cmi−1

i−1 Pi −C
mi
i−1 + C

mi
i C

mi+1

i 0
]
·
[
x, xs

1, . . . , xs
i , . . . , xs

N

]
= Pibi −Di−1 + Di, (6)

the coefficient matrix of LHS of Equation (6) is of dimension
k-by-|F |+ MN , and the RHS is of dimension k-by-1.

In the transmission phase, each Mi encrypts the set of linear
equations in Equation (6) using a symmetric-key algorithm,
e.g., AES, and sends the cypher text to the aggregator. After
collecting the linear equations from all member networks,
the aggregator decrypts them and computes the sum of all
LHS matrices and RHS matrices of all member networks,
respectively. After simple elimination, the LHS sum is ex-
pressed as: [

∑
PiAi P1 . . . PN] . Similarly, the sum of

all RHS matrices of all member networks can be expressed as∑
Pibi. Denoting [xs

1, . . . ,x
s
N] as xs, the aggregator can get

the privacy-preserving abstraction Πp(F):[∑
PiAi P1 . . . PN.

] [
x, xs

]
=
∑

Pibi. (7)

Example: We use the example in Fig. 5 to illustrate the
resource abstraction obfuscating protocol. For simplicity, we
assume three member networks agree on k = 4. The pri-
vate random matrices P1, P2 and P3 are generated as
P1 = [11, 49, 95, 34], P2 = [58, 22, 75, 25], and P3 =
[50, 69, 89, 95]. The resource abstraction Πp(F) obtained by
the aggregator is:

69x1 + 61x2 + 11xs
11 + 58xs

21 + 50xs
31 = 4340,

71x1 + 118x2 + 49xs
11 + 22xs

21 + 69xs
31 = 7630,

170x1 + 184x2 + 95xs
11 + 75xs

21 + 89xs
31 = 14420,

59x1 + 129x2 + 34xs
11 + 25xs

21 + 95xs
31 = 7000,

where xs
11, xs

21 and xs
31 are slack variables. Assume the user’s

objective is to maximize the throughput, i.e., x1 + x2. Using
this set of linear inequalities as the constraint, it can get the
optimal solution where x1 = x2 = 30 Gbps, the same as when
using Equation (2) as the constraint.

We conduct rigorous analysis on different properties (e.g.,
correctness, security and efficiency) of the proposed obfuscat-
ing protocol, which can be found in Appendix B.

V. SUPER-SET RESOURCE ABSTRACTION PROJECTION

One concern of the resource discovery is its scalability,
as the number of resource discovery requests may be large
in collaboration networks and each request would trigger a
resource discovery procedure. This procedure requires the
communication between the aggregator and the user, and
between the aggregator and every Mercator domain server in
member networks. Furthermore, the introduction of resource
abstraction obfuscating further increases the communication
and computation overhead of resource discovery. To address
this issue, we develop a novel super-set projection technique.
We describe its basic idea in this section, and leave the details
of this technique in Appendix C.
Basic idea: The intuition of super-set projection is simple:
to have the aggregator proactively discover the resource ab-
straction for a set of circuits between every pair of source
and destination member networks, and use these pre-computed
abstractions to quickly project to get the resource abstraction
for user’s requests.

In particular, in a collaboration network of N member
networks, the super-set projection technique first simulates
the need of N(N − 1) artificial circuits, where each circuit
fij represents an artificial circuit from Mi to Mj . With this
artificial resource discovery request, the aggregator follows
the normal resource discovery process to discover the shared
bandwidth of all these N(N − 1) circuits across the whole
collaboration network, represented by Πfull. When a user
sends an actual resource discovery request for a set of F
circuits, the aggregator checks the source and destination
member networks of each circuit, and uses the stored Πfull to
derive Π(F) by removing unrelated inequalities and unrelated
artificial circuits, instead of starting a new resource discovery
procedure. In this way, the overhead of resource discovery is
reduced to a single round of message exchange between the
aggregator and the user.

𝕄"

𝕄#

𝕄$

𝑥"# + 𝑥"$ ≤ 	60
𝑥"$ + 𝑥#$ ≤ 	80
	𝑥$#	+		𝑥$" ≤ 	100

𝑥#" ≤ 	50
𝑥"$ ≤ 40

Π0122:

Fig. 7: An illustrating example of super-set projection.

Example: Consider an example of 3 member networks in
Fig. 7. With the super-set projection, the aggregator discovers
the bandwidth sharing of all 3 × 2 = 6 network-to-network
artificial circuits as Πfull in the figure. When a user submits
a resource discovery request for two circuits (S1, D1) and
(S2, D2), where S1 is in M1, S2 and D1 are in M2 and D2 is
in M3. The aggregator first maps the (S1, D1) to the artificial
circuit from M1 to M2, and (S2, D2) to the artificial circuit
from M2 to M3. Next, it projects Πfull to these two circuits
to get the resource abstraction for these two circuits by (1)
removing all linear inequalities that do not contain x12 or x23,
and (2) for every remaining linear inequality, remove all the
items on the LHS that are not x12 or x23. Finally, it returns
the resource abstraction: {x12 ≤ 60, x23 ≤ 80}, to the user.

VI. EVALUATION

We implement Mercator on commodity servers (i.e.,
equipped with Intel(R) Xeon(R) E5-2609 2.50GHz 4-core
CPU and 32 GB memory) and evaluate its performance based
on a member-network-level topology from a large federation
of networks supporting large-scale distributed science col-
laborations, and using real traffic traces from recent science
experiments. After describing our experimental setup, we
first demonstrate the benefits of resource abstraction through
algebraic-expression enumeration. Second, we demonstrate the
efficiency of the proposed resource abstraction obfuscation
protocol. Finally, we demonstrate that the super-set projection
technique substantially increases the scalability of Mercator.
A. Experimental Setup

We evaluate Mercator on the member-network-level topol-
ogy from LHC Open Network Environment (LHCONE), a
global science network consisting of 62 member networks,
where scientists conduct large-scale distributed analytics. Be-
cause inter-member-network routing typically is not based

on shortest path routing, but follows business relationships
(e.g., customer, peer, provider), we label the connections
between every pair of connected member networks with their
business relationship using the CAIDA network relationships
dataset [40], and we compute the inter-member-network paths
according to conventional policies for selecting and exporting
routes. For member networks’ intradomain topologies, we ran-
domly select a topology for each network from the Topology
Zoo [41], which provides a collection of real intradomain
topologies. The topology of transit member networks varies
from 31 switches/routers with 33 links to 49 switches/routers
with 85 links. The topology of stub member networks (e.g.,
campus science networks) ranges from 7 switches/routers with
6 links to 21 switches/routers with 44 links.

B. Benefits of Resource Abstraction Through Algebraic-
Expression Enumeration

The first set of experiments demonstrate the benefits of the
resource abstraction through algebraic-expression enumera-
tion. We show that this abstraction reduces the time to discover
network resources by up to 3 orders of magnitude, and allows
fairer allocations of network resources.

1) Methodology: To evaluate the benefits of this resource
abstraction, we replay the trace from a large-scale distributed
experiment, and submit network resource reservations for the
corresponding flows. More specifically, we use the actual trace
from the CMS experiment [42], a major scientific experiment
in LHC, and a main source of traffic in LHCONE. We
extract the traffic flows, with their source member network,
destination member network and the time. We focus on the
48-hour trace starting from December 14, 2017 and slice the
data trace into 24 continuous 2-hour time windows. We apply
the resources reservation once every time window. In other
words, resources for traffic flows starting at the same time
window are reserved in the same request, and we assume all
resources will be released in the next time window.

We compare the performance of Mercator with that of ex-
isting reservation systems. In particular, for existing systems,
we consider one that adopts a probe-requests based approach:
• Mercator: As described in Section II, for every resource

discovery request, the aggregator queries the relevant member
networks for their resource abstraction, and then derives the
feasible bandwidth allocation region.
• Probe requests: As described in Section I, existing

resource reservation systems such as OSCARS process each
circuit in the request one at a time and in a sequential order.
For each circuit, the resource reservation system initiates
a depth-first search to probe if each member network can
provide the requested bandwidth. We set the initial requested
bandwidth for a circuit as C/N where C is the source host’s
capacity, and N is the number of flows from that host. In the
event of a failure, the resource reservation system performs
a binary search of the available bandwidth repeatedly halving
the requested bandwidth until success. The process is repeated
for each circuit in the request.

0 10 30 4020
Time (Hour)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fa
ir

n
e
ss

 M
e
a
su

re

Probe Requests

Mercator

(a) Obj. = max-min fairness

0 10 20 30 40
Time (Hour)

0.0

10.0

20.0

30.0

40.0

T
h
ro

u
g

h
p

u
t

(T
b

p
s)

Probe Requests

Mercator

(b) Obj. = max total throughput

Fig. 8: Comparison of performance between the probe-requests approach
and Mercator in different objectives.

2) Results: First, we consider that the goal of the resource
allocation policy is to maximize the minimum throughput of
all the requested flows (max-min fairness). Such a policy is
commonly desired as it ensures high throughput and fairness
across the circuits. We compare the fairness of the network
resource allocations obtained with Mercator to that obtained
with the probe-requests based solution. We adopt Jain’s fair-
ness index [43] to measure the fairness [31]:

J(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 xi
2

where xi is the ratio of the actual allocation and the optimal
fair allocation for a single flow. Fig. 8a shows that with
resource abstraction, Mercator can always compute the optimal
max-min fairness allocation. Hence its fairness index is always
1. In contrast, the fairness index of the probe-requests based
solution has an average of 0.37, and even drops to 0 at times.

Second, we consider the case where the objective is to
maximize the total throughput. Fig. 8b shows that the total
throughput of Mercator is larger than that obtained by the
probe-requests based solution, by 15% on average, and up to
20%. The results are noteworthy given that Mercator assumes
the routes for each circuit to be completely determined by
the underlying intradomain routing protocol. In contrast, the
probe-requests approach sequentially explores every possible
route for each circuit until it finds an available one. In other
words, even with much less exploration, Mercator outperforms
the probe requests. Allowing Mercator to consider not only the
routes provided by the underlying routing protocols, but also
all other available routes, could lead to significant additional
improvements. We leave the extension of Mercator to consider
all possible routes in the network as future work.

Fig. 9 presents the total resource discovery latency for
completing all circuits resource reservations in a time window.
We assume the aggregator to be in New York, and consider
network latencies as measured in [44]. The figure shows the
total resource discovery latency with Mercator can reduce the
time to discover network resources by two orders of magnitude
on average and up to three orders of magnitude at times.
This is because resource abstraction allows users to query
the information from different member networks in parallel.
In contrast, existing probe-requests based solutions process
requests sequentially, and continuously probe to discover the
available network resources.

Finally, we highlight that the probe-requests based solution
can suffer high request failure ratio, i.e., a large number of
requests cannot succeed: We define a failure of a request as the

0 10 30 4020
Time (Hour)

100

101

102

103

104

105

106

R
e
so

u
rc

e
 D

is
co

v
e
ry

 L
a
te

n
cy

 (
m

s)
Probe Requests

Mercator

Fig. 9: Resource discovery la-
tency of the probe-requests ap-
proach and Mercator.

0 10 30 4020
Time (hour)

0

20

40

60

80

100

Ra
tio

 o
f F

ai
le

d
Re

qu
es

ts
 (%

)

Fig. 10: Ratio of failed requests
in the probe-requests approach.

inability to reserve resource for the circuit, due to the lack of
remaining capacity despite the gradually decreasing requested
bandwidth. Fig. 10 shows that during the 48-hour period
Mercator is running, the probe-requests based solution has an
average request failure ratio of 73%. In other words, more than
70% of the circuits cannot reserve network resources. This
is because the probe-requests approach processes the request
for each circuit sequentially. Therefore, the first few circuits
may successfully reserve network resources and saturate the
network. As such, despite achieving a total throughput similar
to Mercator, the majority of the latter requests may fail as the
links do not have any spare resources. In contrast, the request
failure ratio of Mercator is null because Mercator returns a
feasible region for the set of circuits so that the user can make
optimal reservation decisions for all circuits.

C. Efficiency of Resource Abstraction Obfuscating Protocol
This second set of experiments evaluate the performance of

the resource abstraction obfuscating protocol. We show that
this protocol efficiently scales for collaboration networks of
200 member networks, with a maximal overall latency around
3 seconds and an average data transmission overhead between
the aggregator and member networks of only around 180 KB.

1) Methodology: We conduct our experiment by using the
member-network-level topology from the LHC Open Network
Environment (LHCONE). In each round of the experiment, we
randomly select a set of member networks from the topology.
For each chosen member network, we randomly select a
set of m linear inequalities, where m is randomly chosen
between 5 and 15, to represent the bandwidth feasible reason
for 10 circuits in this member network. For the encryption
and decryption operations in the obfuscating protocol, we use
the AES algorithm, provided by the Python Cryptography
Toolkit (pycrypto) [45]. The parameters k, Ci and Di are
pre-configured as discussed in Appendix B.

We consider two metrics, i.e., the latency and the data
transmission overhead of the resource abstraction obfuscating
protocol. First, the overall latency of the protocol is measured
from the beginning of the obfuscation phase, when each
member network independently starts to obfuscate its own set
of linear inequalities, to the end of the transmission process,
when the aggregator obtains

∑
PiAix = b. We use the

field statistic results measured in [44] as the communication
latencies between the aggregator and the Mercator domain
servers at the different member networks. Second, the data
transmission overhead is measured as the size of the set of
encrypted, obfuscated linear equations transferred from each

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200

La
te
nc
y2
(m

s)

Number2of2Member2Networks

Processing
Transfer

(a) Overall latency.

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200

La
te
nc
y2
(m

s)

Number2of2Member2Networks

Matrix'Computation

Encryption'&'Decryption

(b) Processing latency.
Fig. 11: The latency of the resource abstraction obfuscating protocol.

0
20
40
60
80

100
120
140
160
180
200

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Av
g
Tr
an
sm

iss
io
n6
Da

ta
6S
ize

6
Pe
r6M

em
be
r6N

et
w
or
k6
(K
B)

Number6of6Member6Networks
Fig. 12: The data transmission overhead of the resource abstraction
obfuscating protocol.

member network to the aggregator. We vary the number of
member networks from 10 to 200, in a step size of 10. For
each number of member networks, we repeat the experiment
10 times and measure the average values of these metrics.

2) Results: We present the results of our experiments in
Fig. 11 and Fig. 12. In particular, Fig. 11a shows the overall
latency of the obfuscating protocol under different numbers of
member networks, together with a break down on processing
delay and transmission latency. We observe that even for a
large collaboration network with 200 member networks, which
is larger than most existing operational collaboration networks,
the overall latency of the resource abstraction obfuscating
protocol is only slightly over 3 seconds, which demonstrates
that the latency of this protocol is reasonably low. We also
observe that the processing latency takes a much higher per-
centage than the transmission latency and that the processing
latency has a linear growth as the number of member networks
increases. We further plot the breakdown of the processing
latency. Fig. 11b shows that both the cryptography operations
of AES and the matrix operations in the resource abstraction
obfuscating protocol increases linearly as the number of mem-
ber networks increases, but the AES encryption and decryption
operations are the most expensive operations in the protocol
(i.e., up to 2.4 seconds for federations of 200 member net-
works). More importantly, although the obfuscating protocol
may take over 3 seconds for a federation of 200 member
networks, we emphasize that with the super-set projection
technique, the Mercator domain servers do not need to execute
the obfuscating protocol for each individual request.

Next, we present the average data transmission overhead of
the obfuscating protocol at each member network in Fig. 12.
We see in this figure that even after the encryption, the
size of data to be transmitted from member networks to the
aggregator is still very small. For example, for a collaboration
network with 200 member networks, the average size of data
transmitted from a member network to the aggregator is only
180 KB. As discussed in Appendix B, this is because most of
the columns of the LHS coefficient matrix are zero-columns
and each member network only needs to send nonzero-

columns to the aggregator. The linear scaling of the data
transmission overhead (i.e., the ciphertext) at each member
network comes from the linear increase of the number of
disguised linear equations (i.e., the plaintext), which is caused
by the linear increase of k due to the increased number of
member networks. This is consistent with Proposition 3 in
Appendix B.

D. Efficiency of Super-Set Projection
In this experiment, we evaluate the efficiency of the super-

set projection technique in improving the scalability of Mer-
cator. We show that this mechanism improves the resource
discovery delay of Mercator by 2 times, and that its update
latency is within seconds in a collaborative network with 200
member networks.

1) Methodology: We conduct our experiments by using the
same settings as in Section VI-B1. We focus on two metrics.
The first one is the resource discovery latency. When Mercator
uses super-set projection, the resource discovery latency is
reduced to only the round-trip time from the user to the
Mercator aggregator because the aggregator can derive the
resource abstraction for a request from the precomputed Πfull.

To have a comprehensive understanding on the scalability
of super-set projection, we are also interested in a second
metric, the update latency. This is measured as the resource
discovery latency of from the time the aggregator starting
the artificial resource abstraction discovery procedure to the
time the aggregator receives the latest Πfull. In particular, we
measure this latency under different collaboration scales by
varying the number of member networks and the number of
stub member networks in the collaborative network. For each
setting, we repeat the experiment 10 times and compute the
average update latency. In each repetition, we also randomly
choose different sizes of intradomain topologies from the
Topology Zoo dataset for each member network.

2) Results: Fig. 13 compares the resource discovery latency
of Mercator with and without super-set projection. We observe
that the super-set projection technique decreases the average
resource discovery latency by around 2 times. Fig. 14 presents
the update latency of this mechanism. It shows that even
in a collaborative network with 200 member networks, the
update latency of Πfull is still less than 10 seconds. Most
importantly, although computing Πfull may take up to ten
seconds for a federation of 200 member networks, we em-
phasize that resource discovery requests do not get blocked at
the aggregator because servers from the aggregator pool can
still process incoming requests using the previously computed
resource abstraction, which is continuously locally updated
(e.g., available resources are continuously reduced as incoming
requests reserve resources).

VII. RELATED WORK
Many multi-domain network resource information and

reservation systems [4], [5], [8]–[10], [46] have been devel-
oped to support collaborative data sciences. Multiple multi-
domain resource discovery systems (e.g., [11]–[17]) are also
designed to discover endpoint resources (i.e., computation and

0 10 20 30 40
Time (hour)

0

200

400

600

800

1000

La
te

n
cy

(m
s)

Mercator w/o super-set projection
Mercator with super-set projection

Fig. 13: Comparison of latency
between Mercator with and without
super-set projection.

0 25 50 75 100 125 150 175 200
Number of Member Networks

0

2

4

6

8

10

T
im

e
 (

se
co

n
d
)

Fig. 14: Update latency of super-
set projection.

storage resources) and their availability for different services
across multiple domains. In contrast, there has been little
progress on multi-domain network resource discovery systems
that provide fine-grained, global network resource information,
to support high-performance, collaborative data sciences.

Many cluster / grid resource management systems [15],
[17], [27], [28], [47]–[53] adopt a graph-based abstraction
to discover and manage network resources. However, in a
multi-domain collaborative network, this abstraction would
reveal the network topology and link availabilities of member
networks, leading to security breaches. Some systems [29],
[30] use a one-big-switch abstraction to provide a simplified
view of network resources, which protects the privacy of
member networks but cannot provide accurate information of
shared network resource for concurrent traffic flows. Some
recent studies [26], [33], [34], [54], [55] propose variations
of the one-big-switch abstraction to represent the resource
availability and sharing among different data traffic flows
using operations defined on different algebra fields. However,
this abstraction (1) cannot handle complex routing and traffic
engineering policies, e.g., WCMP, and (2) will raise security
concern when applied to multi-domain science collaborations.
In contrast, Mercator provides fine-grained, global network
resource information, to support high-performance, collabo-
rative data sciences, through a unifying representation and
composition framework to reveal compact, complete multi-
domain network resource information.

VIII. CONCLUSION
We present Mercator, a novel multi-domain network re-

source discovery system to provide fine-grained, global net-
work resource information, to support high-performance, col-
laborative data sciences. The core of Mercator is a unifying
representation resource abstraction using algebraic expressions
to capture multi-domain network available bandwidth. We
develop a resource abstraction obfuscating protocol and a
super-set projection technique to ensure the privacy-preserving
and the scalability of Mercator. Evaluation using real data
demonstrates the efficiency and efficacy of Mercator.

ACKNOWLEDGMENT

The authors thank Kai Gao, Geng Li, Linghe Kong, Ennan Zhai, Alan
Liu, Yeon-sup Lim and Haizhou Du for their help during the prepara-
tion of this paper. The authors also thank the anonymous reviewers for
their valuable comments. This research is supported in part by NSFC
grants #61702373, #61672385 and #61701347; China Postdoctoral Science
Foundation #2017-M611618; NSF awards #1440745, #1246133, #1341024,
#1120138, and #1659403; DOE award #DE-AC02-07CH11359; DOE/ASCR
project #000219898; Google Research Award, and the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement Number
W911NF-16-3-0001.

REFERENCES

[1] “The Large Hadron Collider (LHC) Experiment,” https://home.cern/
topics/large-hadron-collider.

[2] “The Square Kilometre Array,” https://www.skatelescope.org/.
[3] “The Linac Coherent Light Source,” https://lcls.slac.stanford.edu/.
[4] “Oscars: On-demand secure circuits and advance reservation system,”

https://www.es.net/engineering-services/oscars/.
[5] M. Campanella, R. Krzywania, V. Reijs, D. Wilson, A. Sevasti, K. Sta-

mos, and C. Tziouvaras, “Bandwidth on demand services for european
research and education networks,” in Bandwidth on Demand, 2006 1st
IEEE International Workshop on. IEEE, 2006, pp. 65–72.

[6] C. Guok, E. N. Engineer, and D. Robertson, “Esnet on-demand se-
cure circuits and advance reservation system (oscars),” Internet2 Joint,
vol. 92, 2006.

[7] W. Johnston, C. Guok, and E. Chaniotakis, “Motivation, design, de-
ployment and evolution of a guaranteed bandwidth network service,” in
Proceedings of the TERENA Networking Conference, 2011.

[8] B. Riddle, “Bruw: A bandwidth reservation system to support end-user
work,” in TERENA Networking Conference, Poznan, Poland, 2005.

[9] J. Sobieski, T. Lehman, and B. Jabbari, “Dragon: Dynamic resource
allocation via gmpls optical networks,” in MCNC Optical Control Planes
Workshop, Chicago, Illinois, 2004.

[10] X. Zheng, M. Veeraraghavan, N. S. Rao, Q. Wu, and M. Zhu, “Cheetah:
Circuit-switched high-speed end-to-end transport architecture testbed,”
IEEE Communications Magazine, vol. 43, no. 8, pp. S11–S17, 2005.

[11] Y. Deng, F. Wang, and A. Ciura, “Ant colony optimization inspired
resource discovery in p2p grid systems,” The Journal of Supercomputing,
vol. 49, no. 1, pp. 4–21, 2009.

[12] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith,
and S. Tuecke, “A directory service for configuring high-performance
distributed computations,” in IEEE HPDC 1997.

[13] A. Iamnitchi and I. Foster, “A peer-to-peer approach to resource location
in grid environments,” in Grid resource management. Springer, 2004,
pp. 413–429.

[14] T. Kocak and D. Lacks, “Design and analysis of a distributed grid
resource discovery protocol,” Cluster Computing, vol. 15, no. 1, pp.
37–52, 2012.

[15] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and
F. Wurthwein, “The pilot way to grid resources using glideinWMS,” in
CSIE. IEEE, 2009, pp. 428–432.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-
ing (TON), vol. 11, no. 1, pp. 17–32, 2003.

[17] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[18] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, and R. Boutaba, “Resource
and service discovery in large-scale multi-domain networks,” IEEE
Communications Surveys & Tutorials, vol. 9, no. 4, pp. 2–30, 2007.

[19] A. Hameurlain, D. Cokuslu, and K. Erciyes, “Resource discovery in
grid systems: a survey,” International Journal of Metadata, Semantics
and Ontologies, vol. 5, no. 3, pp. 251–263, 2010.

[20] N. J. Navimipour, A. M. Rahmani, A. H. Navin, and M. Hosseinzadeh,
“Resource discovery mechanisms in grid systems: A survey,” Journal of
Network and Computer Applications, vol. 41, pp. 389–410, 2014.

[21] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson,
“Internet x. 509 public key infrastructure (pki) proxy certificate profile,”
Tech. Rep., 2004.

[22] N. Sakimura, J. Bradley, M. Jones, and B. de Medeiros, “C. mortimore,”
openid connect core 1.0”, november 2014.”

[23] O. S. S. T. Committee et al., “Security assertion markup language (saml)
2.0,” ht tp://www. oasis-open. org/committees/tc home. php, 2012.

[24] Y. Rekhter, S. Hares, and D. T. Li, “A Border Gateway Protocol
4 (BGP-4),” RFC 4271, Jan. 2006. [Online]. Available: https:
//rfc-editor.org/rfc/rfc4271.txt

[25] “Route views project,” http://www.routeviews.org/routeviews/.
[26] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined

network optimization using sol.” in NSDI, 2016, pp. 223–237.
[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.

Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in NSDI, 2011.

[28] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys. ACM, 2015, p. 18.

[29] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz,
“P4p:provider portal for applications,” Acm Sigcomm Aug, vol. 38,
no. 4, pp. 351–362, 2008.

[30] R. Alimi, Y. Yang, and R. Penno, “Application-layer traffic optimization
(ALTO) protocol.”

[31] J. Y. Boudec, “Rate adaptation, congestion control and fairness: A
tutorial,” Web Page, no. Oct, 2000.

[32] F. P. Miller, A. F. Vandome, and J. McBrewster, “Advanced encryption
standard,” 2009.

[33] K. Gao, C. Gu, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “ORSAP:
abstracting routing state on demand,” in IEEE ICNP 2016.

[34] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “Nova: Towards on-
demand equivalent network view abstraction for network optimization,”
in ACM/IEEE IWQoS 2017, 2017.

[35] J. Telgen, “Identifying redundant constraints and implicit equalities in
systems of linear constraints,” Management Science, vol. 29, no. 10, pp.
1209–1222, 1983.

[36] M. Raykova, Secure Computation in Heterogeneous Environments: How
to Bring Multiparty Computation Closer to Practice? Columbia
University, 2012.

[37] A. C.-C. Yao, “How to generate and exchange secrets,” in IEEE FOCS
1986.

[38] X. Feng and Z. Zhang, “The rank of a random matrix,” Applied
mathematics and computation, vol. 185, no. 1, pp. 689–694, 2007.

[39] O. L. Mangasarian, “Privacy-preserving horizontally partitioned linear
programs,” Optimization Letters, vol. 6, no. 3, pp. 431–436, 2012.

[40] “The CAIDA AS Relationships Dataset, 2016,” http://www.caida.org/
data/as-relationships/.

[41] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” vol. 29, no. 9, pp. 1765–1775.

[42] “CMS Task Monitoring,” http://dashb-cms-job.cern.ch/.
[43] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness

and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation Hudson,
MA, 1984, vol. 38.

[44] “Global Ping Statistics - WonderNetwork, 2018,” https://wondernetwork.
com/pings/.

[45] “Python Cryptography Toolkit,” https://pypi.python.org/pypi/pycrypto.
[46] “Network service interface,” https://redmine.ogf.org/projects/nsi-wg.
[47] “Under the hood: Scheduling MapReduce jobs more efficiently with

Corona,” http://on.fb.me/TxUsYN, [Online; accessed: 09-May-2017].
[48] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and

L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in OSDI, 2014, pp. 285–300.

[49] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in SoCC. ACM, 2015, pp. 111–124.

[50] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy:fair scheduling for distributed computing clusters,” in
IEEE International Conference on Recent Trends in Information Sys-
tems, 2009, pp. 261–276.

[51] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low Latency Geo-distributed Data Analytics,” in SIG-
COMM. ACM, 2015, pp. 421–434.

[52] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-
aware optimization for analytics queries,” in Usenix Conference on
Operating Systems Design and Implementation, 2016, pp. 435–450.

[53] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a geo-distributed data-intensive world,” in
CIDR, 2015.

[54] Q. Xiang, S. Chen, K. Gao, H. Newman, I. Taylor, J. Zhang, and Y. R.
Yang, “Unicorn: Unified resource orchestration for multi-domain, geo-
distributed data analytics,” in 2017 IEEE SmartWorld, DAIS Workshop.

[55] Q. Xiang, X. Wang, J. Zhang, H. Newman, Y. R. Yang, and Y. J.
Liu, “Unicorn: Unified resource orchestration for multi-domain, geo-
distributed data analytics,” in INDIS Workshop. IEEE, 2017.

[56] Q. Xiang, J. J. Zhang, X. T. Wang, Y. J. Liu, C. Guok, F. Le,
J. MacAuley, H. Newman, and Y. R. Yang, “Fine-grained, multi-domain
network resource abstraction as a fundamental primitive to enable high-
performance, collaborative data sciences,” in Technical Report.

APPENDIX A
USE CASES

In this appendix, we show how resource abstraction handles
three important use cases in collaborative data sciences.

S1 D1

S2 D2

l1 l2 l5l3 l4

l7
l8 l11l9 l10

l12

l6

Each	link:	100	Gbps

sw2

sw1

sw5

sw6

sw7

sw8

sw3

sw4

Fig. 15: A running example illustrating how the resource abstraction han-
dles multicast through algebraic-expression enumeration, where two circuits
(S1, {D1, D2}) and (S2, D2) need to be reserved.

Use case 1 - multicast: Consider the example in Fig. 15,
where the first circuit is a multicast circuit from S1 to D1 and
D2, and the second one is a unicast circuit from S2 to D2. The
routes for these circuits, computed by the underlying routing
protocol, are marked in red and yellow, respectively. The
resource abstraction captures the bandwidth sharing between
these two circuits by introducing auxiliary variables x11 and
x12 for the multicast circuit. Because the traffic duplication for
the first circuit happens at switch 8, we use x11 to represent
the traffic from switch 8 to D1, and x12 to represent the traffic
from switch 8 to D2. In this way, the Mercator domain server
will generate the following set of linear inequalities:

x11 = x1, x12 = x1,
x1 ≤ 100 ∀lu ∈ {l1, l2},
x11 ≤ 100 ∀lu ∈ {l5, l6},
x2 ≤ 100 ∀lu ∈ {l7, l8},

x1 + x2 ≤ 100 ∀lu ∈ {l3, l4},
x12 + x2 ≤ 100 ∀lu ∈ {l11, l12},

(8)

Use case 2 - multi-path routing: Consider the example
in Fig. 16, where the user wants to discover the bandwidth
sharing for two circuits f1 : (S1, D1) and f2 : (S2, D2), and
M1 uses multi-path routing for the circuit f1, i.e., routing to
two egresses e1, e2.

S1
e1

e2
S2

D1

D2

i1

i2𝕄" 𝕄#

100 Gbps link

40 Gbps link

Fig. 16: A running example illustrating how resource abstraction handles
complex routing and traffic engineering policies through algebraic-expression
enumeration and how resource abstractions from different member networks
are stitched, where two circuits (S1, D1) and (S2, D2) need to be reserved.

In particular, the Mercator domain server at M1 introduces
variables x11 and x12 to represent the available bandwidth
from S to egresses e1 and e2, respectively, and share the
introduction of these variables to M2. Then M1 independently
adds an equation x1 = x11 + x12 into its set of linear
inequalities Π1(F). The resulting resource abstraction at both
member networks are then expressed as

Π1(F) : x1 = x11 + x12, Π2(F) : x11 ≤ 40,
x11 ≤ 40, x12 ≤ 40,
x12 ≤ 40, x2 ≤ 40.
x2 ≤ 40,
x11 ≤ 100,

x12 + x2 ≤ 100.

(9)

Using Π1(F) and Π2(F) as the constraint, the user can then

make reservation requests based on the optimization of her
own objective function. For example, to achieve the max-min
fairness between two circuits, the user will reserve x1 = 80
Gbps for (S1, D1) and x2 = 40 Gbps for (S2, D2), where
internally M1 can allocate x11 = x12 = 40 Gbps.
Use case 3 - load-balancing: In the same example in Fig. 16,
assume M1 uses weighted-cost-multi-path (WCMP) and has
an internal policy to allocate bandwidth for the circuit (S1, D1)
along two path S1 → e1 and S1 → e2 in a ratio of 1:2. With
this policy, the previous reservation request with x1 = 80
Gbps and x2 = 40 Gbps is no longer valid as x11 and x12

cannot reach 40 Gbps simultaneously. To capture this policy
so that the user does not make the invalid reservation request,
the Mercator domain server at M1 introduces an additional
equation x12 = 2x11 into Π1(F) and sends to the user. And
the user can compute the valid, optimal reservation decisions,
e.g., x1 = 60 Gbps and x2 = 40 Gbps, to achieve max-min
fairness.

APPENDIX B
ANALYSIS OF THE RESOURCE ABSTRACTION

OBFUSCATING PROTOCOL

In this appendix, we conduct rigorous analysis on different
properties of the proposed obfuscating protocol.
Correctness: We first study the correctness of this protocol.
In particular, we start by proposing and proving the following
propositions.

Proposition 1 (Resource Abstraction Equivalence): The
bandwidth feasible region of the set of circuits F over N
member networks represented by Equation (7) is the same as
the bandwidth feasible region represented by Ax ≤ b where
A = [A1,A2, . . . ,AN] and b = [b1,b2, . . . ,bN].

Proof: To prove this proposition, we first observe that the
bandwidth feasible region of Ax ≤ b is the same as that of[

A IMN

] [
x, xs

]
= b (10)

Representing P = [P1, . . . ,PN] ∈ Rk×MN , we first
observe that

[∑
PiAi P1 . . . PN

]
= P

[
A IMN

]
,

and that
∑

Pibi = Pb [39]. It is easy to see that when[
x xs

]
satisfies Equation (10), it also satisfies Equation (7).

Next, from the results in [38] and that P ∈ Rk×MN , we
have rank(P) = MN < k. As a result, P has a left inverse
matrix P−1left where P−1leftP = IMN

. Hence when
[
x xs

]
satisfies Equation (7), i.e., P

[
A IMN

] [
x, xs

]
= Pb, we

have
P−1leftP [A IMN] [x, xs] = P−1leftPb,

which then transforms into Equation (10). Therefore, Equa-
tions (7) and (10) represent the same bandwidth feasible
region, which completes the proof.

In addition, we also have an interesting lemma, which
serves as an alternative correctness proof of the equivalence
proposition.

Lemma 1: Given the set of linear equations in Equation (7),
the aggregator can use Gaussian Elimination to get Ax ≤ b.
The complete proof can be found in our technical report [56].

Security: Next, we give the following proposition on the
privacy-preserving property of the proposed protocol.

Proposition 2 (Resource Abstraction Privacy-Preserving):
In the semi-honest security model, the proposed resource
abstraction obfuscating protocol ensures that (1) the aggregator
cannot associate any linear equation it receives in Πp(F) with
any particular member network, and (2) for any Mi, it does
not know any linear inequality from any other Πj(Fj) (j 6= i).

The complete proof can be found in [56]. Even with Lemma 1
and the inter-member-network-path information of each cir-
cuit, the aggregator still cannot associate any linear inequality
in Ax ≤ b with the corresponding member network or any
networking device (i.e., switch or link). This is because (1) the
set of linear equations sent by each member network do not
represent its original feasible region, and (2) the inter-member-
network-path does not reveal any topology information inside
member networks.

With both propositions, we can get the following theorem.
Theorem 1: Given a set of circuits F that span over N

member networks, the proposed resource abstraction obfus-
cating protocol ensures that the aggregator receives equivalent,
privacy-preserving resource abstraction and each member net-
work only knows its own bandwidth feasible region.

As stated in Section IV-A, the resource abstraction obfuscat-
ing protocol was designed for the semi-honest security model.
In a malicious setting (e.g., some member networks may
collude or be breached by one same attacker), the colluded
member networks or the attacker still cannot associate a linear
inequality to any unbreached member network, as long as the
aggregator is not breached.
Efficiency: We next analyze the efficiency of our protocol at
different phases. During the initialization phase, the main over-
head comes from the process each member network agreeing
on k, and each Mi share Ci and Di with Mi+1. The first part
can be efficiently realized using leader-election algorithms in
ring topology or pre-configured. For the second part, it can
be efficiently realized by sharing random seeds between Mi

and Mi+1. In the obfuscating phase, the computation overhead
is also low because it only involves simple, cheap matrix
operations, e.g., addition and multiplication.

One may have concern on the transmission overhead of
our protocol in the transmission phase because we disguise
the set of linear inequalities of each member network into a
larger set of linear equations. However, observing the set of
equations sent by each Mi in Equation (6), we can see that
most of the columns of the LHS coefficient matrix are zero-
columns. Therefore, each Mi only needs to send nonzero-
columns to the aggregator and specifies the indice of these
columns, substantially reducing the amount of data needs to
be transmitted from Mi to the aggregator. We quantify the
transmission overhead of our obfuscating protocol as follows:

Proposition 3 (Transmission Overhead): Given a resource
discovery procedure for a set of circuits F spanning over N
member networks, the transmission overhead of the resource

abstraction obfuscating protocol at each member network is
O(k|F |), where k >

∑
mi.

APPENDIX C
PRACTICAL ISSUES OF SUPER-SET RESOURCE

ABSTRACTION PROJECTION

In this appendix, we discuss practical issues of the super-set
projection technique.
Update of Πfull: We ensure the freshness of Πfull via two
mechanisms. First, the Mercator domain servers at member
networks periodically send updated information to the ag-
gregator. Second, when the reservation system receives and
successfully executes a resource reservation request from
the user, it sends a notification to the aggregator with the
reservation details so that the aggregator can update Πfull.
The aggregator will only query the Mercator domain servers
to obtain an up-to-date abstraction for the user when the user
fails to reserve the resource based on the projected abstraction.
Handling heterogeneous flows: One may notice that the
super-set projection technique is designed based on the as-
sumption that given a source-destination member network pair,
all the traffic flows between these two member networks will
be treated homogeneously by all other member networks. In
practice, flows between the same source-destination member
network pair may be handled differently by other member
networks, i.e., they are heterogeneous flows. To address this
limitation, we use traffic classes to differentiate heteroge-
neous flows. In particular, for each source-destination member
network pair with G different traffic classes, the super-set
projection technique considers these classes as G separate
artificial circuits and proactively discovers the bandwidth
sharing among these G circuits and other artificial circuits.

SFP: Toward Interdomain Routing for SDN Networks
Qiao Xiang
Tongji/Yale

Chin Guok
LBNL

Franck Le
IBM

John MacAuley
LBNL

Harvey Newman
Caltech

Y. Richard Yang
Tongji/Yale

ABSTRACT
Interdomain routing using BGP is widely deployed and well
understood. The deployment of SDN in BGP domain net-
works, however, has not been systematically studied. In this
paper, we� rst show that the use-announcement inconsis-
tency is a fundamental mismatch in such a deployment, lead-
ing to serious issues including unnecessary blackholes, un-
necessary reduced reachability, and permanent forwarding
loops. We then design SFP, the� rst� ne-grained interdomain
routing protocol that extends BGP with� ne-grained rout-
ing, eliminating the aforementioned mismatch. We develop
two novel techniques, automatic receiver� ltering and on-
demand information dissemination, to address the scalability
issue brought by� ne-grained routing. Evaluating SFP us-
ing real network topologies and traces for intended settings,
which are not global Internet but tens of collaborative do-
mains, we show that SFP can reduce the amount of tra�c
a�ected by blackholes and loops by more than 50%, and that
our proposed techniques can reduce the amount of signaling
between ASes by 3 orders of magnitude compared with naive
�ne-grained routing.

CCS CONCEPTS
• Networks → Network protocol design; Routing pro-
tocols; Programmable networks;

KEYWORDS
Interdomain Routing, SDN, On-Demand Information Dis-
semination

ACM Reference Format:
Qiao Xiang, Chin Guok, Franck Le, John MacAuley, Harvey
Newman, and Y. Richard Yang. 2018. SFP: Toward Interdo-
main Routing for SDN Networks. In SIGCOMM Posters and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the� rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5915-3/18/08. . . $15.00
https://doi.org/10.1145/3234200.3234207

Demos ’18: ACM SIGCOMM 2018 Conference Posters and De-
mos, August 20–25, 2018, Budapest, Hungary.ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3234200.3234207

1 INTRODUCTION
There are multiple important settings where multiple anony-
mous systems (ASes) interconnect to form collaborative net-
works (also called federations) to improve network perfor-
mance of large scienti�c collaboration across member net-
works [2]. The de facto protocol to interconnect these ASes
is the Border Gateway Protocol (BGP) [6]. Meanwhile, to
support e�cient usage of their network resources, members
of federation networks commonly deploy software de�ned
networking (SDN) [1, 3]. Though interdomain routing using
BGP is well understood, the deployment of SDN in BGP-
connected networks has not been systematically studied.
Speci�cally, we show that such a deployment reveals a

fundamental mismatch between the� ne-grained control by
SDN and the coarse-grained routing by BGP, i.e., the use-
announcement inconsistency, which leads to serious issues.
To illustrate these issues, consider two networks A, and B,
connected using BGP. We focus on a pre�x P . Assume that
B drops all tra�c sent to P with TCP destination port 22. If
B still announces, through BGP, routes to P to its neighbor
A, a subset of tra�c (more speci�cally, tra�c with destina-
tion port 22) may result in blackholes. Instead, if B does not
announce any route to P to its neighbor A, such policy can
result in reduced reachability for tra�c to P with destination
port other than 22. To further illustrate the issues, we assume
that instead of dropping tra�c with destination port 22, B
decides to redirect this tra�c to another network C and still
announce the reachability of P to A via BGP. Such behavior
can lead to permanent forwarding loops. Several solutions
have been proposed to provide� ne-grained routing. A par-
ticularly elegant one is SDX [5]. An issue of SDX, however, is
that it requires a trusted third party to conduct integration.
Di�erent from existing solution approaches, this paper

investigates a simple, novel protocol named SFP (SDN Fed-
eration Protocol) that maintains the compatibility with BGP
and at the same time provides �ne-grained routing, where
each network decides interdomain routes based on common
packet header� elds instead of destination IP only. We prove
that SFP avoids all issues caused by use-announcement in-
consistency. We develop two novel techniques, on-demand
routing information dissemination and automatic receiver
�ltering, to address the messaging scalability issue brought
by� ne-grained routing. Evaluating SFP using real network
topologies and traces, we show that by guaranteeing black-
hole / loop-free routing, SFP can reduce the tra�c a�ected

87

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Xiang et al.

update message: !"	

A B
capability

announcement
{!", !&}

update message: !&	

update message: !"	

(a) Functional
mapping dissem-
ination.

ODI-announce
! → #$_&'()$&,

where ! ⊂ +

A B

ODI-trigger
!, ∈ !

ODI-reply
.: 0 → 1,

where !, ⊂ 0

(b) On-demand
information dis-
semination.

!"	of $" − $"
!

A B
filtered domain
space $"

!

(c) Automatic
receiver�lter-
ing.

Figure 1: The message-time diagrams of SFP protocol.

by blackholes and forwarding loops by more than 50%, and
the amount of signaling between ASes is reduced by 3 orders
of magnitude compared with naive� ne-grained routing.
2 SFP HIGH-LEVEL PROTOCOL DESIGN
Functional mapping information dissemination: SFP
uses a functional mapping from the general packet space
domain space – where each point is de�ned as a vector of
common packet header� elds (e.g., the TCP/IP 5-tuple) and
the address of an ingress, representing a packet entering the
ingress of a network – to theAS-path space, where each point
represents an AS-path, as the representation of the routing
information base (RIB) of each network.
P������� 1. SFP with general packet space announce-

ments has the same space partition structure as SDN, and
hence can avoid unnecessary blackholes, reachability, or loops
caused by use-announcement inconsistency.
A major concern of� ne-grained routing is its messaging

scalability, as the RIB can become extremely large due to the
multiple packet header� elds, and the ensuing cross-product
when composing� ne-grained routes. To achieve scalability,
we develop two novel techniques in SFP.
On-demand information dissemination (ODI): This tech-
nique allows a neighbor AS B to send incomplete functional
mappings to AS A, and later send updated mappings to A

based on A’s demand triggers. In Figure 1b), B �rst sends an
ODI-announcemessageX ! on_demand toA to indicate that
the mapping of the subspace X is on-demand to A. When
A needs the missing information, it sends an on-demand
trigger Xt to B, where Xt ⇢ X , to ask for the information
of the domain subspace Xt . Upon receiving the trigger, B
looks in its local RIB for the mapping of Xt , invokes its SDN
program to compute the mapping if it is not in RIB, sends
other triggers to query other ASes if its SDN program does
not provide the mapping, and returns an ODI-reply message
Y ! R, the mapping information of a subspace Y � Xt . We
prove that ODI does not introduce any new convergence
issue. Given a single point in the general packet space, under
the Gao-Rexford conditions [4], ODI always converges.
Automatic receiver�ltering : Consider a packet pkt . If A
can already make the decision for pkt without the informa-
tion from a neighbor B, then the mapping sent from B to

Figure 2: Loss when blocking one unused destination TCP port.

(a) Failed tra�c (b) Tra�c a�ected by loops
Figure 3: Loss when de�ect tra�c between neighboring peers.

A does not need to include pkt . With this observation, SFP
allows the receiver ASA to provide receiver�ltering to notify
the neighbor B which part of a mapping is of no use to A.
In Figure 1c, A sends D 01, a� lter on the domain space D1
of mapping f1, to B. When B sends f1 to A, it only needs to
send the mapping from a smaller space D1 �D 01, reducing
the amount of exchanged routing information.

3 PERFORMANCE EVALUATION
We evaluate SFP on the topology of LHCONE using real trace
from the CMS experiment [2], a main source of tra�c in LH-
CONE. We compare SFP with two variations of BGP: C-BGP,
where a route to a destination IP will not be announced by an
AS if the AS only uses this route for a subset of tra�c for this
IP, and F-BGP, where such a route will still be announced.
Figure 2 shows that with 1 transit network deploying one
�ne-grained policy blocking tra�c to one unused destina-
tion transport port, 50% of the� ows, and 51% of the tra�c
volume can be dropped in C-BGP. In contrast, SFP ensures
all 100% of� ows to successfully reach their destinations. Fig-
ure 3a shows that with 1 pair of providers deploying one
�ne-grained policy to de�ect large data transfers sent to
their customer, 11% of the� ows result in loops in F-BGP. In
addition,� ows traversing the a�ected links – although not
resulting in loops – may still su�er high packet losses. Fig-
ure 3b show that 23% of the� ows can get a�ected in F-BGP,
whereas no� ow is a�ected in SFP.
ACKNOWLEDGMENTS
The authors thank Jingxuan Zhang, Xin Wang and Yang Liu (Tongji Uni-
versity) for their help during the preparation of the paper. This research
is supported in part by NSFC grants #61672385, #61472213 and #61702373;
China Postdoctoral Science Foundation #2017-M611618; NSF grant CC-IIE
#1440745; NSF award #1246133, ANSE; NSF award #1341024, CHOPIN; NSF
award #1120138, US CMS Tier2; NSF award #1659403, SANDIE; DOE award
#DE-AC02-07CH11359, SENSE; DOE/ASCR project #000219898; Google Re-
search Award, and the U.S. Army Research Laboratory and the U.K. Ministry
of Defence under Agreement Number W911NF-16-3-0001.

88

SFP: Toward Interdomain Routing for SDN Networks SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

REFERENCES
[1] B�������, P., D���, D., G���, G., I�����, M., M�K����, N., R������, J.,

S����������, C., T������, D., V�����, A., V�������, G., ���W�����,
D. P4: Programming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[2] C������������, T. C. The CMS experiment at the CERN LHC. Journal
of Instrumentation 3, 08 (2008).

[3] F���������, O. N. Open�ow switch speci�cation 1.4.0. Open Net-
working Foundation (on-line), Oct. 2013.

[4] G��, L., ���R������ , J. Stable internet routing without global coordi-
nation. IEEE/ACM Transactions on Networking (TON) (2001).

[5] G����, A., V�������, L., S������, M., S��������, S. P. D. B., F�������,
N., R������, J., S������, S., C����, R., ���K ����B������, E. SDX: A
Software De�ned Internet Exchange. In SIGCOMM’14.

[6] R������, Y., H����, S., ���L� , D. T. A Border Gateway Protocol 4
(BGP-4). RFC 4271, Jan. 2006.

89

Fine-Grained, Multi-Domain Network Resource
Abstraction as a Fundamental Primitive to Enable
High-Performance, Collaborative Data Sciences
Qiao Xiang
Tongji/Yale

J. Jensen Zhang
Tongji

X. Tony Wang
Tongji

Y. Jace Liu
Tongji

Chin Guok
LBNL

Franck Le
IBM

John MacAuley
LBNL

Harvey Newman
Caltech

Y. Richard Yang
Tongji/Yale

ABSTRACT
Recently, a number of multi-domain network resource in-
formation and reservation systems have been developed
and deployed, driven by the demand and substantial ben-
e�ts of providing predictable network resources. A major
lacking of such systems, however, is that they are based on
coarse-grained or localized information, resulting in substan-
tial ine�ciencies. In this paper, we present Explorer, a sim-
ple, novel, highly e�cient multi-domain network resource
discovery system to provide �ne-grained, global network
resource information, to support high-performance, collab-
orative data sciences. The core component of Explorer is
the use of linear inequalities, referred to as resource state
abstraction (ReSA), as a compact, unifying representation of
multi-domain network available bandwidth, which simpli�es
applications without exposing network details. We develop
a ReSA obfuscating protocol and a proactive full-mesh ReSA
discovery mechanism to ensure the privacy-preserving and
scalability of Explorer. We fully implement Explorer and
demonstrate its e�ciency and e�cacy through extensive
experiments using real network topologies and traces.

CCS CONCEPTS
•Networks→Network protocol design; Signaling pro-
tocols;Networkprivacy and anonymity;Network resources
allocation;

KEYWORDS
Interdomain, Collaborative Data Sciences, Resource Discov-
ery, Resource State Abstraction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5915-3/18/08. . . $15.00
https://doi.org/10.1145/3234200.3234208

ACM Reference Format:
Qiao Xiang, J. Jensen Zhang, X. Tony Wang, Y. Jace Liu,
Chin Guok, Franck Le, John MacAuley, Harvey Newman,
and Y. Richard Yang. 2018. Fine-Grained, Multi-Domain Net-
work Resource Abstraction as a Fundamental Primitive to
Enable High-Performance, Collaborative Data Sciences. In
SIGCOMM Posters and Demos ’18: ACM SIGCOMM 2018 Con-
ference Posters and Demos, August 20–25, 2018, Budapest, Hun-
gary. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3234200.3234208
1 INTRODUCTION
Many emerging large-scale data science projects (e.g., the
Large Hadron Collider experiment [1]), are based on a collab-
orative, distributed-networks design, where massive datasets
have to be moved from storage facilities to large comput-
ing clusters distributed at multiple autonomous member
networks, and analyzed by multi-stage distributed systems.
Such large, correlated and parallel �ows (e.g., petabytes of
data) have evolved to dominate science networks’ tra�c. To
ensure the completion of those transfers within the applica-
tion time constraints, users require the ability to reserve and
guarantee bandwidth across networks. As such, a number of
on-demand circuits reservation systems have been developed
and deployed (e.g., the OSCARS system [2] in LHC).
However, such existing systems are based on localized

design and hence can su�er poor performance for correlated
and concurrent �ows across multiple ASes. For privacy rea-
sons, existing multi-domain reservation systems treat each
AS as a black box. They probe their available resource by
submitting varied circuit reservation requests, and receive
Boolean responses. In other words, current solutions per-
form a depth-�rst search on all ASes, and rely on a trial and
error approach: to reserve bandwidth, repeated, and varied
attempts may have to be submitted until success. In addi-
tion to requiring a large number of search attempts, this
approach may obtain a bandwidth allocation that is far from
optimal (e.g., max-min fairness).
This paper presents Explorer, a system designed to op-

timize large, multi-domain transfers, and address the limi-
tations of current reservation systems through three main
components. The �rst and core component of Explorer is

27

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Xiang et al.

the use of linear inequalities, referred to as resource state
abstraction (ReSA), as a compact, unifying representation
of multi-domain network available bandwidth. Second, Ex-
plorer introduces a ReSA obfuscating protocol to ensure that
ASes and other external parties cannot associate an inequal-
ity with a corresponding AS. Finally, Explorer includes a
proactive full-mesh ReSA discovery component for scala-
bility purposes. This component improves the latency of
resource discovery via AS-level ReSA pre-computation and
projection. We implement Explorer. Extensive experiments
using real network topologies and traces show that Explorer
(1) e�ciently discovers available networking resources in col-
laborative networks on average 2 orders of magnitude faster,
and allows fairer allocations of network resources, (2) pre-
serves the private information of ASes with little overhead;
and (3) scales to a collaborative network with 200 ASes.

Proxy
Agent

ReSA
Server

ReSA
Server

Reservation
System

Reservation
System

1
2

AS1 ASN

Global
Orchestrator

1. Proxy	agent	submits	
resource	discovery	request	
to	ReSA	servers	at	ASes;

2. ReSA	servers	compute,	
obfuscate	and	return	ReSA	
to	proxy	agent,	which	will	
forward	ReSA	to	the	
orchestrator;

3. Global	orchestrator	
compute	and	send	
reservation	requests	to	
reservation	systems	at	
ASes.

3

Figure 1: The architecture and work�ow of Explorer.
2 EXPLORER OVERVIEW
Architecture: Explorer introduces a resource discovery proxy
agent, and a ReSA server in each AS (Figure 1). The resource
discovery proxy agent is the main interface for the orchestra-
tor to submit the resource discovery requests and provides a
uni�ed view of the resources across di�erent the ASes. The
proxy agent has BGP sessions to all participating ASes, and
given a request for a set of circuits, can thus infer the AS
paths for each circuit in the request. It also has connections
to the ReSA servers in each AS, which upon receiving re-
quests provided from the proxy agent, compute the ASes’
ReSA abstractions.

D2

D3D1
S

40Gbps
40Gbps

10Gbps
10Gbps

AS1 AS2 AS3

100Gbps 10Gbps
100Gbps

10Gbps 10Gbps

100Gbps

Figure 2: An example where a user wants to reserve bandwidth
for three source-destination pairs: (S, D1), (S, D2) and (S, D3).
Resource state abstraction (ReSA): ReSA is a unifying
representation that captures the properties (e.g., available
bandwidth) of resources shared – within and between ASes
– by a set of requested circuits. It relies on linear inequalities
to express the available bandwidth of shared resources for a
set of requested circuits to be reserved, and can also support
more complex tra�c engineering policies (e.g., multi-path
routing and multicast), with the use of auxiliary variables
and additional inequalities. As an example, consider a col-
laboration network composed of three ASes, where a user
wants to reserve bandwidth for three circuits, from source
host S to destination hosts D1, D2 and D3 (Figure 2). The
ReSA abstraction captures all constraints from all networks
using linear inequalities as follows:

(a) Max-min fairness of re-
source utilization.

(b) Resource discovery latency.

Figure 3: Comparison of performance between Explorer and lo-
calized search (e.g., OSCARS).

AS1 : AS2 : AS3 :
x1 + x2 + x3 100, x2 + x3 40, x1 10, x2 + x3 10,
x1 + x2 + x3 40, x2 + x3 100, x1 10, x2 10,
x1 + x2 + x3 100, x3 10,

where x1, x2 and x3 each represents the available bandwidth
that can be reserved for each circuit. For example, x1 + x2 +
x3 100 means that three circuits share a common resource
and the sum of their bandwidths cannot exceed 100 Gbps.
ReSA obfuscating protocol: The key idea of this protocol
is to have each AS obfuscate its own set of linear inequalities
as a set of linear equations through a private random matrix
and a couple of randommatrices shared with few other ASes,
and send the obfuscated equations to the proxy agent. In this
way, the proxy agent can reconstruct the original bandwidth
feasible region for the circuits across the ASes, but cannot
associate any linear inequality with its corresponding AS.
Proactive full-mesh ReSA discovery: The main idea of
this component consists in having the proxy agent period-
ically query ReSA servers to discover inter-domain ReSA
between every pair of source and destination ASes. As such,
when a user submits a resource discovery request, the proxy
agent does not need to send any query to the ReSA servers.
Instead, using the AS-level ReSA information, the proxy
agent can immediately perform projection operations to get
the ReSA for the request. This mechanism substantially im-
proves the scalability of Explorer.
3 PERFORMANCE EVALUATION
We implement Explorer and evaluate its performance on the
topology from LHCONE, a science network with 78 ASes.
We replay an actual trace from the CMS experiment [3]. We
compare the performance of Explorer with that of existing re-
source reservation systems (e.g., OSCARS), which we refer as
localized search. Figure 3(a) shows that Explorer can always
compute the optimal max-min fairness allocation, while that
of the localized search based solution is 0.37 on average and
even drop to 0 at times. Figure 3(b) shows that Explorer can
reduce the total time to discover network resources by 2
orders of magnitude on average.
ACKNOWLEDGMENTS
This research is supported in part by NSFC grants #61672385, #61472213 and
#61702373; China Postdoctoral Science Foundation #2017-M611618; NSF
grant CC-IIE #1440745; NSF award #1246133, ANSE; NSF award #1341024,
CHOPIN; NSF award #1120138, USCMSTier2; NSF award #1659403, SANDIE;
DOE award #DE-AC02-07CH11359, SENSE; DOE/ASCR project #000219898;
Google Research Award, and the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001.

28

Multi-Domain Network Resource Abstraction SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

REFERENCES
[1] The large hadron collider. https://home.cern/topics/

large-hadron-collider.
[2] Oscars: On-demand secure circuits and advance reservation system.

https://www.es.net/engineering-services/oscars/.
[3] CMS Task Monitoring. http://dashb-cms-job.cern.ch/.

29

JMS: Joint Bandwidth Allocation and Flow
Assignment for Transfers with Multiple Sources

Geng Li†∗, Yichen Qian†, Lili Liu‡, Y.Richard Yang∗
†Tongji University, China, ∗Yale University, USA, ‡Tsinghua University, China

Abstract—The increasing prevalence of data-intensive applica-
tions has made large-scale data transfers more important in data-
center networks. Excessive traffic demand in oversubscribed net-
works has caused serious performance bottlenecks. Data replicas,
with the advantage of source diversity, can potentially improve
the transmission performance, but current work focuses heavily
on best replica selection rather than multi-source transmission.
In this paper, we present JMS, a novel traffic management
system that optimizes bulk multi-source transfers in software-
defined datacenter networks. With a global network view and
consistent data access, JMS conveys data in parallel from multiple
distributed sources and dynamically adjusts the flow volumes to
maximize network utilization. The joint bandwidth allocation and
flow assignment optimization problem poses a major challenge
with respect to nonlinearity and multiple objectives. To cope
with this, we design a fair allocation algorithm that derives
a novel transformation with simple equivalent canonical linear
programming to efficiently achieve global optimality. Simulation
results demonstrate that JMS outperforms other transmission
approaches with substantial gains, where JMS improves the
network throughput by up to 52% and reduces the transfer
completion time by up to 44%.

I. INTRODUCTION

During the last decade, datacenters have been continuing to
thrive with the emergence of cloud-related services. Compa-
nies like Google, Microsoft and Amazon utilize datacenters
to accomplish various application functions, including web
search, storage, e-commerce, streaming media and large-scale
computations [1], [2]. Datacenters nowadays contain up to
hundreds of thousands of servers, running multiple data-
intensive distributed services. Many of them relying on low-
latency and high-throughput data transmission, require net-
work operators to carefully orchestrate the large-scale transfers
among servers. Sub-optimal flow routing and transfer schedul-
ing will cause network congestion and slow transmission time.

A number of traffic engineering (TE) solutions have been
developed to improve the transfer efficiency in datacenter
networks. Traditional TCP-based transfer protocols reactively
adjust the flow rate, which is far from optimal for satisfy-
ing transfer requirements [3], [4]. Centralized TE solutions,
aiming at maximizing network utilization or minimizing flow
completion time, are well investigated [5], [6]. By dynamically
changing routing and rate allocation with a global network
view, centralized TEs achieve better optimality. Recently, the
concept of software-defined networking (SDN) that separates
the control and data planes, has been increasingly exploited
in datacenter networks/WANs [1], [2], [7]–[9]. SDN allows
operators to directly program on the open hardware under cen-

tral control, thereby making routing and engineering protocols
more customized for a variety of requirements.

Data replication, amending data availability and access ef-
ficiency, can also potentially improve the transmission perfor-
mance in datacenter networks [10]–[12]. However, current so-
lutions focus heavily on best replica selection and data replica-
tion placement, instead of multi-source transmission [13], [14].
The single-source transmission with multiple data replicas re-
sults in two major shortcomings. i) When several sources have
almost the same transmission performance to the destination,
choosing a slightly better one and discarding all the others fails
to fully utilize the network resources. ii) Selecting only one
source for the whole transfer does not adapt to the dynamics
because, if there are flows entering/exiting or network state
changing during the transmission, the pre-selected best replica
may no longer remain as the best.

In this paper, we introduce JMS, a novel traffic management
system for bulk multi-source transfers in datacenter networks.
Leveraging SDN principles, JMS orchestrates bulk transfers
in a centralized manner. JMS’s key insight is to concurrently
convey data from multiple sources while dynamically ad-
justing the flow volumes to maximize network utilization.
The joint bandwidth allocation and flow assignment opti-
mization problem poses a major challenge stemming from a
nonlinear and multi-objective formulation. To cope with this,
JMS runs a novel fair allocation algorithm, which derives
an transformation with simple canonical linear programming
(LP) to achieve global optimality. The allocation decisions
are enforced through the SDN controller to reconfigure the
network and transfer sessions.

This paper presents the first approach that optimizes bulk
transfers with multiple sources in software-defined datacenter
networks. The major contributions of this paper are summa-
rized as follows:

1) Leveraging concepts from SDN, we build a new traffic
management system for bulk multi-source transfers. In
particular, each transfer is accomplished by retrieving data
from all available replica sources to make the best of
network utilization.

2) We propose a unified data access mechanism to realize
dynamic flow assignment from different sources. With data
consistently divided into partitions, JMS can re-distribute
the data volume and transmission rate across multiple flows
in response to network dynamics.

3) We design an optimized algorithm to jointly determine
bandwidth allocation and flow assignment in a max-min
fair manner. The algorithm solves the nonlinear and multi-

123

2018 IEEE Third International Conference on Data Science in Cyberspace

978-1-5386-4210-8/18/$31.00 ©2018 IEEE
DOI 10.1109/DSC.2018.00026

objective problem via a novel transformation with simple
equivalent canonical LP.

We perform extensive simulations, which show that JMS
leads to better performance on network throughput with a gain
of up to 52% and reduces transfer completion time by up to
44% compared to other transmission approaches. Furthermore,
the results validate that JMS can optimize large-scale bulk
transfers by continuing to provide good performance for large
files and high traffic loads.

The following section briefly introduces the background
and the motivation of JMS. Sec. III presents the detailed
design of JMS with its constituent components. The optimal
MultiSource Fair Allocation algorithm is discussed in Sec. IV.
We evaluate JMS in Sec. V and introduce related work in
Sec. VI. Finally, we conclude this paper in Sec. VII.

II. BACKGROUND AND MOTIVATION

In this section, we outline some background, and give
two motivating examples to show the benefits of leveraging
multiple sources for transmission.

A. Background

Large files and bulk data transfers. There are many
big-data applications generating large files and bulk data in
datacenter networks, e.g., scientific experiments and streaming
media. These applications heavily rely on frequent data trans-
fers for storing and retrieving large datasets. Bulk transfers
have large size (terabytes) and account for a big proportion of
traffic, e.g., 85-95% for some datacenter networks [1], [2], [7].
High throughput and low transfer completion time is essential
for their service qualities.

Centralized TE and SDN. The inefficiency of traditional
TCP-based protocols motivates the work on proactive rate
allocation in datacenter networks [3], [4]. Centralized TE
solutions schedule packet-level flows with a global network
view. Some of them aim at maximizing the aggregate network
utilization with minimal scheduler overhead [5]. Priority-based
flow scheduling considers not only network utilization, but
also some fine-grained transfer metrics, such as minimizing
flow completion time and meeting deadlines [6], [15]. Further
more, SDN that leverages the network programmability, can
help datacenters make the best routing decision and achieve
customized scheduling [1], [2], [7]–[9].

Multiple data replicas. Data replication, a technique that
amends both data availability and access efficiency, are fre-
quently used in datacenter networks. Distributed filesystems
including Google File System (GFS), Hadoop Distributed File
System (HDFS) are typically deployed with a replication
factor of three [10], [13], [14]. Media companies supply
video replicas in different areas to allow clients have closer
data access. Data-intensive scientific applications require large
amounts of data in a distributed computing environment, so
the experimental data is usually stored in different servers [12].
A number of approaches have been proposed for selecting the
best data replica based on various criteria [11], [12]. However,
those approaches only allow users to specify one replica in
each selection, while discarding the others.

(a) (b)

Fig. 1. Motivation examples of multi-source transfers, where bandwidth
capacity is labeled on each link. (a) An example with 1 request to demonstrate
that multi-source transmission outperforms the single-source one. (b) An
example with 2 requests to demonstrate that dynamic flow assignment
outperforms the fixed one.

B. Motivating Examples

Multiple data replicas open a new opportunity for optimiz-
ing bulk transfers in datacenter networks. Existing approaches
assume a given and fixed data source for every transfer, and
schedule bulk transfers by controlling the routing and the flow
rate of each one. We provide two simple motivating examples
to demonstrate that leveraging multi-source transmission with
dynamic flow assignment outperforms single-source approach-
es in terms of network utilization and transfer completion time.

As the example shown in Fig. 1(a), a client sends a request
req1 to download a certain file with size of 6 data units to the
destination node E, and both node A and B have the source
file. If we conduct the transport by the traditional single-
source approach, only B is chosen as the data source with
the minimum cost and B −D − E as the best shortest path.
Here source A is unused, and it takes 6 time units for the
whole transfer task. But if we control A to send 50% of the
source file and B to send the other 50%, the transfer is thus
split into two flows A− C −D −E and B −D −E, which
are transmitted simultaneously. By making complete use of the
available sources, the network is fully utilized and it takes only
3 time units for the whole task, which is much faster than
single-source transmission.

Fig. 1(b) shows another example of dynamic flow assign-
ment from multiple sources. We assume that there is another
request req2 to the destination node E, and only C has the
corresponding file with size 2. At the beginning, transfer 1
comes as a single flow B − D − E and transfer 2 comes
as the flow C − D − E for transfer-level fairness. Then 2
time units later when transfer 2 is finished, we can re-adjust
the flow assignment of transfer 1 and start to use both A
and B to complete the last 4 units of file (3-6). In total, it
takes 4 time units to finish the two transfer tasks by dynamic
flow assignment from multiple sources. Whereas by the fixed
flow assignment approach for multi-source transfer (1/2 from
source A and 1/2 from source B), the total completion time is
2+3=5 units, and by the traditional single-source approach,
the completion time is 6. As we show, better transmission
performance can be achieved by dynamically adjusting the
flow volumes from feasible sources.

III. JMS DESIGN

JMS is a centralized system with a series of components
which orchestrate bulk transfers and enforce bandwidth allo-

124

Fig. 2. JMS architecture.

cations in the datacenter network. The primary design goal
is to provide high transmission performance for large files by
leveraging all the available replica sources. The basic system
architecture of JMS consists of four main functional compo-
nents as shown in Fig. 2. Transfer Submission monitors clients’
transfer requests and searches the candidate data sources;
Flow Mapping calculates flow paths according to high-level
routing policies then maps the flows and links according to
the network state; Scheduling decides the data rate and flow
assignment of each transfer; Transfer Enforcer, running within
the SDN controller, reconfigures the network to start/continue
transfer sessions.

In JMS, time is divided into time slots with equal length.
A time slot (minutes) is much longer than the time (seconds)
of reconfiguring the network and adjusting transmission rates.
There is a stream of new transfers arriving at the system. So in
each time slot, Flow Mapping and Scheduling will recompute
the bandwidth allocation in response to the dynamic network.
Transfer Enforcer will update the network configuration to or-
chestrate bulk transfers. Additionally, any new transfer request
received in Transfer Submission can also trigger the allocation
and update.

Each file in JMS is partitioned into large data blocks,
where the block size is an adjustable system parameter for
different files. To offer data consistency, the block number
and identifiers for the same file must remain consistent in
different source servers. JMS system adopts dynamic flow
assignment for each multi-source transfer. By “dynamic flow
assignment”, we mean that the flow rate proportions from
different sources are dynamically changed in every scheduling
slot. JMS informs source servers about the calculated assign-
ment in terms of data block numbers. This way, the multiple
flows of the same transfer task can be finished at the same
time. For instance, in the time slot with a flow assignment of
(1/3, 2/3), JMS retrieves data block 1 from source A and data
block 2 and 3 from source B; in the next slot with an updated
flow assignment of (2/3, 1/3), JMS retrieves data block 4 and
5 from source A and block 6 from source B.

The details of each component are described as below.

1) Transfer Submission: Transfer Submission provides an
interface to clients, and is responsible for real-time monitoring
clients’ bulk transfer requests. A request reqi submitted by
clients is a tuple (filei, dsti) that denotes the file ID and

destination address of transfer i. Transfer Submission then
queries a persistent key-value database (DB) according to the
file ID filei. Note that there might be multiple servers storing
the file replicas, so the DB can return a set of source addresses
which will then be attached in reqi as (filei, dsti, {srcik}).
Transfer Submission collects all the requests and hands them
to the next component.

2) Flow Mapping: Flow Mapping has a global view of
the physical topology and on-going transfers with the help
of SDN controller. It periodically queries for the bandwidth
utilization of links and keeps track of the existing flows
in each time slot. The measured bandwidth information is
used as an instantaneous snapshot of the network state to
compute the routing paths of new flows according to high-
level network policies. Here a flow is defined as a (src,
dst) pair, so the transfer with multiple available sources is
decomposed into multiple parallel data flows. Flow Mapping
integrates the routing paths of new flows, together with those
of existing flows, into a flow-link mapping matrix (described
in Section IV-B) as an output.

3) Scheduling: Taking the calculated flow paths and map-
ping results from Flow Mapping as the inputs, Scheduling
executes the optimized MultiSource Fair Allocation algorithm
in each time slot. The algorithm that computes the joint
bandwidth allocation and flow assignment for each transfer,
will be introduced in Section IV.

4) Transfer Enforcer: Transfer Enforcer is the direct manip-
ulator for conducting data transmission in the datacenter net-
work. Through SDN controller, it can install/update the flow
rules on corresponding switches and set up transfer sessions
on related servers. Specifically, Transfer Enforcer periodically
queries for the unfinished data blocks from sources, and keeps
recording the transfer state. In the mean time, it can control and
manage the detailed assemblage of data blocks to be conveyed.
According to the rate allocation and flow assignment results
from component Scheduling, Transfer Enforcer carefully re-
distributes the pending data volumes among the source servers
in each time slot. In brief, Transfer Enforcer instructs the
servers more precisely about which data blocks to transfer,
and at what data rate.

IV. JOINT BANDWIDTH ALLOCATION AND FLOW

ASSIGNMENT FOR MULTI-SOURCE TRANSFERS

One of the biggest challenges for taking best advantage of
the data sources is to optimally assign flows among the sources
and to allocate each flow’s bandwidth. First, we must change
the optimized object from the individual 5-tuple flow into the
group of flows that belong to the same transfer. Hence, multi-
ple potential bottlenecks might be considered simultaneously.
Second, we need a joint optimization algorithm that computes
bandwidth allocation and flow assignment at once.

A. Network Model and Problem Formulation

Consider a telecommunications network composed of a set
of nodes and a set of links L. The capacity of link Lj

(j ∈ [1,M]) is defined as Cj . Suppose there are a number of
data transfer requests, each of which may come from multiple

125

sources, with the paths pre-calculated and given. Thus each
transfer i (i ∈ [1, N]) is assigned with a set of flow paths
{Pi1, ..., Pik}, and each such path is identified with the set
of links that it traverses, i.e., Pik ⊆ L. Now let ri denote
the data rate of transfer i, which is the sum bandwidth of the
constituent flows from all its sources. We use a variable set
Xi = {xi1, ..., xik} to express the flow assignment proportions

from different sources for transfer i, and
∑Ki

k=1 xik = 1, where
Ki is the total source number of transfer i.

We are interested in solving the joint bandwidth allocation
and flow assignment problem in each time slot, i.e., finding
the transmission rate ri of each transfer, together with the
assignment proportions Xi from all its sources. The solution
is required to provide a fair and efficient allocation result, and
its precise objective and constraints are described as below.

Objective. When computing allocated bandwidth, our goal
is to maximize network utilization while in a max-min fair
manner. A vector of transfer rate allocations {ri} in a slot is
said to be max-min fair if, for any other feasible allocation
{r′i}, the following has to be true: if ∃r′p > rp for the data
transfer p, then there exists another transfer q such that p, q ∈
[1, N], r′q < rq , rq ≤ rp. In other words, increasing some
components must be at the expense of decreasing some other
existing smaller or equal components.

Constraints. The constraints of this problem are given as
below. Constraint (1) is called the capacity constraint, which
assures that for any link Lj , its load does not exceed its
capacity Cj . Constraint (2) promises the sum fractions of a
transfer from all available sources equal to 1.

s.t.
∑

Lj⊆Pik

ri · xik ≤ Cj ∀j, (1)

Ki∑
k=1

xik = 1 ∀i, (2)

0 ≤ xik ≤ 1 ∀i, k. (3)

Fig. 3 shows an example of the network consisting of
six links {L1, ..., L6}, with capacities {10, 7, 12, 8, 4, 8} re-
spectively. Assume all bandwidth numbers are in Gbps here.
Suppose there are three data transfer requests in the current
time slot, among which transfer 1 and 2 have a single data
source while transfer 3 has two available sources. In total,
there are four potential flows in the network with given paths,
including f1 : A → B → C, f2 : A → E → F ,
f31 : A → B → C → D and f32 : E → F → D. Given
the topology and values of link capacities, we aim at finding
the max-min fair solution of the rate vector {r1, r2, r3} and
the flow assignment {x31, x32} for transfer 3.

B. Flow-link Mapping (FL) Matrix and Single Source Case

To solve the problem, we propose a multi-source allocation
algorithm that maximizes network utilization while providing
global max-min fairness. The proposed algorithm is fundamen-
tally based on a flow-link mapping matrix (FL matrix) with
solvable variables, which is the output of component Flow
Mapping and the input of Scheduling in system JMS. In this

Fig. 3. An example with 3 transfer requests. Transfer 3 comes from two
feasible sources A and E, corresponding to two parallel flows f31 and f32.

Algorithm 1 Traditional Water-Filling Algorithm

Input:
Flow-link mapping matrix: FL = {flij};
Capacity of each link: {Cj} , 1 � j � M ;

Output:
Transmission rate of each transfer: {ri} , 1 � i � N ;

1: while num of rows in FL �= 0 do
2: nj ←∑

i flij , ∀1 � j � M ;
3: τj ← Cj/nj , ∀1 � j � M ;
4: Find τ∗ ← min{τj}, j∗ ← j|τj = τ∗;
5: Set ri ← τ∗, for i|flij∗ = 1;
6: Update FL;
7: end while
8: return {ri}.

section, we define the FL matrix, and illustrate the traditional
water-filling algorithm for single source case with this matrix.

Definition 1 (Flow-link Mapping Matrix). The flow-link map-
ping matrix (FL matrix) {flij} expresses the flow paths and
the traffic shares of each transfer in matrix form. The matrix
element flij is defined as the proportion of flow i in its
belonging transfer that traverses link Lj .

For single source case, since every transfer comes as an
individual flow, the matrix elements are either 0 or 1. In this
simple case, the bandwidth allocation can be plainly obtained
by the traditional water-filling algorithm (Algorithm 1). Using
the FL matrix as an input, we first denote the saturated average
bandwidth allocation as τj = Cj/nj , where nj is the total
number of flows that use link Lj . The algorithm iteratively
finds the minimum τ∗ and the corresponding bottleneck link
Lj∗ . Set the bandwidth of the flows that use link Lj∗ to τ∗.
Then update the FL matrix by subtracting those flows and the
bottleneck link to calculate a new set of {τj}. Such process
iterates until all transfers obtain their allocated rates, i.e., all
flows have bottleneck links.

Consider a single-source version of Fig. 3, where we assume
transfer 3 only uses source A, so there are 3 flows over the
network. Fig. 4 illustrates the allocation algorithm for this
single-source example. In the first iteration, L5 is first saturated
because τ5 is of the minimum value τ∗ = 4. We allocate the
bandwidth of f31 to 4, and then remove the row of f31 and
column L5. The FL matrix is updated for the next iteration,
where τ1 and τ3 are changed accordingly. By the same token,
L1 and L3 are then found as the bottleneck links in the

126

Fig. 4. An example of the traditional water-filling algorithm with the FL
matrix, where Cj is the bandwidth capacity, nj =

∑
i flij is the total number

of flows that use link Lj , and τj = Cj/nj is the saturated average bandwidth
share. In the single-source example, L5 is first found as the bottleneck link,
and then the matrix is updated for the next iteration by removing f31 and its
bandwidth.

following two rounds of iteration respectively. The ultimate
solution to the rate allocation is (6, 7, 4) for the 3 transfers.

The traditional water-filling algorithm succeeds in obtaining
the max-min fair allocation in the single-source case, yet
it is incapable of dealing with multi-source transfers. This
principally stems from the fact that the algorithm is based
on flows, rather than on transfers. For the example in Fig. 3,
transfer 3 will have double weights by using the water-filling
algorithm, which is unfair to the others. A naı̈vely improved
solution is to normalize the weight of each transfer, and to
assign an equal share to the flows from different sources. With
regard to the example, the elements for f31 and f32 become 1/2
and 1/2 in the FL matrix, such that each transfer has the same
sum weight of 1. The allocation result turns into (20/3, 16/3,
6), which is slightly better than the single-source solutions,
which are (6, 7, 4) for using only source A and (10, 4, 4) for
using only source E. However, as we will soon learn, equally
sharing the flow weight is still not the optimal solution. The
transfer-level max-min fair allocation is conditioned by the
optimal flow assignment.

C. MultiSource Fair Allocation (MSFA) Algorithm

Given the limitation of the water-filling algorithm, we
propose a MultiSource Fair Allocation (MSFA) algorithm to
handle the optimization with multi-source transfers. For clear
illustration, we consider only one multi-source transfer m who
has Km available sources and the flow assignment Xm is
to be solved. Arbitrary multi-source transfers can be simply
extended from it. The MSFA algorithm continues to use the
FL matrix as an input, but the elements are no longer 0 and
1 as in the single-source case. Instead, the matrix elements
related to transfer m are replaced by the unknown variables
in Xm. The MSFA algorithm (Algorithm 2) can be described
in the following high-level steps:

1) Start from zero allocation with the whole link set, and
build the FL matrix with variables Xm.

2) Calculate the saturated average bandwidth τj(Xm) on
each link Lj .

3) Find the bottleneck fair share τ∗ = min{τj(Xm)} by
solving X ∗ = Xm|maxmin{τj(Xm)}.

4) Set the data rate to τ∗ for the flows that traverse the
bottleneck links, and update the FL matrix by removing
those flows and links.

Algorithm 2 MSFA Algorithm

Input:
Flow-link mapping matrix: FL = {flij};
Capacity of each link: {Cj} , 1 � j � M ;

Output:
Transmission rate of each transfer: {ri} , 1 � i � N ;
Flow assignment of transfer m: Xm = {xm1, ..., xmk};
• Step 1: � Initiation

1: ri ← 0, ∀i = 1, ..., N ;
2: L ← {L1, L2, ..., LM};
• Step 2: � Calculate the saturated average bandwidth

3: nj(Xm)←∑
i flij , ∀j ∈ L;

4: τj(Xm)← Cj/nj(Xm), ∀j ∈ L;
• Step 3: � Find the bottleneck fair share τ∗

5: if min{τj(Xm)} is a constant then
6: X ∗ ← ∅;
7: else
8: X ∗ ← Xm|max min{τj(Xm)};
9: end if

10: τ∗ ← min{τj(Xm)};
• Step 4: � Set data rate and update the FL matrix
11: Lj∗ ← {Lj |τj(Xm) = τ∗};
12: L ← �Lj∗L;
13: for i|Pi ∩ Lj∗ �= ∅ do
14: ri ← ri + τ∗;
15: Remove fi from FL;
16: end for
17: Update FL;
• Step 5: � Iteration
18: if No transfers left then
19: return {ri} and Xm;
20: else
21: goto Step 2.
22: end if

5) If there are no transfers left then stop, otherwise return
to Step 2.

In Step 2, similar to the traditional water-filling algorithm,
we first calculate nj(Xm) by summarizing the elements of
column j in the FL matrix. Here nj(Xm) denotes the number
of transfers that use link Lj . Due to the fact that transfer
m comes from multiple parallel flows, there might be only
a fraction of the transfer using link Lj . As a result, nj

becomes a function of Xm instead of an integer value as in the
single-source case. Next, we compute the average bandwidth
τj(Xm) = Cj/nj(Xm), which is also a function of Xm.

In Step 3, given {τj(Xm)} on the current link set, one or
several bottleneck links are found. Specifically, since all the
variables Xm are within a certain range [0, 1], min{τj(Xm)}
is sometimes a constant value. In that case, no flow assignment
variable is calculated, i.e., X ∗ = ∅. Otherwise, the flow
assignment is determined by X ∗ = Xm|maxmin{τj(Xm)}.
We use τ∗ to denote the minimum bandwidth share, and the
set of {Lj∗} is found as the bottleneck links.

Back to the example in Fig. 3, transfer 3 has two available
sources to access, resulting in two parallel flows f31 and f32,
respectively. For simplicity, we use only one variable x to
denote the proportion of f31, and that of f32 will thus be
1−x. Fig. 5 illustrates the FL matrix, followed by the saturated
average bandwidths {τj(Xm)}.

From the example, we can tell that Step 3, finding X ∗

127

Fig. 5. An example of MSFA, where x is the flow assignment variable of
transfer 3. Two bottleneck links (L1 and L4) are found in the first iteration,
where x = 2/3 is solved by a simple equivalent LP. The rate allocation is
determined in one shot as (6, 6, 6).

that maximizes min{τj(Xm)}, is the major challenge in
MSFA. Accordingly, it is to find x∗ = x|maxmin(10/(1 +
x), 7, 12/(1 + x), 8/(2 − x), 4/x, 8/(1 − x)) in Fig. 5. First,
as formulated in Problem 1, it is a nonlinear programming
problem, which can not be solved directly. Second, even if
we can find a linear expression, we still need long sequences
of LPs for the max-min objective (multi-objective), which is
computationally intense in real implementation.

Problem 1 (The optimization problem in Step 3).

max min{τj(Xm)}, (4)

s.t.

Km∑
k=1

xik = 1 xik ∈ Xm, (5)

0 ≤ xik ≤ 1 ∀i, k. (6)

To cope with this, we transform this nonlinear optimization
problem into a canonical form of LP problem based on
Theorem 1. Accordingly, the equivalent canonical LP problem
expressed as Problem 2 can be solved efficiently with limited
computational complexity.

Problem 2 (The equivalent LP problem in Step 3).

min t (7)

s.t.

Km∑
k=1

xik = 1 xik ∈ Xm, (8)

0 ≤ xik ≤ 1 ∀i, k, (9)

t ≥ τ ′j(Xm) ∀j. (10)

Theorem 1. Problem 1 is equivalent to Problem 2 as a
canonical LP problem, where τ ′j(Xm) = 1/τj(Xm).

Proof: Given an arbitrary instance of the FL matrix,
τj(Xm) satisfies two conditions: i) τj(Xm) ≥ 0, ii) the
inverse of τj(Xm) is a linear function of Xm. So we let
τ ′j(Xm) = 1/τj(Xm), and the objective of maxmin{τj(Xm)}
is then equivalent to minmax{τ ′j(Xm)}, which becomes
linear accordingly. Next, we introduce a temporary variable
t = max{τ ′j(Xm)}, and use a sequence of constraints t ≥
τ ′j(Xm) for all j to express t. Since τ ′j(Xm) is a linear function

of Xm, the constraint (10) as a set of inequalities is also linear.
In the end, the optimization problem in Step 3 (Problem
1) turns into an equivalent canonical LP problem (Problem
2), where the decision variables to be solved are the flow
assignment set Xm and t.

As a result, the optimization problem of the example in
Fig. 5 is well transformed into a simple equivalent LP problem,
which is expressed as below.

min t (11)

s.t. 0 ≤ x ≤ 1. (12)

(
10 7 12 8 4 8

−1 0 −1 1 −1 1

)T (
t

x

)

≥ (
1 1 1 2 0 1

)T
(13)

The results of the above LP come out as x = 2/3 and
t = 1/6. So τ∗ = 1/t = 6 is the minimum fair share for
the bottleneck links L1 and L4. We set r1 = r2 = 6 as the
bandwidth of f1 and f2, and r3 = 4+2 as the sum bandwidth
of f31 and f32. The bandwidth of all flows is solved in one
shot, and the final rate allocation (6, 6, 6) is more max-min
fair than the allocation (6, 7, 4) where transfer 3 uses only
source A (as in Fig. 4), as well as the allocation (10, 4, 4)
where transfer 3 uses only source E.

The MSFA algorithm is scalable and extensible for more
complex use cases. For instance, differentiated qualities of
service lead to transfers with variations in priority or other re-
quirements, such that MSFA is capable of supporting weighted
fair allocation by taking priority factors into account. The max-
min fair principle can also be applied to different optimization
objectives (e.g., transfer completion time), and the adaption
of MSFA with consideration of data size can likewise yield
the optimal results for multi-source transfers. The computation
complexity is significantly reduced in MSFA by transforming
a nonlinear multi-objective problem into a single LP, and it
can be further reduced by removing the redundant constraints
in implementation. Thus MSFA with limited complexity is
scalable to handle a datacenter network with 100s of switches.

V. PERFORMANCE EVALUATION

To evaluate how JMS works on a large-scale network, we
implement a flow-level datacenter network simulator.

A. Simulation Methodology

Topologies: We conduct our experiments by emulating a
3-tier datacenter network topology with 8:1 oversubscription.
The topology contains 64 servers, whereby each edge link is
of 1Gbps capacity, and aggregated link is of 10Gbps capacity.

Workloads: We synthesize a stream of transfer requests
with a total number of 1000. The request arrival is modeled
as a Poisson process, where the arrival rate λ is defined as
the average number of new transfers per time slot. We set the
slot length as one second for fast simulation. A transfer has
multiple sources with probability ρ. A multi-source transfer is
assumed to have a random number of replicas between [2,5],

128

0 0.2 0.4 0.6 0.8 1
25

30

35

40

45

Multi−source Probability ρ

T
hr

ou
gh

pu
t (

G
bp

s)

JMS
Best−source
Equal−share
Random−source

Fig. 6. Network throughput vs. multi-source probability ρ, where the arrival
rate λ = 2 and the data size V = 10Gbits.

and the replicas are randomly placed in servers. In simulations,
we do not consider the fluctuation of transfer size, and assume
all transfers have an uniform size of V .

Performance metrics: We use network throughput and
average transfer completion time to show the improvements
of JMS over other approaches.

Traffic engineering: We compare the following TE ap-
proaches, each of which computes per-flow bandwidth allo-
cation with max-min fairness.

• JMS: The approach in this paper, runs MSFA algorithm to
dynamically assigns flows from different sources.

• Best-source: This approach selects a best replica source
based on the algorithm in [12] for multi-source transfers.

• Equal-share: This approach equally splits the transfer
across different sources. For example, if a transfer has 3
replicas, each replica will send 1/3 of the data.

• Random-source: This approach randomly selects an avail-
able source to transmit data.

B. Simulation Results

Fig. 6 shows the simulation results of network throughput
for various TE approaches. Here we set the arrival rate λ = 2
and the data size V = 10Gbits for all of the 1000 transfers.
As the results show, Random-source approach disregards the
source dissimilarity, therefore performs the worst with a con-
stant throughput value. Equal-share approach takes advantage
of source diversity simplistically. When the diversity is limited
to a small number of multi-source transfers (at low multi-
source probabilities), equal flow sharing approximates the
optimal assignment, and thus obtains the similar performance
as JMS. But as the multi-source proportion increases, there
are more flows entering the network. The effect of “bad
flows” enlarges, and hence drags down the overall throughput
improvement. Accordingly, Best-source approach begins to
outperform Equal-share. By jointly optimizing the bandwidth
allocation and flow assignment, JMS achieves a much higher
throughput than the others, resulting in higher utilization of
the network. When all the transfers have multiple sources
(ρ = 1), JMS obtains a substantial throughput gain of up to
52% compared to the single-source transmission.

Fig. 7 compares the transfer completion time versus three
factors respectively: the multi-source probability ρ, the transfer

size V and the transfer arrival rate λ. It is shown that,
JMS achieves the smallest transfer completion time across all
configurations. This improvement is derived from two aspects:
1) optimized transmission rate from a more max-min fair
allocation by MSFA, 2) dynamic flow assignment to remain
optimal as new transfers arrive and existing transfers complete.

Fig. 7(a) focuses on the impact of multi-source probability
ρ. Approximately, ρ equals to the proportion of multi-source
transfers. The gap between Random-source and the other
approaches verifies that, leveraging multiple sources is more
efficient for data transmission. Moreover, the sustained decline
in completion time with the multi-source probability implies
that, the multi-source transmission obtains more performance
gains by placing more replicas in datacenters. Compared to
single-source transmission, JMS reduces the average comple-
tion time by up to 44%.

Fig. 7(b) shows the relationship between completion time
and the transfer size V . As the transfer size increases, the
transfer backlog starts to cause more bottleneck links, which
leads to the degradation of transmission rates. Therefore the
completion time increases superlinearly along with the transfer
size for all the approaches. But the almost linear completion
time growth of JMS suggests that, by completing transfers as
quick as possible, JMS is capable of optimizing bulk transfers
for small files as well as large files.

Fig. 7(c) illustrates the impact of transfer arrival rate λ.
As expected, at higher rates, the number of transfers over
the network potentially increases, and links are more likely
to become congested. Accordingly, the performance degrades
quickly for all the approaches except JMS. The smaller growth
in completion time demonstrates that, by effectively avoiding
the congestion point, JMS manages to handle relatively a
larger amount of traffic without degrading the performance.

VI. RELATED WORK

Datacenter traffic management: Most of the recent work
in datacenter networks aims at scheduling flows with cen-
tralized TE to maximize aggregate network utilization [5],
[9]. DevoFlow [9] is a modification of the OpenFlow model
to reduce the number of switch-controller interactions. Some
work focuses on the optimization of some fine-grained transfer
metrics, such as minimizing flow completion time and meeting
deadlines [6], [15]. PDQ achieves better deadline-meeting rate
by allocating different priorities [6]. However, none of them
takes into consideration that data replication provides more
sources to improve transmission performance.

Distributed filesystems: Several high-performance dis-
tributed filesystems with sufficient data replicas have been
developed, including HDFS [13] and Quantacast File Sys-
tem [14]. Sinbad [11] is the first distributed filesystem that
utilizes replica placement flexibility to avoid congested links
for write operations. Leveraging SDN, Mayflower [12] per-
forms global optimizations to make intelligent replica selection
and flow scheduling decisions. Nevertheless, all the systems
completely rely on single-source transmission, instead of con-
veying data in parallel from multiple distributed sources to
adapt to the variability of network bandwidths as in JMS.

129

0 0.2 0.4 0.6 0.8 1
35

40

45

50

55

60

65

70

Multi−source Probability ρ

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

)

JMS
Best−source
Equal−share
Random−source

(a)

8 9 10 11 12
20

40

60

80

100

120

Transfer Size V (Gbits)

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(S

)

JMS
Best−source
Equal−share
Random−source

(b)

1.4 1.6 1.8 2 2.2
40

50

60

70

80

90

Transfer Arrival Rate λ

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(S

)

JMS
Best−source
Equal−share
Random−source

(c)

Fig. 7. Impact of (a) the multi-source probability ρ, (b) the data size V and (c) the transfer arrival rate λ on average transfer completion time. In each
subfigure, we adjust one factor and fixed the other two, with three default values ρ = 0.5, V = 10 and λ = 2.

Task-based flow scheduling: The approaches that schedule
parallel flows have been developed to optimize transfers at
the level of coflow. Coflow [16] and Varys [17] improve
application-level performance by minimizing coflow com-
pletion times. However, their basic assumption is the flow
volumes for different data are designated in advance, so
they can easily predict the completion time and allocate the
rate to meet their deadlines. JMS’s improvement over them
is the dynamic flow volume assignment, which enables re-
distribution of the pending data among available sources for
the same data. Moreover, this assignment is jointly optimized
with bandwidth allocation to achieve global optimality.

VII. CONCLUSION

We present JMS, a novel traffic management system that
orchestrates bulk transfers with multiple sources in software-
defined datacenter networks. JMS conveys data in parallel
from multiple sources and dynamically adjusts the flow vol-
umes to maximize the network utilization. The core of JMS
is an online fair allocation algorithm that jointly computes
the bandwidth allocation and flow assignment with simple
equivalent canonical LP to achieve global optimality. Exten-
sive simulations validate that, compared to other transmission
approaches, JMS achieves a better throughput gain of up to
52% and decreases transfer completion time by up to 44% for
large-scale bulk transfers.

ACKNOWLEDGMENT

This research was supported in part by NSFC #61701347,
NSFC #61702373 and NSFC #61672385; NSF grant
#1440745, CC*IIE Integration: Dynamically Optimizing Re-
search Data Workflow with a Software Defined Science Net-
work; Google Research Award, SDN Programming Using Just
Minimal Abstractions. This research was also sponsored by
the U.S. Army Research Laboratory and the U.K. Ministry of
Defence under Agreement Number W911NF-16-3-0001. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and

U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation hereon.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” SIGCOMM CCR, 2013.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in SIGCOMM CCR, 2013.

[3] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
INFOCOM, 2013.

[4] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” ACM SIGCOMM CCR, 2012.

[5] S. Radhakrishnan, M. Tewari, R. Kapoor, G. Porter, and A. Vahdat,
“Dahu: Commodity switches for direct connect data center networks,”
in ANCS, 2013.

[6] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” SIGCOMM CCR, 2012.

[7] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and
J. Rexford, “Optimizing bulk transfers with software-defined optical
wan,” in Proceedings of SIGCOMM 2016 Conference.

[8] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila et al.,
“Bwe: Flexible, hierarchical bandwidth allocation for wan distributed
computing,” in SIGCOMM CCR, 2015.

[9] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” SIGCOMM CCR, 2011.

[10] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost optimization for
dynamic replication and migration of data in cloud data centers,” IEEE
Transactions on Cloud Computing, 2017.

[11] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint flexi-
bility in data-intensive clusters,” in ACM SIGCOMM CCR, 2013.

[12] S. Rizvi, X. Li, B. Wong, F. Kazhamiaka, and B. Cassell, “Mayflower:
Improving distributed filesystem performance through sdn/filesystem co-
design,” in Distributed Computing Systems (ICDCS), 2016 IEEE 36th
International Conference on, 2016.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on, 2010.

[14] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly, “The
quantcast file system,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, 2013.

[15] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIGCOM-
M CCR, 2011.

[16] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of HotNet, 2012.

[17] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in ACM SIGCOMM CCR, 2014.

130

Unicorn: Unified Resource Orchestration
for Multi-Domain, Geo-Distributed Data Analytics

Qiao Xiang+‡, Shenshen Chen+, Kai Gao⇤‡, Harvey Newman⇧,
Ian Taylor�†, Jingxuan Zhang+, Yang Richard Yang+‡

+Tongji University, ‡Yale University, ⇤Tsinghua University,
⇧California Institute of Technology, �Cardiff University, †University of Notre Dame

{qiao.xiang, kai.gao, yang.r.yang}@yale.edu, {jingxuan.zhang, cs9091}@tongji.edu.cn,
newman@hep.caltech.edu, taylorij1@cardiff.ac.uk

Abstract—Data-intensive analytics is entering the era of multi-
organizational, geographically-distributed, collaborative comput-
ing, where different organizations contribute various resources,
e.g., sensing, computation, storage and networking resources,
to collaboratively collect, share and analyze extremely large
amounts of data. This new paradigm calls for a framework
to manage a large set of distributively owned heterogeneous
resources, with the fundamental objective of efficient resource
utilization, following the autonomy and privacy of resource
owners. In this paper, we design Unicorn, the first unified frame-
work that accomplishes this goal. The foundation of Unicorn
is RSDP, an autonomous, privacy-preserving resource discovery
and representation system to provide accurate resource availabil-
ity information. Its core is a novel abstraction called resource
vector abstraction which describes the resource availability in
a set of linear constraints. In addition, Unicorn also provides
a series of advanced solutions to support automatic, efficient
management of resource dynamics on both supply and demand
sides, including an automatic workflow transformer, an intelligent
resource demand estimator and an efficient, scalable multi-
resource orchestrator. Being the first unified framework for
this new paradigm, Unicorn plays a fundamental role in next-
generation data-intensive collaborative computing systems.

Keywords—multi-domain, data analytics, resource allocation.

I. INTRODUCTION

As the data volume increases exponentially over time, data-
intensive analytics is transiting from single-domain computing
to multi-organizational, geographically-distributed, collabora-
tive computing, where different organizations contribute var-
ious resources, e.g., computation, storage and networking re-
sources, to collaboratively collect, share and analyze extremely
large amounts of data. Examples of this paradigm include the
Compact Muon Solenoid (CMS) experiment at CERN [1],
coalitions between different combating units, etc. Figure 1
summarizes the general settings of collaborative computing:
data-intensive analytics workflows consume resources supplied
by participating sites/resource owners, coordinated by a log-
ically centralized orchestrator. Collaborative computing calls
for a framework to manage a large set of distributively owned
heterogeneous resources, with the fundamental objective of
efficient resource utilization, following the autonomy and pri-
vacy of resource owners. To achieve this goal, this framework
must be capable of the following functionalities.

• Managing resource supply dynamic. This requires
a system for joint computation, storage and networking
resource discovery and representation, which allows re-
source owners to make and practice their own resource

Resource
Demand

Resource Supply

Supply-Demand
Matching

Site 1 Site N

. . .

Data-Intensive
Analytics Workflows

Resource
Orchestrator

Fig. 1. General settings of multi-organization, geo-distributed, data-intensive
collaborative computing: (1) users submit analytics workflows to produce
resource demand; (2) different sites/resource owners provide resource supply;
(3) a logically centralized orchestrator matches demand with supply, i.e.,
allocating resources to analytics workflows.

supply strategies without exposing private information.
Without such a component, it is infeasible to manage a
large set of distributively owned, heterogeneous, dynamic
resources.

• Managing resource demand dynamic. This requires
a system for automatic, effective resource demand esti-
mation, which automatically transforms high-level data
analytics workflows (e.g., Spark) to low-level task work-
flows (e.g., HTCondor ClassAds) and finds the optimal
configuration, i.e., resource demand, for each task. With-
out such a component, users have to manually configure
the low-level workflows for data analytics. On one hand,
users might request more than necessary resources for
workflows, resulting in inefficient use of resources. On
the other hand, if users request insufficient resources for
workflows, the system may need more resource distribu-
tion transactions, resulting in larger overhead.

• Matching demand with supply. This requires a system
for efficient, scalable multi-resource orchestration, which
makes efficient resource allocation decisions for analytics
workflows based on resource supply and demand. This
component is essential for achieving efficient resource
utilization.

In this paper, we propose Unicorn, the first unified
framework providing all these functionalities for multi-
organizational, geographically-distributed collaborative com-
puting.

The fundamental design challenge for Unicorn is: how to ac-
curately discover and represent resource availability in a large
set of distributively owned heterogeneous resources? Although
there is much related work on resource management of cluster

computing [2]–[11], current systems are mostly designed for
a single administrative domain and focus on computation
and storage resources by assuming the networking resource
is not a bottleneck. Such settings usually lead to easier
designs. In particular, current systems typically adopt a graph
representation to describe resource availability, where each
node is a physical node representing computation or storage
resources and each edge between a pair of nodes denotes
the networking resource. In the multi-domain collaborative
computing, where resources are distributively owned and all
resources (i.e., computation, storage and networking) have the
same probability of becoming the bottleneck of analytics [12],
this graph representation has quite a few drawbacks. First,
it could lead to race conditions between resource suppliers
and consumers. Secondly, multi-resource interferences would
lead to inefficient use of allocated resources. Thirdly, this
representation hides the underlying resource sharing between
nodes or edges in the physical topology, which leads to the
over-provisioning of resources.

To address these drawbacks and the design challenge, we
developed RSDP, an autonomous, privacy-preserving resource
discovery and representation system, to accurately represent
available resources in collaborative computing systems. This
is achieved through a novel abstraction called resource vector
abstraction, which describes the resource availability using a
set of linear constraints.

With RSDP managing the resource supply dynamic, the
Unicorn framework also provides the Handyman system to
manage the resource demand dynamic, which automatically
transforms high-level analytics workflows to low-level task
workflows and finds them the optimal configurations. Between
supply and demand, Unicorn designs an efficient, scalable
multi-resource orchestrator called Miro to achieve efficient
resource utilizations.

The rest of the paper is organized as follows. We first
give an overview of the Unicorn framework and introduce its
core components in Section II. We then present the details of
RSDP, the core resource discovery and representation system
of the Unicorn framework in Section III and its preliminary
evaluation results in Section IV. We briefly discuss related
work in Section V and conclude the paper in Section VI.

II. SYSTEM ARCHITECTURE OF UNICORN

Unicorn aims to achieve two design goals simultaneously
for data-intensive collaborative computing: (1) achieve effi-
cient utilization of a large set of distributively owned heteroge-
neous resource, and (2) allow each participating site to practice
policies and protocols at its own choices without revealing
private information. The first goal ensures that the available
resource supply is efficiently matched to the resource demand
of data-intensive analytics workflows. The second goal ensures
the autonomy, privacy and security of each participating site.

Figure 2 gives the overall architecture of the Unicorn frame-
work, which consists of three components. The foundation of
Unicorn is RSDP, an autonomous, privacy-preserving resource
discovery and representation system to accurately represent
availability information of a large set of distributively owned
resources. On the resource demand side, Unicorn provides
Handyman, an analytics demand automation system, which au-
tomatically converts high-level analytics workflows into low-
level task workflows and finds the optimal configuration (i.e.,
resource demand) for each task. Between resource demand and
supply, an efficient, scalable multi-resource orchestrator called

Fig. 2. The Architecture of Unicorn framework.

Miro is provided in Unicorn to efficiently utilize resources in
the system for data-intensive analytics workflows.

RSDP: an automatic, privacy-preserving resource discov-
ery and representation system. RSDP provides an accurate
view on resource supply dynamic and is the foundation of
the Unicorn framework. This is achieved through a novel
abstraction called resource vector abstraction. Given a set of
tasks T , a set of resources R and a set of resource attributes P ,
resource vector abstraction uses a set of linear constraints to
represent the feasibility and constraints of resource availability
and sharing. When a set of original linear constraints C is
obtained, RSDP does not directly return the whole set as the
resource availability information. Instead, it uses a lightweight,
optimal algorithm to compress C into a minimal, equivalent
set of constraints C 0 where the feasible regions represented
by C and C 0 are the same. Through this compression, RSDP
(1) avoids the high communication overhead of transmitting
resource availability information between the orchestrator and
sites, and (2) minimizes the risk of each site exposing pri-
vate information about its computing facilities, e.g., topology,
policies, etc.

Handyman: an analytics demand automation system.
Handyman automatically (1) converts high-level analytics
workflows into low-level task workflows, i.e., a set of tasks
with precedence encoded in a directed acyclic graph (DAG),
and (2) finds the optimal configuration for each task. This
component saves users from the trouble of manually specifying
low-level task workflows. During the conversion, a critical
challenge must be addressed is that high-level analytics work-
flows are sometimes stateful while low-level workflows are
not. To guarantee that the workflows are equivalent before and
after conversion, the current Handyman design performs con-
version against the state, and schedules automatic conversion
re-execution when state changes happen. Another solution un-
der investigation involves changing the programming models
of low-level task workflows by allowing them to be stateful.

After the conversion, Handyman automatically estimates the
optimal configuration (resource demand, e.g., the number of
CPUs, the size of memory and disk, I/O bandwidth, etc.) for
each task. It leverages the fact that low-level tasks are typically
repetitive with strong similarities and applies reinforcement
learning to estimate optimal configurations for similar tasks.
In articular, it records the utilization and configurations of each
task executed and predicts the resource utilization for different
configurations. When a task comes, Handyman chooses an
unrecorded configuration with the best prediction, and records
the resource utilization of the actual execution for next round
of reinforcement learning.

Miro: an efficient, scalable multi-resource orchestrator.
Miro makes resource allocation decisions based on resource
demand and supply dynamic. It receives the resource demand
information, i.e., a set of low-level task workflows and their
configurations, from Handyman. Then it sends queries to the
RSDP system at each site with a what-if question: what
resource would be provided if the requested tasks were to
be executed here? After receiving the responses encoded in
resource vector abstraction, Miro looks up different resource
provisions and makes task placement decisions to guarantee
that the available resources are efficiently matched with the
resource demand of each task. These decisions are then sent
to the task execution agents at each site, who execute the
tasks, monitor the progress and resource usage and report back
to Miro. Miro supports different scheduling modes, including
FIFO, global mixed binary programming, least-demand-first
(LDF), etc. Comparing and understanding the performance of
different scheduling modes is the next step of Miro.

The most fundamental design challenge of Unicorn is how
to accurately discover and represent the resource availability
over a large set of distributively owned heterogeneous re-
sources. In the next two sections, we focus on addressing this
challenge and present our solution RSDP, the foundation of
Unicorn. Details of Handyman and Miro are omitted for the
interests of brevity.

III. RSDP: AUTONOMOUS, PRIVACY-PRESERVING
RESOURCE DISCOVERY AND REPRESENTATION

In this section, we first review the limitation of re-
source availability graph, a common resource discovery design
adopted in most current resource management systems (Sec-
tion III-A). We then propose RSDP, an autonomous, privacy-
preserving resource discovery and representation framework to
accurately represent available resources in collaborative com-
puting systems, in which the resource availability is encoded
in a novel abstraction called resource vector abstraction as
a set of linear constraints (Section III-B). Next, we discuss
the challenges of generalizing the resource vector abstraction
design and some practical concerns for production deployment
(Section III-C).

A. Resource Availability Graph: Incomplete State-of-the-Art

Basic idea. Computer systems typically consist of three types
of resources: computation, storage, and networking. A typical
design of resource discovery adopted by most current systems
is a resource availability graph, which is built on top of the
physical topology. Each node in the graph is a physical node,
with computation/storage resources annotated, and each edge
between a pair of nodes is annotated with available networking
resources.
Drawbacks. The main assumption of a resource availability
graph is that node and link attributes are described as indepen-
dent variables. However, it has several drawbacks when used
for resource discovery of a large set of distributively owned
resources. First, the multi-domain nature of collaborative com-
puting has determined that race conditions could happen fre-
quently using resource availability graphs. Suppose a resource
owner announces the availability of a set of resources, and
two different tasks both want to use these resources. Without
careful synchronizations, both tasks may try to use this set of
resources, leading to conflicts.

Secondly, current systems mainly focus on discovering com-
putation and storage resources (e.g., CPU, memory and disk)

and assume networking resource is not a bottleneck. However,
recently during a production trace of cluster computing, it was
shown that all three types of resources have approximately
the same probability of becoming a bottleneck in affecting the
performance of data-intensive analytics [12]. With this fact, the
graph representation could lead to inefficient use of allocated
resources. Consider an example where nodes A, B and edge
{A,B} are allocated to a task. Nodes A and B both have a
local I/O bandwidth of 1Gb/s while edge {A,B} is annotated
with a bandwidth of 10Gb/s. We see that the computation
and storage resources become the bottleneck of the task (i.e.,
1Gb/s), and the communication bandwidth (i.e., 10Gb/s) will
be at most utilized by 1/10 = 10%.

s1 d1

s2 d2

100Mb/s

100Mb/s

(a) The resource graph representa-
tion shows that {bw(s1, d1)
100Mb/s, bw(s2, d2) 100Mb/s}.

6

sw1

sw2

s1 d1

s2 d2

sw5 sw8

sw6

sw4sw7

l1

l7

l12

sw3
l6

Each	link:	100	Mbps

(b) The physical topology shows that the paths of
(s1, d1) and (s2, d2) share bottleneck links, i.e.,
bw(s1, d1) + bw(s2, d2) 100Mb/s.

Fig. 3. An example to demonstrate the inefficiency of resource graph
representation.

Thirdly, the graph representation abstracts each resource
into a single node or edge regardless of the shared resource
between nodes or edges in the physical topology. This would
lead to over-provisioning of resource and jeopardize the per-
formance of analytic workflows. Consider the example in
Figure 3. The resource graph in Figure 3a) contains two
sets of resources: {s1, (s1, d1), d1} and {s2, (s2, d2), d2}. The
available bandwidth on edges (s1, d1) and (s2, d2) are both
100Mb/s and for simplicity, we assume the I/O bandwidths of
all end hosts are larger than 100Mb/s. However, in the physi-
cal topology shown in Figure 3b), the communication between
two sets of nodes shares resources on links l3 and l4. Hence,
the actual networking resource for the two sets of physical
nodes must satisfy the constraint bw(s1, d1) + bw(s2, d2)
100Mb/s. This key constraint cannot be expressed using the
variable annotation in a resource availability graph.

The fundamental cause to these drawbacks is that resource
availability graph lacks the ability to represent the feasibility
and constraints related to resource sharing. To address this
problem, we propose a new resource discovery and represen-
tation system called RSDP.

B. RSDP: Autonomous, Privacy-Preserving Resource Discov-
ery and Representation

To address the aforementioned limitations of resource avail-
ability graph, we design a new system called RSDP for
resource discovery and representation over a large set of

heterogeneous distributively owned resources. In particular, we
provide a complete view of resource availability at each site
using a novel abstraction called resource vector abstraction.
Basic idea. The design principle of resource vector abstraction
is simple yet powerful: instead of abstracting resources into
a single node or edge out of the physical topology, we keep
the physical topology and use a set of linear constraints to
represent the feasibility and constraints of resource availability
and sharing.
Resource vector abstraction. Given a set of data-intensive
analytic tasks T , a set of physical resources R (i.e., computa-
tion, storage and networking) and a series of attributes r.P for
each resource r 2 R, we use C(r, p) to denote the capacity of
resource r in providing attribute p and use c(t, r, p) to denote
the usage of the attribute p 2 r.P of resource r 2 R by task
t 2 T , the resource availability of this set of physical resources
R over the set of tasks T can be expressed as:

P
t2T c(t, r, p) C(r, p), 8r 2 R, p 2 r.P.
c(t, ri, p) = c(t, rj , p) 8ri, rj 2 R, given (t, p) (1)

In addition to the generic representation, another benefit
of the resource vector abstraction is that the site-dependent
policies can be naturally mapped into additional linear con-
straints. This is because a site-dependent policy ps is typically
represented as a set of tasks/flows that (1) can or cannot use a
certain resource; (2) cannot exceed an upper bound of a certain
resource; or (3) will be guaranteed a lower bound of a certain
resource. All such policies can be expressed in the form of
linear constraints.
Example. To illustrate how resource vector abstraction repre-
sents the resource availability, we revisit the physical topology
in Figure 3b). Assume there are 2 tasks t1, t2 and we focus on
the bandwidth attribute of networking resource in the set of
links L, consisting of l1 to l12. We first follow the definition
in Equation (1) and represent the resource availability of link
bandwidth as:

c(t1, li, bw) + c((t2, li, bw) 100Mb/s, 8li 2 L.
c(t1, li, bw) = c(t1, lj , bw), 8li, lj 2 L.
c(t2, li, bw) = c(t2, lj , bw), 8li, lj 2 L.

(2)
Assume the policies in this site enforces that (1) t1 must

use computation/storage resources on s1 and d1; (2) t2 must
use computation/storage resources on s2 and d2; and (3) the
traffic of (s1, d1) and (s2, d2) must follow the predefined
routes. After combining these policies with the constraints in
Equation (2), we get:

c(t1, bw) 100Mb/s 8li 2 {l1, l2, l5, l6},
c(t2, bw) 100Mb/s 8li 2 {l7, l8, l11, l12},

c(t1, bw) + c(t2, bw) 100Mb/s 8li 2 {l3, l4},
c(t1, bw) + c(t2, bw) = 0 8li 2 {l9, l10},

(3)
which is a set of linear constraints that provides accurate,
complete information about resource availability in this site.
Computing minimal, equivalent resource state abstrac-
tion. The representation of resource availability specified in
Equation (1) and site policies is accurate and complete, but
may result in a large set of linear constraints with redundant
information. Directly sending them back to the querying
party would introduce a large communication overhead and

expose private information about each site, e.g., site policies
and topology. To address the efficiency, privacy and security
concerns, we develop a lightweight, optimal algorithm in
RSDP to compress the original large set of linear constraints
into a minimal, equivalent set of linear constraints, which
has the same feasible region as the original set but with
a much smaller number of constraints. The basis of this
compression algorithm is simple: given an original set of linear
constraints C : Ax b, we iteratively select one constraint
c 2 C : a

T
x b and calculate the optimal solution of problem

y maxa

T
x, subject to, C � {c}. If b is smaller than the

resulting y, c is an indispensable constraint in determining the
feasible region and will be put into the minimal, equivalent
constraint set C 0. Otherwise, c is a redundant constraint. We
prove the optimality of this algorithm via contradiction.

Applying the algorithm above on the original set of linear
constraints in Equation (3) with 12 constraints, RSDP can
compute and get the minimal, equivalent set of constraints C 0

with only 1 constraint: {(t1, bw) + bw(t2, bw) 100Mb/s},
achieving a compression ratio of 1

12 .
Schedulability. RSDP provides an accurate view of resource
availability while allowing resource owners to make and
practice their own policies with minimal exposure of private
information. One important remaining question is whether
RSDP provides full a schedulability of resources for a logically
centralized orchestrator. We answer this question with the
following theorem.

Theorem 1: When the resources represented by the resource
vector abstraction satisfies one of the following conditions:

1) resources represented in the original set of constraints C
can be fully controlled on the edge, i.e., all the attributes
of each resource can be controlled at end host;

2) all the attributes computed in C 0, the minimal, equivalent
resource vector abstraction, can be fully controlled on
the edge;

RSDP provides a full schedulability of resources to a
logically centralized resource orchestrator.

Proof: The proof of this theorem is straightforward. Con-
dition 1 requires that all the resources and their attributes can
be controlled on the edge for orchestration purposes. Because
resource vector abstraction encodes all resource attributes in
the original set of constraints C, it provides a complete view of
resource availability so that the orchestrator can control them
on the edge. For instance, if the sending rate of each end host
can be controlled by end host rate limiting, the bandwidth
usage of each end host, therefore, can be controlled by the
orchestrator to achieve efficient bandwidth utilization. On the
contrary, if TCP is used to perform window-based congestion
control, the control functionality of bandwidth allocation is
given to TCP and the orchestrator cannot allocate bandwidth
via the representation provided by resource vector abstraction.
Condition 2 relaxes condition 1 by only requiring the attributes
left in the minimal, equivalent resource vector abstraction C 0

to be controllable. Because of the equivalence between C and
C 0, satisfying condition 2 ensures that the orchestrator can
achieve a full schedulability of resources through the resource
vector abstraction representation.

C. Generalization of Resource Vector Abstraction
resource vector abstraction is a powerful abstraction for re-

source availability. However, several issues must be addressed
to apply it in the general case. We describe these issues,

propose potential solutions, and discuss practical concerns for
production deployment of RSDP.
Inter-attribute Correlation. The first limitation of resource
vector abstraction is that the availability of different resources
is only coupled through common resource attributes, e.g.,
bandwidth of storage and networking resources. But in prac-
tice, different resource attributes can have impacts on others
too. For example, the block size of storage resources will affect
the data transferring time between computation resources and
storage resources. Such correlation between different resource
attributes is not encoded in the current design of resource
vector abstraction.

To address this issue, we can add the following constraints
in the definition in Equation 1.

f(T,R, P) 0, (4)

which are a set of functions modeling the impact between dif-
ferent resource attributes. There are two challenging problems:
(1) formulations of f depend on specific resource attributes
and are often unknown; (2) whether it is possible to eliminate
the redundancy between different f to get a minimal, equiva-
lent resource vector abstraction depends on certain properties
of f (e.g., convex, linear or concave). Learning techniques
can be applied to cope with these challenges and is part of the
ongoing efforts in the Unicorn framework.
Coexistence of unschedulable resources. As Theorem 1
states, the orchestrator on top of RSDP cannot achieve full
schedulability of resources via the current resource vector
abstraction design, when some resources are not controlled
at the edge. For example, if the site uses TCP for congestion
control instead of end-host rate limiting, bandwidth of each
flow is decided by TCP via congestion signaling, e.g., packet
loss. The resulted packet-level rate fluctuation would prevent
an accurate prediction on the per-flow achievable bandwidth
in a network containing many TCP flows.

We use a black-box approach to predict the converged
resource availability of unschedulable resources. For instance,
by applying the Newton-Exact-Diagonal (NED) method in
network utilization maximization [13], it is possible to quickly
compute the converged rate of flows. This approach adds the
following constraint to resource vector abstraction:

g(t, R, P) a, (5)

where the resource availability of unschedulable resources
is predicted as a scalar a. Again, it also requires certain
learning techniques to accurately predict the performance of
unschedulable resources and is part of the ongoing efforts of
the Unicorn framework.

In addition, the generalization of resource vector abstraction
also requires consideration on the correlation between task
workflows and resource availability, the trade-off between
maximizing short-term resource utilization and the long-term
stability of resource availability, etc. We leave such topics as
future work.
Practical issues for production deployment of RSDP. Other
issues also arise when RSDP is deployed in production. First,
the current design of RSDP requires a logically centralized
controller to query resource availability at each site for a given
set of analytics tasks. This design may not scale if the whole
computing system involves many globally distributed sites
and have heavy analytics workflows. Potential solutions to

improve the scalability of RSDP include (1) using hierarchical
organized controllers; (2) leveraging the repetitive property of
analytics jobs to selectively query resource availability for only
a small set of tasks instead of all of them; and (3) applying
machine learning techniques to predict resource availability.

The second issue is whether site/resource owners should
have total autonomy. This is related to the specific form of
contracts between sites participating in collaborative comput-
ing. If all sites agree on partial autonomy, a resource enforcer
module needs to be deployed together with RSDP to ensure
that each site provides the amount of resources specified in
contracts. The third issue is how to enforce global scheduling
policies, e.g., user/group/virtual organization priorities, etc.,
when querying for resource availability information. Solutions
to this issue are overlapping with those of the previous two
issues and we leave them as future work.

IV. PERFORMANCE EVALUATION

A prototype of RSDP has been implemented and we present
key evaluation results to demonstrate its efficiency and effi-
cacy in providing an autonomous, privacy-preserving resource
representation. Without loss of generality, we focus on the
bandwidth attribute of networking resources in our evaluation.
We select 10 physical topologies from the topology zoo [14]
with the number of nodes ranging from 13 to 117. We vary
the number of tasks in the evaluation to range from 5 to 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45 50 55 60 65 70

C
o

m
p

re
ss

io
n

 R
at

io

Topology size (#node)

 mecs
 01-constraint

 mecs + parallel (8 threads)

(a) Compression ratio under different
sizes of physical topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
p

re
ss

io
n

 R
at

io

Number of flows

 mecs
 01-constraint

 mecs + parallel (8 threads)

(b) Compression ratio under different
numbers of tasks.

Fig. 4. Constraint compression ratio of RSDP.

We run different versions of the constraint compression
algorithm proposed in Section III-B, including the regular
version, a parallelized version and a modified version lever-
aging the fact that c(t, r, p) always has a coefficient of 0 or
1 to speed up the compression. We present the compression
ratio of RSDP in Figure 4. It can be observed that all three
versions of the constraint compression algorithm produce the
same compression ratio under all settings. Figure 4a) shows
that the compression ratio of RSDP decreases as the topology
size grows. This is because with more networking resource
entities (i.e., links) available, the chance for different tasks to
share the same resource entities decreases. Figure 4b) shows
that when the topology size is fixed, the compression ratio
grows as the number of tasks grows. Even so, we observe
that RSDP can still compress more than 40% of the original
resource state, achieving a compression ratio less than 0.6.
These results demonstrate the efficiency and scalability of
RSDP in providing autonomous, privacy-preserving resource
representation. We also measure the computation overhead of
RSDP and observe that RSDP using a parallel compression
algorithm has a very low computation delay, e.g., <100ms,
even for a combination of a large topology and a large set of
tasks. We omit other evaluation results due to the page limit.

V. RELATED WORK

The fundamental challenge of resource management for
multi-organizational, geo-distributed, data-intensive collabora-
tive computing is to accurately discover and represent resource
availability in a large set of distributively owned heterogeneous
resources. There exists a rich literature in the field of resource
management of cluster computing [2]–[11]. Most of these
studies focus on managing resources of a single cluster/data
center. YARN [4] is the core resource management framework
of Hadoop. Mesos [3] is a platform designed to share resources
among multiple cluster computing frameworks, e.g., MapRe-
duce [15], Spark [16], MPI and etc. Google designs a system
called Borg [5] to orchestrate the cluster resources for its pro-
prietary data analytics frameworks. Microsoft (i.e., Apollo [6])
and Facebook (i.e., Corona [7]) also develop similar systems
tailored to their data analytics needs. HTCondor [2] proposes a
ClassAds programming model, which allows different resource
owners to advertise their resource supply and the job owners
to advertise the resource demand. The CMS [1] experiment
at CERN uses HTCondor and glideinWMS [8] to manage a
set of distributively owned computing resources in a globally
distributed system.

The common settings of these systems, i.e.single-domain
(except for HTCondor) and no networking bottleneck, usually
lead to easier designs for resource discovery and represen-
tation. In particular, a graph representation is adopted by
current systems to represent available resources. However, in
multi-organizational, data-intensive collaborative computing,
this design suffers from race conditions between resource
suppliers consumers. What is worse, with the recent observa-
tion that computation, storage and networking resources have
approximately the same probability to become the bottleneck
affecting the performance of data-intensive analytics jobs [12],
such a graph representation would lead to inefficient use of
resources and resource over-provision. On the contrary, the
RSDP system in Unicorn addresses these drawbacks by using
a set of linear constraints to represent the feasibility and
constraints of resource availability and sharing.

Another line of work called geo-distributed data analytics
is also related to Unicorn. Solutions in this field include (1)
moving the input dataset to a single data center before the
computation [17], [18] and (2) placing different amounts of
tasks at different sites depending on dataset availability to
achieve a better parallelization and hence a lower latency [9]–
[11]. The main focus of these solutions is to optimize the usage
of a set of dedicated networking resources. This simplified
setting is different from that of Unicorn, where different types
of resources owned by different owners need to be orchestrated
for data-intensive collaborative computing.

VI. CONCLUSION AND FUTURE WORK

Multi-organizational, geo-distributed, data-intensive collab-
orative computing calls for a framework to manage a large set
of distributively owned heterogeneous resources, with the fun-
damental objective of efficient resource utilization, following
the autonomy and privacy of resource owners. In this paper, we
propose Unicorn, the first unified framework that accomplishes
this goal. The foundation of Unicorn is RSDP, an automatic,
privacy-preserving resource discovery and representation sys-
tem which describes the resource availability using a set
of linear constraints. In addition, Unicorn also provides an
analytics demand automation system, i.e., Handyman, and an
efficient, scalable multi-resource orchestrator, i.e., Miro. We

have implemented a prototype of Unicorn and performed a
preliminary evaluation. For future work, we plan to evaluate
the performance and scalability of Unicorn more extensively
before moving to production deployment.

ACKNOWLEDGEMENT

We thank Justas Balcas, Shiwei Chen, Lili Liu, Maria
Spiropulu and Jean-Roch Vlimant for helpful discussion
during the work. The Yale team was supported in part
by NSF grant #1440745, CC*IIE Integration: Dynamically
Optimizing Research Data Workflow with a Software De-
fined Science Network; International Technology Alliance
Agreement No W911NF-16-3-0002; Google Research Award,
SDN Programming Using Just Minimal Abstractions; NSFC
#61672385, FAST Magellan. The Tongji team was supported
by China Postdoctoral Science Foundation #2017M611618.
The Caltech team was supported in part by DOE/ASCR
project #000219898, SDN NGenIA; DOE award #DE-
AC02-07CH11359, SENSE, FNAL PO #626507; NSF award
#1246133, ANES; NSF award #1341024, CHOPIN.

REFERENCES

[1] T. C. Collaboration, “The CMS experiment at the CERN LHC,” Journal
of Instrumentation, vol. 3, no. 08, 2008.

[2] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in NSDI, 2011.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: Yet another resource negotiator,” in SoCC. ACM, 2013, p. 5.

[5] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys. ACM, 2015, p. 18.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in OSDI, 2014, pp. 285–300.

[7] “Under the hood: Scheduling MapReduce jobs more efficiently with
Corona,” http://on.fb.me/TxUsYN, [Online; accessed: 09-May-2017].

[8] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and
F. Wurthwein, “The pilot way to grid resources using glideinWMS,” in
CSIE. IEEE, 2009, pp. 428–432.

[9] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a geo-distributed data-intensive world,” in
CIDR, 2015.

[10] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low Latency Geo-distributed Data Analytics,” in SIG-
COMM. ACM, 2015, pp. 421–434.

[11] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in SoCC. ACM, 2015, pp. 111–124.

[12] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and
V. ICSI, “Making sense of performance in data analytics frameworks,”
in NSDI, 2015, pp. 293–307.

[13] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control for
datacenter networks,” in NSDI. USENIX Association, 2017.

[14] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” vol. 29, no. 9, pp. 1765–1775, 00249.

[15] D. Jeffrey and G. Sanjay, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud’10.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined WAN,” in SIGCOMM’13.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM. ACM, 2013.

DDP: Distributed Network Updates in SDN

Geng Li†∗, Yichen Qian†, Chenxingyu Zhao‡, Y.Richard Yang∗, Tong Yang‡
†Tongji University, China, ∗Yale University, USA, ‡Peking University, China

Abstract—How to quickly and consistently update a network
is among the most fundamental and common challenges in
software defined networking (SDN) systems. Current approaches
heavily rely on the (logically) centralized controller to initiate
and orchestrate the network updates, resulting in long latency
of update completion. In this paper, we present DDP, a system
for fast, distributed network updates while preserving various
consistency properties. The key technique in DDP is a novel
primitive named datapath operation container (DOC), where
each DOC is encoded with an individual operation and its
dependency logic. DDP adopts the simple, but powerful DOCs to
configure the network, so that network updates can be triggered
and executed at the data plane in a distributed and local manner.
Novel algorithms are designed to compute and optimize the
DOCs for consistent updates. We implement DDP to evaluate its
performance in various update scenarios. Experimental results
show that DDP significantly improves network update speed by
up to 52.1% for the real-time updates initiated by the controller,
and further improves the speed by 55.6-61.4% for the updates
directly triggered at the data plane, such as failure recovery.

I. INTRODUCTION

Software-defined networking (SDN) is considered as a
major recent advance in networking [1], [2]. It significantly
simplifies network management and provides real-time net-
work programmability by decoupling the network control
plane from the data plane. Network updates are among the
most common data plane operations, either periodically or
triggered by local events such as failures. However, quickly
and consistently updating the distributed data plane poses
a major and common challenge in SDN systems [3], [4].
Specifically, due to asynchronous communication channels,
control messages are often received and executed by switches
in an order different from the order sent by the controller.
An inappropriate control order may violate the consistency
properties on the datapath, resulting in network anomalies,
such as blackholes, traffic loops and congestion [5]–[8].

The consistent network update problem has been widely
studied in the literature [3]–[7]. However, all of the work is
based on centralized initiation and orchestration to perform the
updates. An update can be launched only by the control plane,
where the controller decides an order in which operations
must be applied. The coordination of the distributed data
plane requires frequent communication between the controller
and switches, which slows down the update completion time,
and increases the controller’s processing load. In addition,
centralized updates rely on the control plane too heavily. When
the controller becomes a bottleneck, the network may suffer
from substantial performance and reliability degradation.

In this paper, we present Distributed Datapath (DDP), a
system for fast, distributed network updates in SDN, while
maintaining various consistency properties. DDP still benefits

from centralized intelligence at the control plane, but develops
distributed coordination abilities at the data plane. The key
technique in DDP is a simple, but powerful primitive named
datapath operation container (DOC), where each DOC is
encoded with an individual operation and its dependency logic.
For real-time updates initiated by the controller, the involved
DOCs are sent to the data plane in one shot, and the switches
can consistently execute them in a distributed manner. For
updates directly triggered by local events, the controller pre-
stores the DOCs at the data plane, and when corresponding
events happen, the updates can be locally triggered and ex-
ecuted. We further design novel algorithms to compute and
optimize the primitive DOCs for consistent updates.

We fully implement the DDP system to evaluate its perfor-
mance in various update scenarios. The results demonstrate
that compared to state-of-the-art centralized approaches (e.g.,
Dionysus [5]), DDP improves real-time network update speed
by 31.4-52.1%. Furthermore, we show that DDP can locally
initiate updates triggered by link failures, and is up to 61.4%
faster than centralized approaches to recovering routing.

II. NETWORK UPDATE AND MOTIVATION

We start by formalizing the network update problem and
then give an example to show the limitations of centralized
approaches.

A. Network Update Problem

Our focus is on flow-based traffic management application-
s [2], [5], where each flow is an aggregate of packets between
ingress and egress switches. We let C denote a network
configuration state, which is a collection of exact match rules
determining each flow’s datapath. A network update is defined
as a transition of configuration state from C to C ′. We denote
the update process as C ′ = update(C,O, e), where O = {o}
is a set of datapath operations that implement the update. Each
operation o is a modification on the data plan state, e.g., to
insert/delete/modify a flow rule at a particular switch. e is
a local event at the data plane that triggers the update, e.g.,
a link/switch failure and link congestion. Note that e is just
used for identifying the update origin. Sometimes the update
is triggered by operators or applications, and then e = ∅.

A network update can involve multiple unsynchronized
devices at the data plane, so achieving the consistency is chal-
lenging during the updates. The consistency usually implies
three properties: 1) blackhole-, 2) loop- and 3) congestion-
freedom, and the detailed definitions can be found in [5], [8].
To prevent a violation of the consistency properties in any
intermediate states from C to C ′, the datapath operations with
various dependencies are constrained in a correct processing
order. Assume an update C ′ = update(C,O, e) is given, our

1468

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00150

Fig. 1. A consistent network update example that incurs 3 rounds of
controller-to-switch communication to orderly apply the operations.

work is to quickly apply the operations O after e happens,
while in a correct order.

B. Motivation Example
Consider an example shown in Fig. 1. There is a flow f1

in the network with path ABD. Assume that the link BD
happens to be down, triggering an update from f1 to f1′
with 3 operations shown in the figure. So the update can
be expressed as C ′ = update(C, {oc, oa, ob}, e1). To ensure
consistency, the 3 operations have to be processed orderly.
oc has to be applied before oa; otherwise the flow f1′ will
encounter a blackhole at C where no matched rule exists.
Similarly, ob has to be applied after oa to avoid the blackhole
at B. The ordered processing can be solely coordinated by
the controller in centralized update approaches: the controller
sends oc to C, waits for its processing confirmation, and then
sends oa and ob by the same token. As a result, the simple
network update incurs at least 3 rounds of communication
between the controller and switches, leading to substantial
extra delays.

An insight we can extract from the example is that the 3
datapath operations will be applied at adjacent switches, and
if the switches themselves can coordinate with each other to
orderly apply the operations, the update time as well as the
controller’s processing load will be greatly reduced. Further
more, if we can pre-store the operations at the data plane, and
the link-down event can directly trigger them to apply, then
the network update will be executed in a fully local manner.
In this way, the update speed will be further improved.

III. DDP DESIGN

DDP is proposed as a system to achieve fast, distributed,
consistent updates in SDN. We first explore the dependencies
among datapath operations and local events to ensure the
consistency properties, and such dependency information is
then encapsulated in a novel primitive DOC for each operation.
DDP configures the network by the simple, but powerful prim-
itive, so that network updates can be triggered and executed
at the data plane in a distributed and local manner.

A. Operation Dependency Graph (ODG)
We first introduce the concept of an Operation Dependency

Graph (ODG) that captures the data plane dependencies. An
ODG is a directed acyclic graph (DAG) where the nodes
are the operations O and the trigger event e for an update
C ′ = update(C,O, e). The edge in an ODG reflects a timed
order in a broad sense: upstream nodes have to happen before

Fig. 2. Two types of connection in an ODG. (a) Type 1 connection:
operation o2 depends on the completion of operation o1. (b) Type 2
connection: event e can trigger operation o.

downstream nodes. There are two types of connection in an
ODG. The first type as in Fig. 2(a) denotes that o2 depends on
the completion of another operation o1, while the second type
as in Fig. 2(b) denotes that event e can trigger o to handle
this event. Note that there is no incoming edge connected to
an event e, and Type 2 connection is dispensable since e can
be ∅. An ODG well describes a network update, where Type
1 connection implies the correct order in which the operations
are applied to ensure consistency, and Type 2 connection
identifies the update trigger.
Properties of the ODG. The ODG hold several nice proper-
ties. First, the dependency is unidirectional, resulting in no
cycles in the graph. Second, the dependency relations are
transitive, e.g., if an event e can trigger both o1 and o2, and
o2 depends on o1, then e will be connected with only o1
whose child node is o2. Therefore, the ODG expresses an
optimized result of the whole dependency relations. Third,
connectivity is dispensable in the ODG. For the operations
without dependencies, they will form into isolated pieces with
no connections. Lastly, the ODGs are composable. Multiple
ODGs for different update events can be composed together, so
that the data plane can locally handle more events in DDP. The
ODG composition algorithm will be introduced in Sec. IV-B

B. Datapath Operation Container (DOC) Specification

structure DOC
{

1: operation o
2: boolean expression gate
3: operation set release
}

Fig. 3. Illustration of the primitive DOC.

To enable distributed and local network updates in DDP, we
propose a novel primitive named DOC. The DOC is a structure
as shown in Fig. 3, including 3 members as follows.

• o is an ordinary datapath operation.
• gate is the condition to apply o, represented by a Boolean

expression of o’s parent nodes in the ODG.
• release is a set of operations that depend on o, i.e., the

set of o’s child nodes in the ODG.

Semantics. The semantics of DOC execution is simple. For
each DOC d, 1) the inside operation d.o is not applied until the
gate logic d.gate is fully satisfied; 2) After d.o is applied, all
operations in d.release will be notified. The Boolean expres-
sion in gate consists of either a single operation or several
operations joined by the Boolean operators AND (&) and OR
(‖). For example, if the execution of operation o1 depends on

1469

the completion of both o2 and o3, then d1.gate = o2&o3,
and d2.release = d3.release = o1. The content in gate
and release of each DOC is computed by the algorithm in
Sec. IV-A.

In the DDP system, the SDN controller adopts DOCs to
configure the data plane, rather than directly sending opera-
tions as in traditional SDN. The switches then coordinate with
each other to execute the update at right time.

C. Execution Behaviors

In DDP, we define two types of execution behaviors at the
data plane for every DOC: Push and Pull.

• Push: Upon a DOC is executed at the data plane (i.e., the
inside o is applied in the switch), it will send Push messages
to the DOCs of all release operations. Hence the direction
of Push is downward along with the ODG.

• Pull: Upon a DOC is received at the data plane, a Pull
message will be sent to the DOC of every operation in its
gate. So the Pull direction is upward. In addition, a DOC
also has responsibility to Push back after receiving a Pull.

Correctness. The two behaviors guarantee the safety and
liveness of distributed execution in DDP. The correctness
intuition is that DOCs will be eventually executed as planned
in the ODG regardless of arriving order. Suppose there are
two operations with a dependency o1 → o2, which means o1
should be applied before o2. The SDN controller sends out d1
and d2 at the same time. Case 1: d2 arrives at the data plane
first. According to the semantics, o2 will not be applied until
d1 arrives at the data plane and sends d2 a Push after execution.
Case 2: d1 arrives first. Then it is executed immediately and
sends d2 a Push which is useless because d2 has yet to arrive.
When d2 arrives, it will Pull d1 to Push back again, so that o2
can be applied. In summary, Push and Pull are complementary
to each other, and with the two behaviors, all operations will
be consistently applied in a correct order. The detailed proof
of the correctness can be found in our technical report [9].

D. Examples

Now we use the example in Fig. 1 to see how the network
update is executed in DDP.
Real-time update. Assume after detecting the link-down event
e1, the SDN controller decides to update f1 to f1′. In this
case, e = ∅ because the update is initiated by the controller.
Fig. 4(a) illustrates the ODG and all the DOCs involved in
this real-time update. The 3 DOCs are sent to the data plane
in one shot. First, dc is executed upon arriving at C owing
to the empty gate which is satisfied naturally. Then, a Push
message is sent to da to apply oa at A. Lastly, B can apply ob
after receiving the Push message from da. Compared with the
centralized update which incurs 3 round-trip delays between
the remote controller and the switches, DDP needs only 2
one-way delays between adjacent switches (for coordination),
therefore reduces the update completion time.
Local update. DDP can perform the update even better by pre-
sending the DOCs da, db and dc as shown in Fig. 4(b) to A,
B and C respectively. Because of their non-empty gates, the
three operations will not take effect on the datapath at first. But
when link BD is down, and C detects this event e1 (we assume

(a) Real-time update (b) Local update

Fig. 4. Illustration of the ODGs and DOCs for the example in Fig. 1.
(a) Real-time update which is initiated by the controller. (b) Local
update which is directly triggered at the data plane.

B will flood the link-down event), dc.gate will become true
and oc is applied accordingly. After that, da and db will also be
executed sequentially. As a result, with the powerful DOCs in
DDP, the network update can be both triggered and executed
in a fully local manner, further improving the update speed
while maintaining the consistency.

IV. ALGORITHMS

We design two algorithms in DDP: 1) computing the basic
DOCs for individual updates, and 2) an optimization for
multiple local updates by ODG composition.

A. Computing DOC

This algorithm computes the DOC of each datapath opera-
tion to ensure the consistency during an update. It takes the set
of operations O and the event e as the input and outputs the
corresponding DOCs. The algorithm consists of two steps: (1)
ODG construction, and (2) Computing gate and release.

Example. To illustrate the algorithm, we provide a real-time
update example in Fig. 5. Each link has a capacity of 10 units
and each flow has a size of 5. The old configuration includes
two flows f1 and f2 with same path ABD (labeled by dashed
lines), while the updated one includes two modified flows f1′
with path ACD, f2′ with path AED and a new flow f3′
with path ACD (solid lines). This update is initiated by the
controller, so e = ∅. We can use the 2-step algorithm in our
paper to compute the corresponding DOCs.

Step 1: ODG construction. To construct an ODG, we use
similar ideas of existing work on consistent updates [5], [8].
To ensure blackhole- and loop-freedom, ‘insert’ and ‘modify’
operations on the source switch depend on the successors
on the flow route. For example, oa1 depends on oc1, and
oa2 depends on oe2 in Fig. 5. A ‘delete’ operation on the
last switch depends on the predecessors on the route, e.g.,
oa1 → ob1 and oa2 → ob2. To ensure Congestion-freedom,
current remaining resources should be enough for a resource-
consuming operation. Otherwise this operation will depend on
resource-freeing operations on the same link to get enough
resources, e.g., oa3 (resource-consuming operation) depends
on both oa1 and oa2 (resource-freeing operations). We use the
same priority-criteria in [5] to schedule resource-consuming
operations to avoid deadlocks. Lastly, if the update is triggered
by a local event e, directional edges will be placed from e to
the root operations in the ODG.

1470

Fig. 5. An example of the algorithm computing the basic DOCs.

Step 2: Computing gate and release. Algorithm 1 is a
function to compute the boolean logic in gate and the
operation set in release of each operation oi. The intuition
is that by constructing the ODG in Step 1, the elements in
each DOC’s gate and release are determined, while in
Step 2, logic operators are further inserted to obtain the final
Boolean expressions in gate. There is no logic operator in
release, so di.release is the operation set of oi’s children.
For gate, the parent operations not located at the same
switch as oi are responsible for blackhole- and loop-freedom.
Hence these parent operations are joined by & operators,
e.g., ob3 in da3.gate. Otherwise, we use another function
FindFeasibleScheduling to compute the logic.

Specifically, FindFeasibleScheduling is a function to find
all possible resource-freeing conditions that can make oi
scheduled. We let oi.f low

− denote the set of resource-freeing
operations for oi, which are identified as the operations on the
same switch as oi. For example, oa1 and oa2 are in oa3.f low

−.
If a resource-freeing condition is enough to schedule oi, the
combination becomes a feasible plan (f). Different feasible
plans are separated by OR operators. For the example in Fig. 5,
oa1 and oa2 are two feasible scheduling planes for operation
oa3. So da3.gate includes oa1‖oa2. The details of this function
can be found in the technical report [9].

B. ODG Composition
As discussed earlier, an ODG corresponds to only one

update. If we want the data plane to locally handle
one of multiple updates C1 = update(C,O1, e1), C2 =
update(C,O2, e2), ..., we need to prepare multiple ODGs.
Here we assume one update is executed at a time, because all
of the updates are based on the current configuration C. For the
local update example in Fig. 1, if we hope the data plane can
locally handle another event e2 = AB link down, then we need
another ODG with a new set of DOCs. Different updates may
share common operations, so an ODG composition is required
to rewrite the DOCs. We let Gi denote an ODG and +© denote
the composing operator. Since the composing operator +© is
associative, i.e., (G1 +©G2) +©G3 = G1 +©(G2 +©G3), therefore

Algorithm 1 ComputeGate&Release(oi)

1: for each oj ∈ oi.children do
2: di.release← di.release ∪ oj
3: end for
4: oi.f low

− ← ∅

5: for each ok ∈ oi.parents do
6: if ok and oi at same switch then
7: oi.f low

− ← oi.f low
− ∪ ok

8: else
9: di.gate← di.gate&ok

10: end if
11: end for
12: F ← ∅

13: for each f ∈ FindFeasibleScheduling(oi.f low
−) do

14: F ← F‖f
15: end for
16: di.gate← di.gate&F

Algorithm 2 ODGComposition(G1, G2)

1: for each oi1 = oi2, oi1 ∈ G1, oi2 ∈ G2 do
2: if di1.gate �= di2.gate then
3: di1,i2.gate← di1.gate||di2.gate

// di1,i2 is the DOC after composing
4: end if
5: if di1.release �= di2.release then
6: di1,i2.release← di1.release ∪ di2.release
7: P1 ← oi1.parents
8: P2 ← oi2.parents
9: while P1 ⊆ P2||P2 ⊆ P1 do

// iteratively find the nearest different ancestors
10: P1 ← P1.parents
11: P2 ← P2.parents
12: end while
13: Find t1|t1 ∈ P1&t1 /∈ P2

14: Find t2|t2 ∈ P2&t2 /∈ P1

// t1, t2 is either an operation or an event
15: for each oj1 ∈ di1.release, oj2 ∈ di2.release do
16: dj1.gate← dj1.gate&t1
17: dj2.gate← dj2.gate&t2
18: end for
19: end if
20: end for

the composition of arbitrary ODGs can be derived by the
algorithm for composing two ODGs in Algorithm 2.

In the algorithm, we combine gates and releases for
the common operations in both G1 and G2. The gates are
joined by an OR (‖) operator to make sure the common
operations can be triggered in both updates. In addition, we
have to distinguish the child nodes of a common operation in
different graphs; otherwise all of them will be released after
the common operation. To cope with this, we iteratively find
the nearest different ancestors to identify the two ODGs. First,
we find P1 and P2 as the two non-containment ancestor sets
for the common operation oi1 (oi2). Then we pick out only
one item t1 (t2) as a representative for each set P1 (P2). Here
t1 and t2 are any of the elements in the ODG, i.e., either an
operation or an event. At last, we add t1 into every child’s
gate in G1, and t2 into every child’s gate in G2, with the
operator &. The rewrites of releases for t1 and t2 are omitted
for space constraints. As a result, for the example in Fig. 1,

1471

Fig. 6. An example of ODG composition where G = G1 +©G2.

dc.gate = e1‖e2 after composition, so that no mater AB or
BD down, the network can locally recover routing.
Example. We give another example in Fig. 6, where G1 and
G2 are the ODGs for two local updates prepared in DDP (e1
and e2 have not happened yet). After composing, d2.gate
becomes e1‖e2, and d2.release = o3 keeps unchanged. For
o3, both the gates and releases are different in the two
ODGs, so they are rewritten as d3.gate = o2&(o1‖o5) and
d3.release = {o4, o6}. In addition, P1 = {o1, o2} and P2 =
{o2, o5} are found as the nearest non-containment ancestor
sets, and t1 = o1 and t2 = o5 are picked out to represent P1

and P2 respectively. In the end, o4 and o6 are distinguished
by d4.gate = o1&o3 and d6.gate = o3&o5.

V. PERFORMANCE EVALUATION

We fully implement the DDP system with 3000+ lines of
Python code to evaluate its performance in various update sce-
narios. Experimental results show that DDP can significantly
speed up network updates.

A. Experimental Methodology

We conduct all experiments on real topologies consisting of
Open vSwitches in both WAN and data center scenarios. For
WAN, we choose 5 topologies from the Topology Zoo [10]
that interconnect O(30) sites with link capacities between 10
and 100 Gbps. For data center, we emulate a 3-tier datacenter
network topology with O(60) switches, where each edge link
is of 10Gbps capacity, and aggregated link is of 100Gbps
capacity. A custom software agent is running on each switch
to coordinate with each other and create execution logs. The
communication protocol between the controller and the agents
is implemented by an extension version of OpenFlow, and
the communication between the agents is via UDP messages.
In our experiments, we compare DDP against a Centralized
update system based on Dionysus [5].

B. Experimental Results

Real-time updates. We measure the update completion time
of 30 real-time updates in both WAN and data center scenarios.
We break down the overall time by the amount of computation
at the controller and the execution at the data plane. First,
Fig. 7 shows that computing the updates is not a bottleneck in
both schemes, and the DDP system requires a little longer
computation time than Centralized because the scheduling
plans are pre-computed and encoded in the DOCs.

Fig. 7. Update completion time, broken down by the amount of
computation and execution.

0 1 2 3 4 5 6
Coordination distance

0

0.2

0.4

0.6

0.8

1

C
D

F

WAN
Data center

Fig. 8. CDFs of the coordination distance between DOCs, specified
by the hop-count of switches between d.o and d.release (if any),
e.g., the distance between da1 (da2) and da3 in Fig. 5 is 0.

From Fig. 7, we can observe that DDP achieves a much
lower execution time than Centralized. This major gain is
from the distributed manner of update execution in DDP.
Centralized approach relies on the controller to orchestrating
the updates, so the coordinating time is a sum of many-
round of communication between the controller and switches.
However in DDP, switches directly coordinate with each other
at the data plane, therefore reducing the total execution time.
From the CDFs shown in Fig. 8, we can see most of the
coordination in DDP is within the same switch (up to 18.4%)
or between adjacent switches (up to 43.0%), so it’s more
efficient for switches to coordinate with each other rather than
communicating with the remote controller.

Overall, as shown in Fig. 7, DDP outperforms Centralized
in real-time updates under both WAN and data center settings.
For WAN, DDP is 46.4%, 49.1%, and 52.1% faster than
Centralized in the 50th, 90th, and 99th percentile, respectively.
For data center, the corresponding numbers are 31.4%, 33.7%,
and 36.4% faster than Centralized,. The WAN topologies are
more complex than the data center ones, resulting in longer
completion time.

Local updates. We conduct another experiment to show the
benefit of DDP in local updates. We choose one configuration
in each WAN topology, and pre-compute the DOCs for any
link-down events. For simplicity, we consider only 1-failure
case. The ODG Composition algorithm in Sec. IV-B is used
to compute the final DOCs, and the DOC number is reduced
by 60.3% after composition. In the experiment, we randomly
fail one link and measure the recovery time for all re-routable
flows in both approaches. In Centralized approach, the link-

1472

Fig. 9. Recovery time from a random link failure.

down event has to be reported to the controller, who will then
compute new routes to update the network. But in DDP, when
the link-down event happens, pre-stored DOCs are locally
trigged at the data plane and directly take effect to recover
the routing. Note that the consistency properties are preserved
during all updates. As shown in Fig. 9, DDP is 55.6%, 58.2%,
and 61.4% faster than Centralized in the 50th, 90th, and
99th percentile, respectively. By locally initiating the updates
at the data plane, DDP avoids reporting time and real-time
computation time at the controller, therefore speeds up the
updates further more.

VI. RELATED WORK

De-centralized update. ez-Segway is proposed to address the
network update problem in a de-centralized manner, where
switches receive partial knowledge of the network from the
controller and conduct distributed computing to execute the
update [8]. DDP’s improvement over it is a much more
powerful primitive DOC, leading to much lower overhead
and computation complexity at switches, while enabling local
updates. A timed update is another decentralized approach that
uses synchronized clocks to coordinate the update [11]–[13].
However, due to imprecise clock synchronization and time
prediction, the consistency and efficiency of network updates
are not guaranteed as in DDP. Our primitive DOC can have a
wide range of extension, e.g., the Boolean expression in gate
may support time variant in the future work.
Local Recovery. Prior art on failure recovery in SDN relies on
Openflow local fast failover mechanisms [14]–[16]. The con-
troller pre-installs backup rules (tunnels) in switches’ group
tables, so that the backups can be immediately activated upon
a link failure. DDP transforms the backup rules into compact
pending DOCs, therefore saves the scarce table resources
without performance loss. In addition, this line of work deals
with only link-down events, whereas DDP is capable of
handling any happenings that can be detected by switches,
such as link congestion or unbalanced load. Our novelty lies
in allowing local events to directly trigger the network-wide
update, which to our knowledge has not been done before.

VII. CONCLUSION

This paper presents DDP, a system for fast, distributed,
consistent network updates in SDN. The configuration in DDP
is based on a novel primitive named DOC. The DOCs can
be executed by the switches following the dependencies a-
mong different datapath operations, while achieving data plane
consistency. We also design two algorithms to compute and

optimize the primitive DOCs respectively. Evaluation results
show that DDP significantly improves network update speed
in various update scenarios. Developing some high-level APIs
in DDP to automatically generate the DOCs will be the next
step of this research.

ACKNOWLEDGMENT

This research was supported in part by NSFC #61701347,
NSFC #61702373, NSFC #61672385 and NSFC #61672061;
NSF grant #1440745, CC*IIE Integration: Dynamically Op-
timizing Research Data Workflow with a Software Defined
Science Network; Google Research Award, SDN Program-
ming Using Just Minimal Abstractions. This research was also
sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon. Tong Yang is the corresponding
author of this paper.

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[3] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks, 2013, p. 20.

[4] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” ACM SIGCOMM Computer Com-
munication Review, vol. 42, no. 4, pp. 323–334, 2012.

[5] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in ACM SIGCOMM CCR, vol. 44, no. 4, 2014, pp. 539–550.

[6] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” in ACM
SIGCOMM CCR, vol. 43, no. 4, 2013, pp. 411–422.

[7] K.-T. Förster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in IFIP Networking Conference, 2016, pp. 1–9.

[8] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent
updates in sdn,” in Proceedings of the SOSR, 2017, pp. 21–33.

[9] “Anoymous Technical Report,” https://github.com/technical-report-
2018/ICDCS2018.

[10] “The Internet Topology Zoo,” http://www.topology-zoo.org.
[11] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”

in Proceedings of the 1st ACM SIGCOMM SOSR, 2015, p. 21.
[12] J. Zheng, G. Chen, S. Schmid, H. Dai, J. Wu, and Q. Ni, “Scheduling

congestion-and loop-free network update in timed sdns,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 11, 2017.

[13] J. Zheng, G. Chen, S. Schmid, H. Dai, and J. Wu, “Chronus: Consistent
data plane updates in timed sdns,” in Distributed Computing Systems
(ICDCS), IEEE 37th International Conference on, 2017, pp. 319–327.

[14] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “We’ve got you covered:
Failure recovery with backup tunnels in traffic engineering,” in Network
Protocols (ICNP), International Conference on, 2016, pp. 1–10.

[15] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
sdn local fast failover,” in International Conference On Principles Of
Distributed Systems, 2013, pp. 68–82.

[16] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
in Proceedings of HotSDN, 2014, pp. 121–126.

1473

Unicorn: Unified Resource Orchestration for Multi-Domain,
Geo-Distributed Data Analytics

Qiao Xiang+‡, X. Tony Wang+‡, J. Jensen Zhang+,
Harvey Newman⇧, Y. Richard Yang+‡, Y. Jace Liu+,

+Tongji University, ‡Yale University, ⇧California Institute of Technology,
{qiao.xiang, xin.wang, yang.r.yang}@yale.edu, jensen@jensen-zhang.site,

newman@hep.caltech.edu, yang.jace.liu@linux.com

Abstract

As the data volume increases exponentially over time, data-intensive analytics benefits substantially from multi organi-
zational, geographically-distributed, collaborative computing, where di↵erent organizations contribute various yet scarce
resources, e.g., computation, storage and networking resources, to collaboratively collect, share and analyze extremely
large amounts of data. By analyzing the data analytics trace from the Compact Muon Solenoid (CMS) experiment,
one of the largest scientific experiments in the world, and systematically examining the design of existing resource man-
agement systems for clusters, we show that the multi-domain, geo-distributed, resource-disaggregated nature of this new
paradigm calls for a framework to manage a large set of distributively-owned, heterogeneous resources, with the objec-
tive of e�cient resource utilization, following the autonomy and privacy of di↵erent domains, and that the fundamental
challenge for designing such a framework is: how to accurately discover and represent resource availability of a large set of
distributively-owned, heterogeneous resources across di↵erent domains with minimal information exposure from each do-
main? Existing resource management systems are designed for single-domain clusters and cannot address this challenge.
In this paper, we design Unicorn, the first unified resource orchestration framework for multi-domain, geo-distributed
data analytics. In Unicorn, we encode the resource availability for each domain into resource state abstraction, a variant
of the network view abstraction extended to accurately represent the availability of multiple resources with minimal in-
formation exposure using a set of linear inequalities. We then design a novel, e�cient cross-domain query algorithm and
a privacy-preserving resource information integration protocol to discover and integrate the accurate, minimal resource
availability information for a set of data analytics jobs across di↵erent domains. In addition, Unicorn also contains a
global resource orchestrator that computes optimal resource allocation decisions for data analytics jobs. We discuss
the implementation of Unicorn and present preliminary evaluation results to demonstrate the e�ciency and e�cacy of
Unicorn. We will also give a full demonstration of the Unicorn system at SuperComputing 2017.

1. Introduction

As the data volume increases exponentially over time,
data-intensive analytics benefits substantially from multi-
organizational, geographically-distributed, collaborative com-
puting, where di↵erent organizations (also called domains)
contribute various yet disaggregated resources, e.g., com-
putation, storage and networking resources, to collabora-
tively collect, share and analyze extremely large amounts
of data. One important example of this paradigm is the
Compact Muon Solenoid (CMS) experiment at CERN [1],
one of the largest scientific experiments in the world. The
CMS data analytics system is composed of over 150 par-
ticipating organizations, including national laboratories,
universities and other research institutes. By analyzing
the data analytics trace from the Compact Muon Solenoid
(CMS) experiment over a 7-day period and systemati-
cally examining the design of existing resource manage-
ment systems for clusters, we show that the multi-domain,
geo-distributed, resource-disaggregated nature of this new

paradigm calls for a framework to manage a large set
of distributively-owned, heterogeneous resources, with the
objective of e�cient resource utilization, following the au-
tonomy and privacy of di↵erent domains.

In particular, our trace analysis shows that (1) over
35% of data analytics jobs are remote jobs, i.e., jobs that
require di↵erent types of resources from di↵erent domains
for execution; (2) the 90% quantile of the job execution
time of remote jobs is approximately 38.9% longer than
that of local jobs, i.e., jobs that only require resources
from a single domain for execution; and (3) the data trans-
fer tra�c is saturating the CMS network, leaving limited
networking resources (i.e., less than 15%) for data ana-
lytics tra�c. These observations show that resources in
multi-domain, geo-distributed analytics are highly disag-
gregated, i.e., unbalanced distributed across domains. Al-
though there is much related work on resource manage-
ment for clusters and data centers, such as [2–12], they are
mostly designed for managing resources in single-domain
clusters, and cannot accomplish the aforementioned goal

Preprint submitted to Elsevier November 6, 2017

for multi-domain, geo-distributed data analytics. In par-
ticular, these systems typically adopt a graph-based ab-
straction to represent the resource availability in clusters.
In this abstraction, each node in the graph is a physical
node representing computation or storage resources and
each edge between a pair of nodes denotes the networking
resource connecting two physical nodes. This abstraction
is inadequate for multi-domain, geo-distributed data ana-
lytics systems for two reasons. First, it compromises the
privacy of di↵erent domains by revealing all the details of
resources in each domain. Secondly, the overhead to keep
the resource availability graph up to date is too expen-
sive due to the heterogeneity and dynamicity of resources
from di↵erent domains. Some systems such as HTCon-
dor [2] adopts a simpler abstraction that only represents
computation and storage resources in multi-domain clus-
ters. This approach, however, leaves the orchestration of
networking resources completely to the transmission con-
trol protocol (TCP), which has long been known to be-
have poorly in networks with high bandwidth-delay prod-
ucts including multi-domain, geo-distributed data analyt-
ics systems, and hence is ine�cient. Through trace anal-
ysis and related work study, we identify the fundamental
design challenge for designing an orchestration framework
for multi-domain, geo-distributed data analytics is: how to
accurately discover and represent resource availability of a
large set of distributively-owned, heterogeneous resources
across di↵erent domains with minimal information expo-
sure from each domain?

In this paper, we design Unicorn, the first unified re-
source orchestration framework for multi-domain, geo dis-
tributed data analytics. In Unicorn, the resource avail-
ability of each domain is abstracted into resource state ab-
straction, a variant of the network view abstraction [13] ex-
tended to accurately represent the availability of multiple
resources with minimal information exposure using a set
of linear inequalities. With this intra-domain abstraction,
Unicorn uses a novel, e�cient cross-domain resource dis-
covery component to find the accurate resource availability
information for a set of data analytics jobs across di↵erent
domains with minimal information exposure, while allow-
ing each domain to make and practice their own resource
management strategies. In addition, Unicorn also contains
a global resource orchestrator that computes optimal re-
source allocation decisions for data analytics jobs.

This paper makes the following main contribution:

• we study the novel problem of resource orchestra-
tion for multi-domain, geo-distributed data analyt-
ics and identify the cross-domain resource discovery
challenge as the fundamental design challenge for
this problem through systematic trace-analysis and
vigorously related work investigation;

• we design Unicorn, the first unified resource orches-
tration framework for multi-domain, geo-distributed
data analytics. Unicorn provides the resource state
abstraction for each domain to accurately represent
its resource availability with minimal information ex-
posure in the form of a set of linear equalities, a
novel, e�cient cross-domain resource discovery com-
ponent to provide the accurate, minimal resource
availability information across di↵erent domains, and
a global resource orchestrator to compute optimal re-
source allocations for data analytics jobs;

• we discuss the implementation details of Unicorn
and perform preliminary evaluations to demonstrate
the e�ciency and e�cacy of Unicorn. We will also
present a full demonstration of Unicorn at Super-
Computing 2017.

The rest of the paper is organized as follows. We an-
alyze the data analytics trace of the CMS experiment,
discuss the inadequacy of existing resource management
systems and identify the key design challenge for multi-
domain, geo-distributed data analytics systems in Section 2.
We introduce the system setting and give an overview of
the Unicorn framework in Section 3. We then present the
details of two key components of Unicorn, cross-domain
resource discovery and representation and global resource
orchestration, in Section 4 and 5, respectively. We discuss
the implementation details in Section 6 and evaluate the
performance of Unicorn in Section 7. We conclude the
paper and discuss the next steps of Unicorn in Section 8.

2. Motivation and Challenge

Analytics trace from the CMS experiment. We
collect the trace of approximately 479 thousand data an-
alytics jobs from the CMS experiment, one of the largest
scientific experiments in the world, over a period of 7 days.
From this trace, we find that over 35% of jobs consumes
resources across di↵erent domains, i.e., these jobs use the
computation node and the storage node located at di↵er-
ent domains which are connected by networking resources
across multiple domains. We call these jobs remote jobs,
compared with local jobs which only use resources within
one single domain. This result indicates the resource dis-
aggregation in the CMS network, i.e., the unbalanced dis-
tribution of storage and computation resources. We also
plot the cumulative distribution function of job execution
time for this set of traces as shown in Figure 1. We ob-
serve that the 90% quantile of job execution time for re-
mote jobs has an extra 38.9% higher latency than local
jobs. In addition, we observe that the cross-domain net-
working resources available for data analytics are very lim-
ited because the CMS data transfer tra�c is saturating
the limited networking resources, e.g., the cross-domain
data transfer network tra�c of the same 7-day period has
a total amount of 8785 terabytes while the cross-domain
data analytics tra�c is only 1404 terabytes. This obser-
vation indicates the scarcity of networking resources avail-
able for data analytics in the CMS network. All these
results demonstrate that in order to support low-latency,
multi-domain, geo-distributed data analytics, it is not only
necessary, but crucial to design a multi-domain resource
orchestration system.

Related work. There exists a rich literature in the
field of resource management of clusters [2–12]. YARN [4]
is the core resource management framework of Hadoop.
Mesos [3] is a platform designed to share resources among
multiple cluster computing frameworks, e.g., MapReduce [14],
Spark [15], MPI and etc. Google designs a system called
Borg [5] to orchestrate the cluster resources for its propri-
etary data analytics frameworks. Microsoft (i.e., Apollo [6])
and Facebook (i.e., Corona [7]) also develop similar sys-
tems tailored to their data analytics needs. These systems
are all designed for managing resources in single-domain

2

Figure 1: The CDF of job latency local and remote jobs.

clusters and adopt a graph-based abstraction to represent
the resource availability in clusters. In this abstraction,
each node in the graph is a physical node representing
computation or storage resources and each edge between
a pair of nodes denotes the networking resource connect-
ing two physical nodes. This abstraction is inadequate
for multi-domain, geo-distributed data analytics systems
for because (1) it compromises the privacy of di↵erent do-
mains by revealing all the details of resources in each do-
main; and (2)the overhead to keep the resource availability
graph up to date is too expensive due to the heterogeneity
and dynamicity of resources from di↵erent domains.

There are also some e↵orts towards resource manage-
ment for multi-domain clusters. HTCondor [2] proposes
a ClassAds programming model, which allows di↵erent
resource owners to advertise their resource supply and
the job owners to advertise the resource demand. The
CMS [1] experiment currently uses HTCondor and glidein-
WMS [8] to manage a set of distributively owned com-
puting resources in a globally distributed system. These
systems only focus on managing storage and computing
resources in clusters, while the recent study shows that
computation, storage and networking resources have ap-
proximately the same probability to become the bottle-
neck a↵ecting the performance of data-intensive analytics
jobs [16]. By leaving the orchestration of networking re-
sources completely to TCP, which has been known to be-
have poorly in networks with high bandwidth-delay prod-
ucts including multi-domain, geo-distributed data analyt-
ics systems, the abstraction adopted by these systems is
also ine�cient.

Another line of work called geo-distributed data an-
alytics is also related. Solutions in this field include (1)
moving the input dataset to a single data center before
the computation [17, 18] and (2) placing di↵erent amounts
of tasks at di↵erent sites depending on dataset availabil-
ity to achieve a better parallelization and hence a lower
latency [9–12]. The main focus of these solutions is to
optimize the usage of a set of dedicated networking re-
sources. The design of these systems cannot be applied to
multi-domain, geo-distributed data analytics where di↵er-
ent types of resources owned by di↵erent owners need to
be orchestrated.

Design challenge. The discussion above shows the ur-
gent need for an e�cient resource orchestration framework
to support multi-domain, geo-distributed data analytics
systems such as CMS. And by investigating the limitations
of existing resource management systems, we identify the

key design challenge for such a framework is how to accu-
rately discover and represent resource availability of a large
set of distributively-owned, heterogeneous resources across
di↵erent domains with minimal information exposure from
each domain? To this end, we design the Unicorn frame-
work to manage a large set of distributively-owned, hetero-
geneous resources for multi-domain, geo-distributed data
analytics systems. Unicorn achieves e�cient resource uti-
lization while allowing the autonomy and privacy of di↵er-
ent domains through a novel resource state abstraction, an
e�cient cross-domain discovery and representation compo-
nent and a global resource orchestration component, which
will be discussed in the next few sections.

3. Overview

In this section, we introduce the system setting for
multi-domain, geo-distributed data analytics and give an
overview of the Unicorn framework and its workflow.

System settings. We consider a data analytics sys-
tem composed of multiple organizations (domains). Each
domain contributes a certain amount of computation, stor-
age and networking resources for all the users in the system
to store, transfer and analyze large-volume datasets. The
storage and computation resources are typically physical
servers, virtual machines or containers. The networking
resources are typically switches and links. Domains that
only contribute networking resources are called transmis-
sion domains and domains that also contribute computa-
tion and storage resources are called leaf domains. Figure 2
gives an example of such a system. In this example, do-
main A, B, E and F are all leaf domains while domain C
and D are transmission domains.

Domain A

Domain	B

Domain	C

Domain	D

Domain	E

Domain	F

switch storage node computation nodelink

Figure 2: An example of multi-domain, geo-distributed data analyt-
ics system. Domains A, B, E and F are leaf domains. Domains C
and D are transmission domains.

A data analytics task is typically decomposed into a
set of jobs J whose precedence relation is specified by a
directed acyclic graph (DAG). A task is finished if and only
if the last job in the decomposed DAG is finished. Each job
j has requirements on storage and computation resources,
e.g., number of CPUs, size of memory, input dataset and
etc. We use (stg, comp) to denote a pair of candidate stor-
age and computation resources satisfying the requirement
of j. The orchestration system is in charge of selecting one
(stg, comp) pair for each job j and allocating the selected
storage and computation resources and the networking re-
sources connecting them for executing j.

Unicorn architecture. We present the architecture of
Unicorn in Figure 3. On top of all the domains, Unicorn

3

provides a logically centralized controller to orchestrate re-
sources for data analytics jobs. This controller includes a
cross-domain resource representation and discovery com-
ponent and a global resource orchestration component.
Residing in each domain are a domain resource manager
and a set of job execution agents.

Global Resource Orchestration

Data Analytics Jobs

Accurate, Minimal,
 Intra-Domain

Resource Views

Accurate, Minimal,
Cross-Domain
Resource View

Domain 1 Domain N

. . .

Cross-Domain
Resource Discovery

Job Resource
RequirementsUnicorn

Domain
Resource
Manager

Discovery
Query

Domain
Resource
Manager

Job
Execution

Agents

Job
Execution

Agents

Resource
Allocations
Decisions

Job
Execution

Status

Figure 3: The architecture of Unicorn.

Unicorn provides a novel abstraction called resource
state abstraction, a variant of network view abstraction [13].
This abstraction uses a set of linear inequalities to accu-
rately represent the availability of di↵erent resources in
each domain with minimal information exposure. When
a set of data analytics jobs J are submitted to the Uni-
corn controller, the cross-domain resource discovery and
integration component issues discovery queries, i.e., path
queries and resource queries, to the domain resource man-
ager at each domain to retrieve the intra-domain resource
view of each domain encoded in the resource state abstrac-
tion. It then assembles and compresses the responses into
an accurate, minimal cross-domain resource view. This
view, together with the resource requirements of j, is then
used by the global orchestration component to make global,
optimal resource allocation decisions and send to the job
execution agents at corresponding domains. The execu-
tion agents enforce the received decisions, e.g., starting
the corresponding program, rate limiting the data access-
ing bandwidth and etc., and send the job execution status
back to the Unicorn controller as feedback. In the next few
sections, we present the design details of key components
of Unicorn.

4. Cross-Domain Resource Discovery and Repre-
sentation

In this section, we present our design to address the
fundamental challenge of accurately discovering and repre-
senting a large set of distributively-owned, heterogeneously
resources with minimal information exposure of resource
owners. In particular, we introduce a novel abstraction to
represent intra-domain resource availability and design an
e�cient discovery mechanism to discovery resource avail-
ability across di↵erent domains.

4.1. Intra-Domain Resource State Abstraction

Basic idea. Unicorn framework provides an abstraction
called resource state abstraction to accurately represent
the availability of multiple resources for a set of data an-
alytics jobs using a set of linear inequalities. This is a
variant of the network view abstraction [13]. In particu-
lar, we consider a set of data analytic jobs J that wants to
consume a set of physical resources R (i.e., computation,
storage and networking) based on a set of pre-defined poli-
cies P . If a resource attribute attr is capacity-bounded, i.e.,
a resource r can only provide this attribute with a certain
capacity (denoted as Cr,attr) and each job j consuming r

can only get a portion of this attribute (denoted as cr.attrj),
the resource availability of R for J on this attribute can
be expressed as:

X

j2J(P,r)

c

r,attr

j

 C

r,attr

, 8r 2 R, (1a)

c

R,attr

j

= f(P, attr, cr,attr
j

), 8(j, r 2 R), (1b)

c

r,attr

j

= g(P, attr, cr
0
,attr

j

), 8(j, r 2 R, r

0 2 R {r}). (1c)

In this representation. Equation (1a) indicates that
the total amount of attr of resource r consumed by all the
jobs cannot exceed the supply capacity of r on attr, where
J(P, r) is the set of jobs that are allowed to consume j

based on the policy set P . Equation (1b) represents the
total capacity of attr that j can get from the whole set
of resources R (denoted as cR,attr

j) by a pre-defined linear

function of c

r,attr
j , whose form depends on attr and P .

Equation (1c) represents the relation between the amount
of attr a job j can get from two resources r and r

0 by a pre-
defined linear function, whose form depends on attr and
P . One of the most common capacity-bounded resource
attributes is bandwidth.

If a resource attribute attr is capacity-free, i.e., each j

consuming r who provides this attributes can get the same
capacity C

r,attr at the same time, the resource availability
of R for J on this attribute can be expressed as:

c

R,attr

j

= h(P,R, attr, j), 8j 2 J, (2)

where the value of c

R,attr
j is computed by a pre-defined

function h(P,R, attr, j) whose form depends on attr and
P . Note that this function does not need to be linear
because the value of the right-hand side can be directly
computed in this availability representation. Examples of
such capacity-free resource attributes include propagation
delay, hop-count, and etc.

eh1 eh3

eh2

l1
Link bandwidth: 100 Mbps
End host bandwidth: 10 Gbps
Switch bandwidth: 10 Gbpseh4

sw1 sw2
l2

l3

l4 l5

Figure 4: An example to illustrate the resource state abstraction.

Example. We use the physical topology in Figure 4 to
illustrate how resource state abstraction works. Suppose
two jobs j1 and j2 need to read data from storage node
eh1 to computation node eh3 and from eh2 to eh4, respec-
tively. The routing policy for the data flow of each job is
also shown in the figure. For simplicity, we only focus on
the bandwidth attribute for each resource, i.e., end host,

4

switch and link. Following the definition in Equation (1),
the resource availability of this topology for j1 and j2 can
be expressed as:

c

li
j1
 100Mbps, i = 1, 3,

c

li
j2
 100Mbps, i = 4, 5,

c

li
j1

+ c

li
j2
 100Mbps, i = 2

c

swk
j1

+ c

swk
j2
 10Gbps, k = 1, 2

c

ehm
j1

 10Gbps, m = 1, 3,

c

ehm
j2

 10Gbps, m = 2, 4,

c

R

j1
= c

li
j1

= c

swk
j1

= c

ehm
j1

, i = {1, 2, 3}, 8j,m = {1, 3},
c

R

j2
= c

li
j2

= c

swk
j2

= c

ehm
j2

, i = {2, 4, 5}, 8j,m = {2, 4},
c

li
j1

= c

ehm
j1

= 0, i = {4, 5},m = {2, 4},
c

li
j2

= c

ehm
j2

= 0, i = {1, 3},m = {1, 3},

(3)

Computing minimal, equivalent resource state ab-
straction. The representation of resource availability
defined in Equations (1)(2) is accurate and complete, but
may result in a large set of linear inequalities with redun-
dant information. In a simple topology in our illustration
example, there are already over 20 inequalities. Directly
sharing them with a centralized controller or other do-
mains would introduce a large communication overhead
and expose unnecessary private information about each
domain, e.g., domain topology and policies. To minimize
the resource information exposure of a domain, the domain
resource manager of Unicorn adopts a lightweight, optimal
algorithm to compress the original set of linear inequali-
ties into a minimal, equivalent set of linear inequalities,
which has the same feasible region as the original set but
with a much smaller number of constraints. The basis of
this compression algorithm is simple: given an original set
of linear inequalities C : Ax b, we iteratively select
one constraint c 2 C : aTx b and calculate the optimal
solution of problem y maxaTx, subject to, C � {c}.
If b is smaller than the resulting y, c is an indispensable
constraint in determining the feasible region and will be
put into the minimal, equivalent constraint set C 0. Other-
wise, c is a redundant constraint. The optimality of this
algorithm can be proved via contradiction. Applying this
algorithm to the example above, we may find that the
minimal, equivalent set of linear inequalities has only one
inequality: cRj1 +c

R
j2 100Mbps. This reduction from over

20 inequalities to only one shows the power of our optimal
compression algorithm.

4.2. Cross-Domain Resource Discovery

The resource state abstraction allows each domain to
represent the accurate resource availability for a set of data
analytics jobs using a set of linear inequalities with mini-
mal information exposure, but it still requires the knowl-
edge of all available computation, storage and network-
ing resources, i.e., the domain topology, and the domain
policy to construct the original abstraction. As a result,
it is non-trivial to extend it for resource discovery cross-
domains, when a job needs to consume resources located
in di↵erent domains, e.g., the storage node and compu-
tation node assigned to the same job may be located in
two di↵erent domains and are connected by network links
across multiple domains. This is because information such
as domain topology and policy is usually private to each
domain itself and is not allowed to be passed around dif-
ferent domains. In this subsection, we present the details

of our design to tackle this challenge and extend resource
state abstraction for cross-domain resource discovery.
Basic idea. The key insight of our design is simple
yet powerful: if we can “chop” the networking resources
connecting a (str, comp) candidate pair for job j based on
the domains they belong to, as shown in Figure 5, we can
then ask the domain resource manager of each domain to
compute and represent the resource availability for j in
each domain independently.

storage computationnetworking

dom 1 dom 2 dom N

Figure 5: Chop the networking resources by domain.

With this insight, we design the cross-domain resource
discovery process of Unicorn whose workflow is shown in
Figure 6. In particular, Unicorn performs cross-domain
resource discovery for a set of candidate (stg, comp) pairs
for a set of job J in four key steps. The first step is the path
query process, in which the Unicorn controller issues path
queries to the domain resource manager to recursively get
a domain path in the form of

(dom1, srcIP, egress)! (dom2, ingress, egress)

! . . . , (dom
N

, ingress, dstIP), (4)

for each candidate (storage, computation) node pair. The
path query can be executed either recursively or itera-
tively. The second step is the “chopping” process, which
transforms the domain paths for all the (stg, comp) candi-
date pairs, into a set of segments, i.e., the chopping results,
with the form of

(dom
i

, F

i

, F

i

.ingress, F

i

.egress), (5)

for each domain, where Fi denotes the set of all (stg, comp)
candidate pairs whose connection use the network resource
in domain i. Thirdly, the Unicorn controller sends each
chopped segment to the corresponding domain resource
manager to issue one resource query for each segment,
which asks each domain to compute the minimal, equiva-
lent single-domain resource state abstraction. Fourthly, a
privacy-preserving resource information integration proto-
col will be executed between all the domains to compute
the accurate, minimal cross-domain resource view repre-
senting the cross-domain resource availability for a set of
candidate (stg, comp) pairs for a set of job J .
Path query. We present the pseudocode of the path
query process in Algorithm 1. The path query is a re-
cursive query process. In particular, the path query al-
gorithm requires the input of domain, which domain the
query should be sent to, F , a set of (stg, comp) candi-
date pairs whose connection use the network resource in
domain, and Ingress, the set of ingress points each can-
didate pair is entering domain from. It starts from the
Unicorn controller group the whole set of F into multiple
disjoint subsets based on where the storage resources for
this subset of pairs are located, and send one path query
for each subset to each corresponding domain. When a do-
main resource manager receives such a query, it first com-
putes the egress point, the next domain, and the ingress

5

Path
Query

Resource
Query

Domain	A Domain	B Domain	C
!" !# !$!%

Chopping

Accurate, minimal
cross-domain
resource view

Accurate, minimal
intra-domain resource

views

Candidate (stg, comp)
pairs for job set J

Chopped	segments
in	Equation(5)

Domain Paths	
in	Equation	(4) Privacy-preserving	

Resource	
Integration

Figure 6: Workflow of cross-domain resource discovery.

point of next domain for each candidate pair f (Line 3-
4). Then the set F is grouped into several disjoint subsets
based on the next domain of each pair f (Line 5). For
each subset Fi whose next domain is not null, the cur-
rent resource manager adds the current domain into the
domain path for Fi and issues another path query to the
domain resource manager at Fi.nextDom to get the re-
maining part of the whole domain path (Line 8-12). If the
next domain of Fi is null, it means that the computation
resources of these (stg, comp) pairs are in the current do-
main, i.e., the domain path reaches the destination, and
the domain manager simply returns such information to
the querying party. During the path query process, each
domain only provides the egress points, the next domains
and the ingress points for (stg, comp) candidate pairs with-
out revealing any topology or policy information.

Algorithm 1: The algorithm of path query.

1 Function domPathQuery(domain, F , Ingress)

2 domPathResponse ;;
3 foreach f 2 F do

4 (f.egress, f.nextDom, f.nextDomIngress)
getNextDomain(f);

5 {F1, F2, . . . , } F.groupBy(f.nextDom);
6 foreach F

i

do

7 if F

i

.nextDom! = null then

8 domPathResponse
9 domPathResponse[

10 (domain, F

i

.egress)�
11 {domPathQuery(F

i

.nextDom,F

i

,

12 F

i

.nextDomIngress)};
13 else

14 domPathResponse
15 domPathResponse [{(F

i

, null)};

16 return domPathResponse;

Resource query. For the sake of integrity, we present
the pseudocode of chopping and resource query together in
Algorithm 2. In particular, when the Unicorn controller
receives the domain path for each (stg, comp) candidate
pair, it can use this information to chop each path by
domains and get the chopping results in Equation (5) (Line
5-12). Then the Unicorn controller can perform e�cient
resource queries to ask each domain to compute the intra-

domain resource view (Line 13-14).

Algorithm 2: The algorithm of chopping and re-
source query and.

1 Function resourceQuery(F , F.domainPath)

2 resourceV iew ;;
3 foreach domain do

4 domain.F ;;
5 foreach f 2 F do

6 hIdx 0;
7 dom getDom(f.domainPath, hIdx);
8 do

9 dom.F dom.F [{f};
10 hIdx hIdx+ 1;
11 dom getDom(f.domainPath, hIdx);
12 while dom 6= null;

13 foreach domain do

14 resourceQueryByDomain(domain, F)

This resource query process is e�cient due to the fol-
lowing lemma:

Lemma 1. Given a set of candidate (storage, computation)
node pairs for a job set of J , Unicorn achieves the minimal
number of resource queries at each domain.

Proof 1. With the domain path for each (str, comp) can-
didate pair, the chopping process yields a set of segments
defined in Equation (5), one segment for each domain.
Hence the Unicorn controller only needs to generate one
resource query for each domain if the corresponding Fi is
not empty, which completes our proof.

Privacy-preserving resource information integra-
tion. During the resource query phase, each domain
d computes the equivalent resource state abstraction that
is only minimal to d itself. When the controller collects
the resource state abstraction from every domain, a linear
inequality that was from domain d1 may be a redundant
one due to the existence of another linear inequality from
domain d2. For instance, d1 may return f1 + f2 10
to the controller while d2 may return f1 + f2 5. It is
easy to see that the cross-domain minimal, equivalent re-
source state abstraction would only contain f1 + f2 5,
not f1 + f2 10. A strawman approach to compute the
cross-domain minimal, equivalent resource state abstrac-
tion is to have the controller run the MECS algorithm
with all the resource state abstraction from every domain
as input. This approach, however, would force each do-
main to expose unnecessary resource information, i.e., the
redundant linear inequality, to the controller, leading to
unnecessary privacy leaks.

In Unicorn, we design a privacy-preserving resource in-
formation integration protocol that allows every domain
to discover linear inequalities in its own domain that are
redundant to the minimal cross-domain resource state ab-
straction. This protocol involves two steps. In the first
step, each domain d uses the classic pivoting algorithm [19]
to compute all the vertices of the convex polyhedron de-
fined by all the linear inequalities of its own single-domain
resource state abstraction. In the second step, each do-
main d peers with every other domain d

0 2 D, and uses a

6

customized secure two-party computational geometry pro-
tocol to decide if all the vertices computed by d are on the
same halfspace defined by a given linear inequality c in the
resource state abstraction of d0. If this is true, then c is
a redundant inequality in the final cross-domain resource
state abstraction, hence will not be sent from domain d

0

to the controller. After executing this protocol for every
inequality in d

0, domain d

0 will know which linear inequali-
ties of its own single-domain resource state abstraction are
redundant to the single-domain resource state abstraction
of d without knowing what the resource state abstraction
of d has. We left the details of this privacy-preserving
resource information integration protocol in our technical
report [20] due to the space limit.

Schedulability. The cross-domain resource discovery
process in Unicorn provides an accurate view of resource
availability across domains with minimal exposure of pri-
vate information. One important question left, however,
is whether this view provides full a schedulability of re-
sources for a logically centralized orchestrator. We answer
this question with the following theorem.

Theorem 1. When all the resources represented in the fi-
nal resource state abstraction queried from the cross-domain
discovery process in Unicorn can be fully controlled on the
edge, i.e., all the attributes of each resource can be con-
trolled by end host, the resource view provided by RSDP
provides a full schedulability of resources to a centralized
resource orchestrator.

We omit the proof of this theorem due to the space limit.

5. Global Resource Orchestration

With the accurate, minimal cross-domain resource view,
Unicorn performs global resource orchestration to compute
optimal resource allocation decisions for a given set of jobs
J . The modular design of Unicorn allows di↵erent alloca-
tion algorithms to be deployed. For simplicity, we consider
a set of jobs J with no precedence from the same task, i.e.,
all the jobs can be executed in parallel. We leave a more
generic problem formulation as future work. We assume
that each computation resource has infinite computation
power, i.e., the data accessing delay reading data from
storage resources over networking resources to computa-
tion resources is the only bottleneck determining the delay
for each workflow. For each job j 2 J , let Stgj denote the
set of storage resources storing a copy of the input dataset
of j, Compj denote the set of computation resources that
can execute j, vj denote the volume of input dataset of
j, and tj denote the data accessing delay of j. We also
use b

mn
j to denote the data access bandwidth for job j

from storage resource m to computation resource n, and
a binary variable I

mn
j to denote if j is assigned storage

resource m and computation resource n simultaneously or
not. Note that the global resource orchestration compo-
nent relies heavily on the cross-domain resource discovery
component in Section 4. To illustrate this argument, we
first give a formulation of the global optimal resource al-
location problem without cross-domain resource discovery
as follows:

minimize max

j2J

{t
j

} (6)

subject to
X

{j2J|n2Compj}

X

m2Stgj

I

mn

j

 1, 8n 2 N, (7a)

X

m2Stgj

X

n2Compj

I

mn

j

= 1, 8j 2 J, (7b)

v

jX

m2Stgj

X

n2Compj

b

mn

j

I

mn

j

= t

j

, 8j 2 J, (7c)

A1(BI) C1. (7d)

A2(BI) C2. (7e)

. . . (7f)

A

K

(BI) C

K

. (7g)

In this formulation, Equation (6) indicates that the
global resource allocation problem aims to minimize the
data accessing delay for the whole set of jobs F . Equa-
tion (7a) ensures that for each computation resource, at
most one job can be assigned. Equation (7b) ensures that
only one computation resource and one storage resource
are assigned for each job j. Equation (7c) calculates the
data accessing delay for each job j. These constraints, i.e.,
Equations (7a)(7b)(7c) are job-specific, i.e., they express
the requirements of data analytics jobs and can be changed
accordingly based on di↵erent job requirements. The con-
straints in Equations (7d)(7e)(7f)(7g) are resource-specific,
which depends not only on jobs’ resource requirements,
but also on the attributes provided by resources from each
domain.

Though this formulation is accurate itself, its key lim-
itation is that without a cross-domain resource discovery
process, it is infeasible to find the resource-specific con-
straints in Equations (7d)(7e)(7f)(7g). On the contrary,
the cross-domain resource discovery in Unicorn copes with
this issue by providing the following constraint to accu-
rately represent the resource availability for a given set of
jobs with minimal information exposure.

A(BI) C. (8)

With this formulation, the global optimal resource allo-
cation problem with cross-domain resource discovery can
be precisely defined as:

minimize max

j2J

{t
j

} (9)

subject to

Equations (7a)(7b)(7c)(8). (10a)

Solution. The multi-domain resource allocation prob-
lem defined above is complex in that it involves binary
decisions, non-linear constraints and a complex objective
function. To solve this problem, we first linearize the bi-
nary decision variables, then use a standard optimization
solver to find the solution to the relaxed non-linear opti-
mization problem, and then round-up the linearized de-
cision variables back to the {0, 1} feasible space to get
the final resource allocation decisions. Because the cross-
domain resource discovery process in Unicorn provides the
resource view across domains with a minimal set of linear
inequalities, the time overhead to solve the relaxed non-
linear optimization problem is typically reasonable. We
leave the task of finding a more e�cient algorithm for this
problem as future work.

7

6. Implementation

In this section, we discuss the implementation details
of the Unicorn framework. The system implementation
includes the following components:

Resource discovery protocol. We design and develop
a query-based resource discovery protocol by extending the
Application-Layer Tra�c Optimization (ALTO) protocol
[21], to deliver the resource state abstraction from each
domain to the Unicorn controller. The protocol provides
two major services: path query service and resource query
service. The former is used for delivering next hop in-
formation to from domain resource managers the Unicorn
controller. The latter is used for executing intra-domain
resource queries. Table 1 summarizes the basic view of the
two services.

Domain resource manager. We build the prototype
implementation of the domain resource manager on top
of the OpenDaylight SDN controller [22]. From the view
of the Unicorn controller, the domain resource manager
works as a web service which provides the resource dis-
covery protocol. From the view of the OpenDaylight con-
troller, the resource manager is a consumer to re-process
the topology, the tra�c statistics, the intra-domain re-
source information and the inter-domain routing informa-
tion.

The implementation includes two sub components: An
OpenDaylight application running in the Karaf container;
and a Python-based web service to provide the resource
discovery protocol. The OpenDaylight application uses
the API provided by Model-Driven SAL framework to read
the real-time network information from the OpenDaylight
DataStore. The two sub components communicate via
RPC with each other. So the web service component is
decoupled with the OpenDaylight and can be adapted to
any other network management platform.

To implement the resource query service, we use the
Python web service to look up the raw resource state
for the given flow set from the OpenDaylight back end.
Our native OpenDaylight application collects the topol-
ogy and forwarding rules from the network-topology and
opendaylight-inventory model of the DataStore, and
computes the intra-domain resource state from these infor-
mation. In our Python web service, we use GLPK as the
underlying LP solver to calculate the minimal equivalent
resource state abstraction described in Section 4.1. The
solver API is wrapped by PuLP so that we could switch
to other LP solvers like CPLEX and Gurobi without many
modifications.

We implement the path query service as a BGP com-
patible service. The domain resource manager reads the
inter-domain routing information from the OpenDaylight
DataStore and converts it to the BGP RIB (Routing In-
formation Base) format to respond the path query. The
native OpenDaylight could support multiple inter-domain
routing protocols by implementing their adapters. In this
prototype, we only implement the BGP adapter which
feeds the next-hop information of the inter-domain routing
from the bgp-rib model.

Cross-domain resource discovery. The cross-domain
resource discovery implements the two algorithms, path
query (Algorithm 1) and resource query (Algorithm 2)
and aggregate resource state abstraction from multiple do-
mains to provide a aggregated resource state abstraction

to the Global Resource Orchestration. It provides a high-
level API getGlobalResourceView which accepts a set of
node pairs (srcIP, dstIP) as the queried flow set, and re-
turns a set of linear inequalities as the global resource view.
In addition, it also provides some lowel-level APIs includ-
ing: getDomainPath that implements the Algorithm 1 and
returns the domain path; and getDomainResource that re-
trieves the intra-domain resource view from a domain via
resource discovery protocol.

Global resource orchestration. We implement the
global resource orchestrator to subscribe to the analytics
job management database. Once new jobs are inserted
into the database, the orchestrator fetches them, performs
cross-domain resource discovery and then make resource
allocation decisions. It provides numerous Python APIs
for developing new resource allocation algorithms. There-
fore it is flexible for administrators to update the resource
allocation policy. Our current orchestrator makes resource
allocation decisions by solving the optimization problem
defined in Section 5.

7. Performance Evaluation

We evaluate the performance of Unicorn through trace-
based simulations. In particular, we focus on the e�ciency
of Unicorn in (1) discovering and represent a cross-domain
resource view with minimal information exposure; and (2)
performing global resource allocation decisions for data
analytics jobs. All the simulations are conducted on a
laptop with two 1.6GHz Intel i5 Cores and a 4GB memory.

7.1. Methodology

We emulate three multi-domain data analytics networks
with di↵erent number of domains and topologies. For each
setting, we first randomly select one topology from Topol-
ogy Zoo [23] and let that topology be the domain-level
topology with each node represent a single domain. And
we also generate the intra-domain topology, i.e., switches
and the intra-domain links, for each domain. The emu-
lated multi-domain topologies are labeled as Arpanet (com-
posed of 4 domains), Aarnet (composed of 19 domains) and
Chinanet (composed of 42 domains). We set the available
link bandwidth within each domain to be 0.2-1Gbps and
the available link bandwidth between domains to be 2-
4Gbps. And we assume the I/O bandwidth of storage and
computation resources are way larger than the bandwidths
of links. We assume each domain’s intra-domain and inter-
domain routing policies both use the typical routing poli-
cies, i.e., the shortest path routing, except that the former
is on the router level and the latter is on the domain level.
We vary the number of data analytics jobs J from the same
task to be from 5 to 30, each of which requires reading 1000
gigabytes of data.

7.2. Results

Cross-domain resource discovery and representa-
tion. We first present the compression ratio of the Uni-
corn in discovering and representing the accurate, minimal
intra- / cross- domain resource views. This is computed
as by dividing the number of linear inequalities in the ac-
curate, minimal intra- / cross- domain over the number of
original, linear inequalities used to represent the resource

8

Service Path Query Resource Query
HTTP Method POST POST
Media Type application application

Accept Subtype alto-flowfilter+json alto-flowfilter+json

Content Subtype alto-nextas+json alto-pathvector+json

Function Implement getNextDomain() in Algorithm 1.
Implement resourceQueryByDomain()
in Algorithm 2.

Table 1: Unicorn Resource Discovery Protocol

availability across domains. Figure 7 shows this compres-
sion ratio in a 19-domain data analytics network derived
from the Aarnet topology [23] with di↵erent number of
data analytics jobs, and Figure 8 shows this ratio under
di↵erent number of domains when fixing the number of
jobs to be 20. From these results we observe that the
average compression ratio of intra-domain resource view
is only around 60-70% while that of the cross-domain re-
source view is around 25-45%. These show that Unicorn
provides a highly compact view of cross-domain resource
availability for data analytics jobs. The higher compres-
sion ratio in the cross-domain view is because a multi-
domain data analytics network provides more resources for
data analytics jobs, i.e., there are fewer jobs sharing the
same set of resources. On the other hand, the fact that the
highest cross-domain compression ratio is still 45% shows
that even with more resources, jobs sharing the same set of
resources is still a common situation, indicating the neces-
sity and importance for discovering the accurate, minimal
resource availability across domains.

5 10 20 30
Number of jobs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
om

pr
es

si
on

 ra
tio

Intra-domain resource view
Cross-domain resource view

Figure 7: Compression ratio of intra-domain resource view and cross-
domain resource view with varying numbers of jobs.

Arpanet Aarnet Chinanet
Topologies

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
om

pr
es

si
on

 ra
tio

Intra-domain resource view
Cross-domain resource view

Figure 8: Compression ratio of intra-domain resource view and cross-
domain resource view with di↵erent topologies.

We also plot the number of linear inequalities in the
intra- /cross- domain view discovered by Unicorn in Fig-
ure 9 and Figure 10. We see that as the number of domains

and the number of jobs grow, the number of linear inequal-
ities in the accurate, minimal resource view computed by
Unicorn increases at a very slow rate, which demonstrates
the scalability of Unicorn.

5 10 20 30
Number of jobs

0
20
40
60
80

100
120
140
160

N
um

be
r o

f l
in

ea
r i

ne
qu

al
iti

es Intra-domain resource view
Cross-domain resource view

Figure 9: Number of linear inequalities in intra-domain resource view
and cross-domain resource view with varying numbers of jobs.

Arpanet Aarnet Chinanet
Topologies

0
20
40
60
80

100
120
140
160
180
200
220

N
um

be
r o

f l
in

ea
r i

ne
qu

al
iti

es Intra-domain resource view
Cross-domain resource view

Figure 10: Number of linear inequalities in intra-domain resource
view and cross-domain resource view with di↵erent topologies.

Global resource orchestration. We next demonstrate
the e�ciency of Unicorn in performing global resource or-
chestration for data analytics jobs. In particular, we focus
on the latency of a task composed of a job set J , which
is computed as the longest execution time of all jobs. In
our evaluation, we assume all the computation nodes have
the same computation power, hence we only need to focus
on minimizing the maximal data accessing delay among
all jobs, as defined in Equation (6). We compare the
task latency provided by Unicorn with that provided by a
domain-path based resource allocation scheme, which allo-
cates computation and storage resources for a job based on
the shortest AS path and use the classic max-in fairness
mechanism to allocate bandwidth among data accessing
flows of analytics jobs. We summarize the results under
the combinations of di↵erent multi-domain topologies and
di↵erent numbers of jobs in Table 2. We see that Unicorn
provides an up to 65% task latency reduction in all cases.
This shows that Unicorn provides a significant latency re-

9

duction for multi-domain data analytics.

Topology
#Jobs

5 10 20 30

Arpanet 31% 24% 27% 65%
Aarnet 27% 46% 55% 10%

Table 2: The reduction of task latency of Unicorn over the domain-
path allocation scheme with max-min fairness.

8. Conclusion and Future Work

Summary. In this paper, we identify the objective and
the fundamental challenge for designing a resource orches-
tration system for multi-domain, geo-distributed data an-
alytics system through analyzing the data analytics trace
from one of the largest scientific experiments in the world
and examining the design of existing resource manage-
ment systems for single-domain clusters. We design Uni-
corn, the first unified resource orchestration framework
for multi-domain, geo-distributed data analytics systems.
Unicorn realizes the accurate, cross-domain resource avail-
ability discovery with minimal information exposure of
each domain through the RSDP and a novel, e�cient cross-
domain resource availability query algorithm. Unicorn also
provides a global resource orchestrator to compute optimal
resource allocation decisions for data analytics tasks. We
present the implementation details and the preliminary
evaluation results of Unicorn.

Prototype and full demonstration at SuperCom-
puting 2017. The source code and more comprehensive
evaluation results of Unicorn will be open-sourced at [24].
A full demonstration of the Unicorn prototype will be
given at SuperComputing 2017. In this demonstration,
we will demonstrate the e�ciency and e�cacy of Unicorn
on cross-domain resource discovery and global resource al-
location in a multi-domain, geo-distributed data analytics
system involving the Caltech booth, the USC booth and
the UNESP booth at the conference exhibition, the SCi-
nent network, and the Caltech testbed at Pasadena.

Acknowledgement

We thank Shenshen Chen, Shiwei Chen and Kai Gao
for helpful discussion during the work. The Yale team was
supported in part by NSF grant #1440745, CC*IIE In-
tegration: Dynamically Optimizing Research Data Work-
flow with a Software Defined Science Network; Google Re-
search Award, SDN Programming Using Just Minimal Ab-
stractions; NSFC #61672385, FAST Magellan. The Yale
team is also sponsored by the U.S. Army Research Labo-
ratory and the U.K. Ministry of Defence under Agreement
Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the o�cial poli-
cies, either expressed or implied, of the U.S. Army Re-
search Laboratory, the U.S. Government, the U.K. Min-
istry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation hereon. The Tongji team was sup-
ported by China Postdoctoral Science Foundation #2017-
M611618; NSFC #61702373. The Caltech team was sup-
ported in part by DOE/ASCR project #000219898, SDN

NGenIA; DOE award #DE-AC02-07CH11359, SENSE, FNAL
PO #626507; NSF award #1246133, ANSE; NSF award
#1341024, CHOPIN.

Referencese

[1] T. C. Collaboration, The CMS experiment at the CERN LHC,
Journal of Instrumentation 3 (08). doi:10.1088/1748-0221/3/
08/S08004.

[2] D. Thain, T. Tannenbaum, M. Livny, Distributed computing
in practice: the Condor experience, Concurrency and computa-
tion: practice and experience 17 (2-4) (2005) 323–356.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, I. Stoica, Mesos: A platform
for fine-grained resource sharing in the data center, in: NSDI,
2011.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
et al., Apache Hadoop YARN: Yet another resource negotiator,
in: SoCC, ACM, 2013, p. 5.

[5] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
J. Wilkes, Large-scale cluster management at Google with Borg,
in: EuroSys, ACM, 2015, p. 18.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, L. Zhou, Apollo: Scalable and coordinated scheduling
for cloud-scale computing, in: OSDI, 2014, pp. 285–300.

[7] Under the hood: Scheduling MapReduce jobs more e�ciently
with Corona, http://on.fb.me/TxUsYN, [Online; accessed: 09-
May-2017].

[8] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi,
F. Wurthwein, The pilot way to grid resources using glidein-
WMS, in: CSIE, IEEE, 2009, pp. 428–432.

[9] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Vargh-
ese, WANalytics: Analytics for a geo-distributed data-intensive
world, in: CIDR, 2015.

[10] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, I. Stoica, Low Latency Geo-distributed Data Analytics,
in: SIGCOMM, ACM, 2015, pp. 421–434. doi:10.475/123.

[11] C.-C. Hung, L. Golubchik, M. Yu, Scheduling jobs across geo-
distributed datacenters, in: SoCC, ACM, 2015, pp. 111–124.

[12] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang,
D. Li, S. Wang, Rapier: Integrating routing and scheduling for
coflow-aware data center networks, in: INFOCOM, 2015.

[13] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, J. Bi, Nova: Towards
on-demand equivalent network view abstraction for network op-
timization, in: IWQoS 2017, 2017.

[14] D. Je↵rey, G. Sanjay, MapReduce: simplified data processing
on large clusters, Communications of the ACM.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Sto-
ica, Spark: Cluster computing with working sets, in: Hot-
Cloud’10.

[16] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun,
V. ICSI, Making sense of performance in data analytics frame-
works, in: NSDI, 2015, pp. 293–307.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., B4: Experi-
ence with a globally-deployed software defined WAN, in: SIG-
COMM’13.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, R. Wattenhofer, Achieving high utilization with
software-driven WAN, in: SIGCOMM, ACM, 2013.

[19] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and
vertex enumeration of arrangements and polyhedra, Discrete &
Computational Geometry 8 (3) (1992) 295–313.

[20] Secure cross-domain resource discovery, technical report, http:
//www.cs.yale.edu/homes/qiaoxiang/publications.

[21] R. Alimi, Y. Yang, R. Penno, RFC 7285, Application-layer traf-
fic optimization (ALTO) protocol (2014).

[22] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: To-
wards a model-driven SDN controller architecture, in: IEEE
WoWMoM, 2014.

10

[23] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, M. Roughan,
The internet topology zoo 29 (9) 1765–1775, 00249.

[24] Public repository of unicorn, https://github.com/snlab/

Unicorn.

11

Game-Theoretic User Association in Ultra-dense
Networks with Device-to-Device Relays

Geng Li1,2 • Yuping Zhao3 • Dou Li3

Published online: 18 January 2017
� Springer Science+Business Media New York 2017

Abstract Device-to-device communication can assist cellular networks by making certain

users equipment (UEs) work as relays between the base station (BS) and other users. In this

paper, we present the ultra-dense network (UDN) with D2D relays instead of small cells,

where UEs can form into clusters according to the traffic demand in hot-spot areas. Each

UE requires to decide whether to connect to the BS, or to get associated with one of the

D2D relays, a.k.a. cluster heads (CHs). To optimize the downlink system performance, we

propose a game-theoretic user association scheme in the UDN with D2D relays, specifi-

cally focused on load balancing among the BS and CHs. The dynamic user association is

formulated as a hedonic coalition game where we adopt a simplified but efficient mea-

surement of the utility and select the effective game players in a smaller number. In the

game, we estimate the number of users associated with each CH at the Nash-stable state

which can indicate the overall expected load condition, and an admission control mech-

anism is finally employed on the basis of these values. Simulation results show that the

UDN adopting the D2D relay technology can achieve a higher system rate than the tra-

ditional cellular network, and the proposed user association scheme outperforms the

existing schemes while having a small computational complexity.

Keywords D2D relay � Ultra-dense network � User association � Load balancing � Hedonic
coalition game

& Geng Li
geng.li@yale.edu

Yuping Zhao
yuping.zhao@pku.edu.cn

Dou Li
lidou@pku.edu.cn

1 Department of Computer Science, Tongji University, Shanghai, China

2 Department of Computer Science, Yale University, New Haven, CT, USA

3 School of Electronics Engineering and Computer Science, Peking University, Beijing, China

123

Wireless Pers Commun (2017) 95:2691–2708
DOI 10.1007/s11277-017-3950-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-3950-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-3950-8&domain=pdf

1 Introduction

In the vision of 5G, the link capacity and the connection density are two of the vital

requirements in the future wireless networks, as METIS project has identified the

‘‘Amazingly fast’’ with ‘‘instantaneous connectivity’’ and the ‘‘Great service in a crowd’’

scenarios [1]. To cope with these, the Ultra-Dense Networks (UDN) deployment is deemed

to be one of the most promising solutions [2]. The traditional UDN that incorporates dense

small cells in areas with an expected high traffic demand can improve the network capacity

and coverage. Nevertheless, as the traffic demand in networks is time-varying, which leads

to the locations of hot-spots getting dynamically changed, the small cells with fixed

locations hence not only fail to meet all the demand, but also incur extra energy con-

sumption and interference [3, 4].

Fortunately, 5G brings the Device-to-device (D2D) communication as an underlay to

cellular networks, which makes direct communication between devices feasible [5]. The

D2D relay technology has been recently proposed and studied in [6–9], where a D2D-

enabled user equipment (UE) can assist cellular transmission by acting as a relay between

the the base station (BS) and some other UEs within a cluster. Due to the absence of the

closed loop physical layer feedback link supported in 3GPP specifications before Release

12, most of the academic studies on D2D relays mainly focus on addressing broadcast or

multicast services [10]. However, the 3GPP specifications groups have agreed to enhance

unicast services for D2D relays in Release 13, which makes the common data transmission

practicable [11].

To cope with the problems in traditional UDN with fixed small cells and motivated by

the the merit of D2D relays, we present the ultra-dense network with D2D relays in this

paper. As shown in Fig. 1, certain UEs with better link conditions to the BS serve as D2D

relays, a.k.a. cluster heads (CHs), while other UEs are allowed to get dynamically asso-

ciated with a CH who can forward all their traffic from the BS, rather than directly

connecting to the BS. Compared with the traditional UDN with small cells whose locations

are fixed, the UDN with D2D relays can adapt the traffic demand varying with time and

locations, and thus is more flexible and demand-driven. In addition, the system capacity, as

well as the connections density can be improved.

The dynamic user association for the D2D relay requires more consideration about load

balancing than that for the regular and fixed relay, because the topology and the load

distribution varies from time to time. For instance, the UE i in Fig. 1 is allowed to get

associated with one of the neighboring D2D relays (CH 1 or CH 2), and moreover, it can

directly connect to the BS if both the neighboring CHs are overloaded. As the number of

UEs increases, the user association problem will become more dynamic and intractable. In

conventional user association schemes, each user is associated with the node on the basis of

a certain criterion, such as the node with the maximum received power [12] or the max-

imum effective link SINR (signal to interference and noise ratio) [13]. However, since the

load conditions on different nodes are not well considered, it will lead to congestion at

certain CHs. In [14, 15], the user association schemes by jointly considering both the radio

link and load qualities have been proposed, but the users get associated greedily without

admission control to improve the overall system performance.1

In this paper, we aim at addressing the user association problem in the UDN with D2D

relays. Specifically, the major contributions of this paper are summarized as follows:

1 The user association scheme in [14] and that in [15] are similar to each other with slight changes, therefore
we treat them as one throughout the rest of this paper.

2692 G. Li et al.

123

1. We present the ultra-dense network with D2D relays, which enables UEs form into

clusters and the CH serves the UEs within a cluster as a D2D relay, such that the

network is more flexible and demand-driven than that with small cells.

2. We propose a game-theoretic user association scheme that optimizes the system

downlink rate in the UDN with D2D relays. Specifically, a hedonic coalition game is

formulated and further refined with a simplified measurement of utility and a smaller

number of effective players. Then an admission control policy, on the basis of the

estimated users numbers at the Nash-stable state, is performed to archive system load

balancing.

Simulation results demonstrate that although the D2D relay serves users in a two-hop

fashion and consumes two orthogonal resources, the network adopting the D2D relay

technology can achieve a higher system rate than the traditional cellular network at the

same consumption of resource. The results also validate that our proposed user association

scheme for a local optimal solution but almost obtains the same performance as the global

optimization, and it provides better performance than the existing schemes such as the

conventional ones based on the maximum power [12] and the maximum effective SINR

[13], as well as the user association scheme presented in [14, 15]. In addition, the proposed

scheme with a low computational complexity can be better applied in practice.

The rest of this paper is organized as follows. Section 2 presents the system model of a

ultra-dense network with D2D relays. The user association problem is discussed in Sect. 3,

including the problem formulation, the proposed game-theoretic scheme and the time

complexity analysis. Section 4 provides the performance evaluation results compared with

various existing schemes. Finally, we conclude this paper in Sect. 5.

Fig. 1 Illustration of the ultra-dense network with D2D relays, where all the users equipment (UEs) are
D2D-enabled. In this UDN, a UE is allowed to get associated with the BS or one of the CHs (D2D relays)

Game-Theoretic User Association in Ultra-dense Networks with… 2693

123

2 System Model

Without loss of generality, we consider a cellular network with one BS and a number of

D2D-enabled UEs which can either work as D2D relays or directly communicate with D2D

relays. We only concentrate on the downlink transmission in this paper, and the results can

be extended to the uplink case easily.

In the UDN with D2D relays, UEs can form into clusters according to the traffic demand

in hot-spot areas, with the definitions below.

Definition 1 (Nodes and links) A cluster is a temporary transmission set, including a

bunch of UEs. One certain UE working as a D2D relay is defined as the CH (cluster head),

while the other UEs defined as cluster members are served by the CH in a two-hop fashion

to communicate with the BS. The number of cluster members in a cluster is defined as the

cluster size. The radio link between the BS and a CH is referred to as the backhaul link.

The radio link between a CH and a cluster member is referred to as the access link, and that

between the BS and an ordinary UE out of any clusters is referred to as the cellular link, as

shown in Fig. 1.

In our model, we consider that there are N UEs and C clusters whose CHs are assigned

in advance. Each UE i (i 2 f1; 2; . . .;Ng) can get associated with the BS or one of the CHs

(CH j, j 2 f1; 2; . . .;Cg), corresponding to two cases when conducting the downlink data

transmission as shown in Fig. 2, namely the cellular transmission (Case A), and the D2D-

relay transmission (Case B). Once UE i is associated with CH j, we think UE i joins the

cluster and becomes one of the cluster members of cluster j.

We assume that the CH (a D2D relay) employs the half-duplex relay technology, where

two orthogonal resources (e.g., two frequency bands or equivalently two time slots) are

needed for the respective reception and transmission. Specifically, the first resource con-

sumed in backhaul links takes the proportion of 1� g, while the second orthogonal

resource consumed in access links takes the rest proportion of g. In this paper, the two hops
of transmission operate in different frequency bands, say f1 and f2 as shown in Fig. 3. Since

f1 and f2 are orthogonal, there is no interference to each other. LetW1 denote the bandwidth

of f1 for the backhaul link (the BS to the CH) and W2 denote the bandwidth of f2 for the

Fig. 2 Two cases for downlink transmission

2694 G. Li et al.

123

access link (the CH to the cluster member), then W2=W1 ¼ g=ð1� gÞ, where g (0\g\1)

is the bandwidth partition ratio.

Regarding to the resource allocation, we adopt the proportional fair model [16–18], in

which the BS or each CH evenly divides its available bandwidth amongst its users, i.e., the

traffic is assumed to be homogenous. Note that the cellular link of a UE when associated

with the BS also operates in f1 band, and the bandwidth resource is orthogonally allocated

among UEs and CHs. Every UE needs a portion of f1 spectrum, which is used for either the

cellular transmission or the backhaul transmission by the CH. Then the bandwidth resource

acquired by a UE when associated with the BS (Case A) is given by B ¼ W1=N, which is

an equal share from f1 band.
2 The CH is treated as a ‘‘super UE’’ with the aggregated data

traffic of its cluster members, so the total bandwidth for CH j in the backhaul link is
Pkj

k¼1 B, where kj denotes the cluster size of cluster j (i.e., the number of UEs associated

with CH j). For the access link of the UE when associated with CH j (Case B), the

bandwidth can be given by W2=kj, which can reflect the load condition in cluster j.

Given the allocated bandwidth in these two cases, we can quantify the downlink rate of

a user in consideration.

Case A: Cellular transmission.
For a given UE i, when it is associated with the BS and independent to any cluster, its

data rate RcellularðiÞ can be calculated as the Shannon capacity as follows:

RcellularðiÞ ¼ B � log2ð1þ b � SINRBS;iÞ; ð1Þ

where b called the SINR gap is set as 1 for simplicity, and SINRBS;i is the SINR over the

cellular link between the BS and UE i. Then SINRBS;i can be expressed as:

SINRBS;i ¼
hBS;i
�
�

�
�2PBS

PNBS

k¼1 jhBSk ;ij
2
PBS þ r2w

; ð2Þ

where PBS denotes the transmission power of the cellular BS, hBS;i denotes the channel gain

between the BS and UE i, and r2w is the variance of the white Gaussian noise. It can be seen

that the interference in f1 frequency band comes from the NBS neighboring cells, and hBSk ;i
is the channel gain from the BS k.

Fig. 3 Illustration of the bandwidth partition for D2D relays in backhaul link and access link, where g
(0\g\1) is the bandwidth partition ratio

2 Even if the UE gets associated with a CH, it still needs the f1 resource for its backhaul link, and we assume
that CHs have no demands for transmitting their own data, so here the denominator is N.

Game-Theoretic User Association in Ultra-dense Networks with… 2695

123

Case B: D2D-relay transmission.
When UE i is associated with CH j, there is no cellular link between the UE and the BS,

and all the data traffic from BS will be relayed by CH j. In order not to affect other UEs or

CHs, UE i will devote its belonging resource B to the CH for its data transmission in the

backhaul link. Note that this portion of bandwidth in the backhaul link can be only used for

transmitting downlink data of UE i. Thus, the effective rate of the data dedicated to UE i in

the backhaul link can be expressed as:

RD2D
backhaulði; jÞ ¼ B � log2ð1þ SINRBS;CHj

Þ; ð3Þ

where SINRBS;CHj
is the received SINR of CH j from the BS, and its value can be calculated

in the same fashion as (2).

The rate in access link between CH j and UE i is given as:

RD2D
accessði; jÞ ¼

W2

kj
� log2ð1þ SINRCHj ;iÞ: ð4Þ

Note that we only consider the interference from other CHs in the same cell in f2
frequency band, and the interference from neighboring cells is not taken into account.

Therefore the received SINR in access link is determined as:

SINRCHj;i ¼
hCHj;i

�
�

�
�2PCH

PC
j0¼1;j0 6¼j jhCHj0 ;ij

2
PCH þ r2w

; ð5Þ

where PCH denotes the transmission power of the CH, and hCHj;i is the channel gain

between CH j and UE i.

In respect that the backhaul and access links work in different frequency bands, so the

CH as a D2D relay can transmit and receive data at the same time. Based on the max-flow

min-cut theorem for the link capacity [19], the end-to-end rate experienced by UE i when

associated with CH j is the minimum of the two values, expressed as follows:

RD2Dði; jÞ ¼ min RD2D
backhaulði; jÞ;RD2D

accessði; jÞ
� �

: ð6Þ

With the data rates in two cases given above, we can address the dynamic user asso-

ciation in the next section.

3 User Association in Ultra-dense Networks with D2D Relays

In the network, a UE requires to decide to (1) communicate with the BS directly, or (2)

select one of the CHs to relay its traffic. Our goal is to find the user association in the whole

network that maximizes the system downlink rate.

3.1 Problem Formulation

Definition 2 (Decision variables) There are two permissible decision sets X � 0; 1f gN�C

and Y � 0; 1f gN , where N and C are the numbers of allocable users and clusters. The

binary decision variables xj;i 2 X and yi 2 Y (i 2 f1; 2; . . .;Ng, j 2 f1; 2; . . .;Cg) are

defined as:

2696 G. Li et al.

123

xj;i ¼
1; if UE i is associatedwith CH j;

0; otherwise:

�

ð7Þ

yi ¼
1; if UE i is associatedwith the BS;

0; otherwise:

�

ð8Þ

Then the cluster size of cluster j can be expressed as kj ¼
PN

i¼1 xj;i.

With the help of the decision variables, we formulate an integer programming problem

as below:

max
XN

i¼1

yi � RcellularðiÞ þ
XC

j¼1

XN

i¼1

xj;i � RD2Dði; jÞ
 !

; ð9Þ

s:t:
XC

j¼1

ðxj;i þ yiÞ ¼ 1; 8i 2 f1; 2; . . .;Ng: ð10Þ

The objective function in (9) denotes the overall system downlink rate, where the first

part is the sum rate of UEs associated with the BS while the second part is that of UEs

associated with the C CHs. Since each UE can only get associated with one node for data

transmission, therefore the sum of decision variables of a UE equals 1, as the constraint

shown in (10).

In such problem, every UE has C þ 1 options for association. However, the payoff in

C of them is dynamically changing before the association process is completed. As a result,

the dynamic association problem can be proved to as NP-hard as in [14, 20], and the global

optimal solution can be solely obtained by exhaustive search.

3.2 Proposed Game-Theoretic User Association Scheme

As mentioned before, it is hard to solve the integer programming problem directly due to

the dynamic change of utilities, and the centralized optimal solution may cost significant

computing time. Instead, our idea is to formulate the dynamic association as a hedonic

coalition game where we adopt a simplified but efficient measurement of the utility (Step

1) and select the effective game players in a smaller number (Step 2). In the game, we

estimate the number of UEs associated with each CH at the Nash-stable state which is an

indicator of the expected load condition of the overall system (Step 3), and an admission

control mechanism is employed on the basis of these values (Step 4). A similar but crude

approach has been studied in our previous work [21], and the one proposed in this paper is

more sophisticated and advanced. Our game-theoretic, Nash stable-based user association

scheme is a local optimal solution, and basically consists of the following four steps.

3.2.1 Step 1: Preparing for the Game

Our aim is to maximize the overall system downlink rate, therefore the utility of each

player in the game is the individual downlink rate. However, the data rates are different

when the UE is associated with different nodes, and even when associated with the same

CH, the UE’s data rate varies along with different association results in that cluster. Then,

Game-Theoretic User Association in Ultra-dense Networks with… 2697

123

in order to simplify the measurement of utilities, we calculate the maximum numbers of

coexisting peers that can be tolerated in clusters, and build the corresponding matrix, which

is defined as below:

Definition 3 (MNCP) The matrix of maximum numbers of coexisting peers (MNCP) that

can be tolerated in clusters is defined as ðaðj; iÞÞC�N
. The matrix element aðj; iÞ represents

that if UE i wants to get associated with CH j for achieving a higher rate than that in the

cellular link, the cluster size of cluster j can not exceed aðj; iÞ, which is given by (11).

aðj; iÞ ¼
B � log2 ð1þ SINRBS;iÞ
W2 � log2ð1þ SINRCHj;iÞ

RcellularðiÞ\RD2D
backhaulði; jÞ;

0 RcellularðiÞ�RD2D
backhaulði; jÞ:

8
><

>:

8i 2 f1; 2; . . .;Ng and j 2 f1; 2; . . .;Cg

ð11Þ

Note that the value of aðj; iÞ is obtained by solving RcellularðiÞ ¼ RD2Dði; jÞ. The con-

dition ‘‘RcellularðiÞ\RD2D
backhaulði; jÞ’’ in (11) implies that UE i will only be associated with the

CH whose backhaul rate is higher than the UE’s. The rationale is because the effective end-

to-end rate RD2Dði; jÞ by D2D-relay transmission is limited to the CH’s rate, and it is no

necessary for UE i to get associated with a CH whose rate is even lower than the UE’s.

Remark 1 According to the physical meaning of aðj; iÞ, it is noted that

• if aðj; iÞ is less than 1, it means UE i cannot tolerate any other coexisting peers in

cluster j, thus it is not available to be associated with CH j;

• if aðj; iÞ is more than 1, it means UE i will gain a higher rate when joining cluster j, as

long as the number of UEs in cluster j does not exceed aðj; iÞ.

Building the matrix of MNCP is the preparatory work for the following game. In order

to make it clear and intuitive, we give an example of our proposed association scheme, and

the matrix of MNCP in the example is illustrated at ‘‘Step 1’’ in Fig. 4.

3.2.2 Step 2: Selecting the Game Players in Each Cluster

As the user density in the network becomes higher, the scale of the matrix will grow

multiplicatively and the game will be too complex if all of the association strategies are

taken into account. However, quite a large proportion of association strategies in the

network are redundant and do not need to be considered (e.g., a UE can not possibly be

Fig. 4 An example of Step 1 and Step 2 of our proposed association scheme in the case with 3 CHs and 12
UEs. Step 1 Preparing for the game; Step 2 Selecting the game players. The green rectangles at Step 2
represent the game players. (Color figure online)

2698 G. Li et al.

123

associated with a CH far away from it). Therefore, we can refine the game and select the

effective players in each cluster.

According to the matrix calculated in Step 1, each UE has a column of MNCP. It picks

the maximum value in that column, and the corresponding row specifies the preferred

cluster for the UE. A UE choosing the cluster with the maximum MNCP means this UE has

the strongest willingness to be associated with that CH rather than others, because it can

tolerant the most coexisting peers in that cluster, which is good for this UE as well as the

other cluster members. Here we manually remove the case when the maximum value of a

column is less than 1 (the case that the UE has no preferred cluster to join), where the UE

will stay associated with the BS. Here we use j�i to denote the preferred cluster of UE i,

then we have

j�i ¼ arg min
j

aðj; iÞ: ð12Þ

In the meantime, UE i becomes one of the game players in cluster j�i . This process

allows every cluster to select its effective game players in a smaller number, which are

illustrated as ‘‘Step 2’’ in Fig. 4 by green rectangles.

3.2.3 Step 3: Estimating the Cluster Sizes at the Nash-Stable State

Based on the selection process in Step 2, all game players in each cluster are given.

However, not all of them can eventually get associated with the CH due to the constraint of

available bandwidth and the difference of the utilities, so each player has two strategies:

join the cluster or not join the cluster. According to the players’ strategies in a cluster, the

user association will result in the formation of two disjoint coalitions, and hence the game

in each cluster is classified as a coalition formation game. Coalition formation has been a

topic of high interest in game theory [22], and a certain class of coalition formation games

known as the hedonic coalition game is defined as follows [23].

Definition 4 (Hedonic Coalition Game) A coalition formation game is classified as the

hedonic coalition game, if

1. The payoff of any player depends solely on the members of the coalition which the

player belongs to.

2. The coalitions form as a result of the preferences of the players over their possible

coalitions’ set.

These two conditions characterize the framework of hedonic games. Mainly, the

term‘‘hedonic’’ pertains to the first condition above, whereby the payoff of any player, in a

hedonic game, must depend only on the identity of the players in the coalition to which the

player belongs, with no dependence on the other players. In the user association problem of

this paper, the utility of UE i when associated with CH j�i is only related to the cluster

members in cluster j�i , and independent from other clusters. For the second condition,

considering all the players are rational and selfish, each player will choose the preferred

coalition where it can achieve a higher utility than that in others. Therefore, according to

the the matrix of MNCP, the switch rule of each player can be given as below.

Definition 5 (Switch Rule) We consider there are two coalitions for each cluster, which

represent the users getting associated with it and those not getting associated with it. Then

Game-Theoretic User Association in Ultra-dense Networks with… 2699

123

the switch rule of a player is that, UE i decides to join cluster j�i if the cluster size is less

than its MNCP (i.e., kj�
i
\aðj�i ; iÞ), and to leave it otherwise (i.e., kj�

i
� aðj�i ; iÞ).

Independent from the preference relations selected, the switch rule can be seen as a

selfish decision made by a player to move from its current coalition to a new coalition

regardless of the effect of this movement on the other players. However, any switching

behavior of a player may cause the change of members in the old and new coalitions.

Obviously, all the coalitions will change constantly in the formation process, unless all

players can reach a Nash-stable state which is defined as a certain state where any

movement for a player will lead to a utility decline [24].

To solve this problem, we first sort the players’ MNCP in each cluster by the descending

arrangement, like a1 [a2 [a3. . .. Then we estimate the cluster size of each cluster at the

Nash-stable state based on Theorem 1, which can be described as the biggest nonnegative

integer kj
NS such that there would be at least kj

NS players whose MNCP is greater than kj
NS

in cluster j.

Theorem 1 Starting from at any initial states, all clusters will always end up with a

convergence to a final Nash-stable state with the cluster sizes kj
NS obtained below.

kj
NS ¼ inf

kj
kj\ak 8k ¼ 1; 2; . . .; kj: ð13Þ

Proof Case I: kj\kj
NS. There must exist other players willing to join cluster j for

achieving higher rates, because there are more than kj players whose MNCP

aðj; iÞ[kj þ 1.

Case II: kj [kj
NS. The cluster will be too crowded that more than kj � kj

NS players

prefer to leave it, since the number of cluster members exceeds their MNCP that can be

tolerated, and the BS is better for them.

Case III: kj ¼ kj
NS. Any other player who tries to join the cluster will have a rate

decline, and the players already in the cluster can tolerate with the cluster size hence prefer

to remain there. Thus none of the players wants to deviate from this steady state.

Therefore, the final number of UEs associated with CH j ðj 2 f1; 2; . . .;CgÞ must be

kj
NS. h

Remark 2 The estimated cluster sizes of all clusters at the Nash-stable state can reflect the

expected load condition of the overall system.

In this step, the number of UEs that associated with each cluster is estimated in a game-

theoretic fashion. The estimating process in the example is illustrated at ‘‘Step 3’’ in Fig. 5.

Fig. 5 An example of Step 3 and Step 4 of our proposed association scheme in the case with 3 CHs and 12
UEs. Step 3 Estimating the cluster sizes at the Nash-stable state; Step 4 Admission control. The green boxes
at Step 4 represent the cluster members after association. (Color figure online)

2700 G. Li et al.

123

3.2.4 Step 4: Admission Control

Eventually, in order to balance the load among the BS and the CHs, an admission control

policy is required to derive the ultimate solution to the dynamic user association problem.

As the cluster size of each cluster has been estimated, all we need to do is to keep the first

kj
NS players with the highest values of MNCP in each cluster. The rest of UEs will directly

connect to the BS and be served as ordinary UEs. Finally if the cluster size in a cluster is

zero, it means that no UE will join that cluster.

This admission control process is shown at ‘‘Step 4’’ in Fig. 5, where the cluster

members are labeled with solid green boxes. The ultimate solution to the user association

problem in the example is:

• BS users’ IDs: 1, 4, 6, 7, 11;

• cluster 1 users’ IDs: 3, 5, 8;

• cluster 2 users’ IDs: 9, 12;

• cluster 3 users’ IDs: 2, 10.

3.3 Complexity Analysis

The normal solution to obtain the optimal user association is the exhaustive search by a

centralized controller that picks the association with the maximum overall gain among all

permissible association decisions. Since there are ðC þ 1ÞN possible results for all the N

UEs, thus the complexity of this scheme can be denoted by OððC þ 1ÞNÞ. This makes the

exhaustive search computationally impossible in the real-world implementation.

In the conventional association schemes, each UE needs to compare the power strengths

of the received signals or the effective link SINR from at most a number of C CHs as well

as the BS, therefore the sum complexity is OðN � ðC þ 1ÞÞ.
The time complexity of the scheme in literature [14, 15] is OððC þ 1Þ � N� log2ðC þ 1ÞÞ,

whose detailed calculation can be found in [15].

Proposition 1 The time complexity of the proposed association scheme is

OðC � N þ N2Þ.

Proof In Step 1, we adopt the measurement of utilities by the matrix of MNCP, whose

number of elements is C � N. In Step 2, we select the effective game players by choosing

the maximum in each column, thus the time complexity is also OðC � NÞ. In Step 3, we

assume that there are n1; n2; . . .; nC game players in cluster 1; 2; . . .;C, so
PC

j¼1 nj �N.

Then in order to estimate the cluster sizes at the Nash-stable state, we need to make

comparisons under the condition in (13) for nj
2 times in the worst case. So it has to be

computed at most
PC

j¼1 nj
2 times in Step 3, which are less than or equal to N2, because

PC
j¼1 nj

2 �ð
PC

j¼1 njÞ
2 �N2. Step 4 simply executes a sorting process, whose time com-

plexity can be proved less than or equal to OðN2Þ in the similar way.

Consequently, the sum complexity of the four steps is OðC � N þ C � N þ N2 þ N2Þ,
and the complexity has the upper bound of OðC � N þ N2Þ, which is comparable to

OðN � ðC þ 1ÞÞ by the conventional schemes, similar to OððC þ 1Þ � N � log2ðC þ 1ÞÞ by

the scheme in [14, 15], but much lower than OððC þ 1ÞNÞ by the exhaustive search. h

Game-Theoretic User Association in Ultra-dense Networks with… 2701

123

4 Performance Evaluation

4.1 Simulation Setup

We simulate a cellular network with a number of D2D relays (CHs) and D2D-enabled UEs

randomly deployed in the cell with a radius of 500m. 6 neighboring BSs are considered for

calculating the inter-cell interference. Generally, in order to improve the performance of

users in the entire cluster, we prefer to specially select the UEs with good channel con-

ditions in backhaul links as the CHs (e.g., the UE by the windows, the UE with LOS (line-

of-sight) link to the BS, etc.). As in the literatures, we assign CHs with a 5dB gain in the

backhaul link, which is nearly equal to the building penetration loss [6, 25]. The trans-

mission power of the BS is set as PBS ¼ 46 dBm, and that of the CH is set as

PCH ¼ 23 dBm, which is the maximum uplink transmission power of a UE specified in the

standard. The rest of detailed channel parameters and simulation settings conform to

‘‘3GPP TR 36.814’’, where only the large scale fading channel is considered.

We take ‘‘Traditional cellular network’’, i.e., the system rate achieved in the traditional

cellular communication network as the baseline. To conduct a fair comparison between the

traditional cellular network and the UDN with D2D relays, the resource consumption in

these two scenarios should be equal. As a result, the total bandwidth of the traditional

cellular network is set as W ¼ W1 þW2 in the simulation. We set W ¼ 10MHz as a fixed

bandwidth, and the values of W1 and W2 depend on the bandwidth partition ratio g, i.e.,
W1 ¼ ð1� gÞ � 10MHz and W2 ¼ g� 10MHz.

Multiple association schemes are compared in the simulation, and the schemes along

with their time complexity (see Sect. 3.3) are shown in Table 1. Note that ‘‘Best-power

[12]’’ and ‘‘Best-SINR [13]’’ represent the conventional user association schemes based on

the maximum received power and the maximum effective link SINR, respectively.

4.2 Simulation Results

Figure 6 shows the simulation results of the impact of the bandwidth partition ratio g on

the system sum rate. We fix the value of W ¼ W1 þW2, and change the partition of

bandwidth (W1 ¼ ð1� gÞ �W , W2 ¼ g �W) by adjusting g. The scenario of a high user

density (N ¼ 500) is considered, and the proposed user association scheme is employed in

the UDN with D2D relays. As the results show, with different numbers of CHs

(C ¼ 50; 100), the UDN with D2D relays always can archive a higher system rate than the

traditional cellular network at the same consumption of bandwidth resource. Since the CHs

relay the traffic of some UEs from the BS, those UEs’ original poor channel conditions of

cellular links can be replaced by the better ones provided by the CHs. In particular, the

network with D2D relays only outperforms the traditional one when g is small from the

Table 1 Complexity of the
schemes compared in the
simulation

User association schemes Time complexity

Exhaustive search OððC þ 1ÞNÞ
Best-power [12] OðN � ðC þ 1ÞÞ
Best-SINR [13] OðN � ðC þ 1ÞÞ
Scheme in [14, 15] OððC þ 1Þ � N � log2ðC þ 1ÞÞ
Proposed OðC � N þ N2Þ

2702 G. Li et al.

123

results, say g\0:4. That is because the backhaul link of the D2D relay is more likely to be

a bottleneck than the access link, and W2, the little portion of total bandwidth, is more

efficiently utilized in clusters than in the cellular transmission. Therefore, the bandwidth

partition ratio is set as g ¼ 0:1 in the following simulation.

Figure 7 shows the results with a small number of UEs (N ¼ 10), to make the

exhaustive search scheme computationally feasible.3 It is shown that, our proposed user

association scheme performs better than the conventional ones and the scheme in the

literature. More importantly, the proposed scheme obtains almost the same performance as

exhaustive search, which provides an upper bound of the association problem. Neverthe-

less, our scheme has a much lower complexity according to Table 1.

Figure 8 illustrates the number of relay serving UEs versus the number of CHs for

various user association schemes in the scenario of a high user density (N ¼ 500), where

we remove the comparison with the exhaustive search scheme which is computationally

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12
x 107

Bandwidth Division Ratio η

S
ys

te
m

 S
um

 R
at

e
(b

its
/s

)

Proposed: 500 UEs/ 100 CHs
Proposed: 500 UEs/ 50 CHs
Traditional cellular network

Fig. 6 The comparison of the
system sum rate in the network
with D2D relays and the
traditional one as a function of
the bandwidth partition ratio g
(system sum rate vs. g)

Fig. 7 The comparison of the system sum rate for various user association schemes with different CHs
numbers (including the exhaustive search scheme)

3 The time complexity of the exhaustive search scheme is still considerable. Taking the case of N ¼ 10 and

C ¼ 3 as an example, the complexity reaches as high as ð3þ 1Þ10.

Game-Theoretic User Association in Ultra-dense Networks with… 2703

123

expensive here. In the ‘‘Best-power [12]’’ scheme, due to the imbalance of transmission

power between the BS and the CH, only a few of UEs can be associated into clusters; while

it is just the opposite by the ‘‘Best-SINR [13]’’ scheme, because the criterion makes the

CHs more favoured. For the association scheme in [14, 15], the UEs are associated

sequentially until the resource consumption exceeds the constraint, therefore the number of

UEs in each cluster can hardly reach the optimal result. For the proposed scheme in this

paper, since the association is based on the estimated cluster sizes at the Nash-stable state

which can reflect the overall expected load condition, so the number of relay serving UEs

is growing more properly and can approximate the optimal.

Figure 9 compares the system sum rate in the scenario of N ¼ 500 for various user

association schemes and the traditional network. It is shown that, without an efficient user

association (e.g., the ‘‘Best-power [12]’’ scheme), the system rate in the network with D2D

relays is even lower than the traditional cellular network, because the D2D relay need two

orthogonal resources. Referring to the results in Fig. 8, the relay serving UEs are way too

many in the ‘‘Best-SINR [13]’’ scheme, so the clusters are overloaded from the beginning

(40 cluster members in each cluster on average when the CHs number is 5). As the CHs

number increases, the number of overloaded clusters also increases, which leads to per-

formance decline. But when the number of clusters is big enough to relive the congestion at

certain CHs, the performance can get improved gradually. Therefore the system rate for the

‘‘Best-SINR [13]’’ scheme as a function of the CHs number presents as a concave curve.

The greedy user association scheme proposed in [14, 15] can offload some traffic from the

BS to the CHs, and hence also leads to a better performance than the conventional

counterparts. However, there is no admission control (as in our scheme) for the users to

improve the overall system performance. As a result, by jointly considering the link quality

and the load condition, our proposed scheme achieves a much higher rate than the other

ones, but has the complexity comparable to them.4

In Fig. 10, the comparison of the fairness index in the scenario of N ¼ 500 is shown.

The fairness index F is defined by F ¼ ð
PN

i¼1 RðiÞÞ
2=ðN

PN
i¼1 RðiÞ

2Þ, where R(i) is the data
rate of UE i [26]. It is observed that the fairness for each scheme has the similar trend as

0 20 40 60 80 100
0

100

200

300

400

500

C (Number of CHs)
N

um
be

r o
f R

el
ay

 S
er

vi
ng

 U
E

s

Proposed
Scheme in [14,15]
Best−SINR [13]
Best−power [12]

Fig. 8 Number of relay serving
UEs versus CHs number

4 The comparison of complexity between the proposed scheme and scheme in [14, 15] depends on the exact
values of N and C. For example, when N ¼ 500 and C ¼ 20, the complexity of the proposed scheme is
higher; but when N ¼ 500 and C ¼ 100, that of the scheme in [14, 15] becomes higher.

2704 G. Li et al.

123

the system rate results in Fig. 9, because the system rate is partly related to the balance of

load distribution in the network. In the meantime, the results can demonstrate that our

proposed user association scheme also has the advantage in terms of the system fairness.

5 Conclusions

The ultra-dense network with D2D relays can adapt the traffic demand varying with time

and locations. Although the D2D relay serves users in a two-hop fashion and consumes two

orthogonal resources, the network adopting the D2D relay technology can achieve a higher

system rate than the traditional cellular network at the same consumption of resource, as

long as there is effective user association in the network. In this paper, we propose a game-

theoretic, Nash stable-based user association scheme to address dynamic load balancing

among the BS and the CHs. We compared our proposed scheme with the existing schemes

by simulation, including the conventional ones based on the maximum power or SINR, and

also the user association scheme presented in the literature. Simulation results demonstrate

that our game-theoretic scheme has the advantage in terms of the system throughput, load

0 20 40 60 80 100
5

6

7

8

9

10

11
x 107

C (Number of CHs)

S
ys

te
m

 S
um

 R
at

e
(b

its
/s

)

Proposed
Scheme in [14,15]
Best−SINR [13]
Best−power [12]
Traditional cellular network

Fig. 9 System sum rate versus
CHs number

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C (The Number of CHs)

Fa
irn

es
s

In
de

x

Proposed
Scheme in [14,15]
Best−SINR [13]
Best−power [12]
Traditional cellular network

Fig. 10 Fairness index versus
CHs number

Game-Theoretic User Association in Ultra-dense Networks with… 2705

123

balancing and the system fairness. In addition, the proposed scheme leads to limited

computation complexity.

Acknowledgements This work was supported in part by Huawei Technologies Company, Ltd., and in part
by the National Science and Technology Major Project of China under Grant 2016ZX03001018-005.

References

1. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for
5G mobile and wireless communications: The vision of the metis project. IEEE Communications
Magazine, 52(5), 26–35.

2. Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Selén, Y., et al. (2015). Ultra-
dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.

3. Valkama, M., & Niemelä, J. (2015). Spectral and energy efficiency of ultra-dense networks under
different deployment strategies. IEEE Communications Magazine, 53(1), 90–100.

4. Li, Y.-N. R., Li, J., Wu, H., & Z., Wenfeng. (2014). Energy efficient small cell operation under ultra
dense cloud radio access networks. In Globecom Workshops (GC Wkshps), 2014 (pp. 1120–1125).
IEEE.

5. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communi-
cation as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

6. Zhang, G., Yang, K., Shuanshuan, W., Mei, X., & Zhao, Z. (2015). Efficient power control for half-
duplex relay based D2D networks under sum power constraints. Wireless Networks, 21(7), 2345–2355.

7. Gong, W., & Wang, X. (2015). Particle swarm optimization based power allocation schemes of device-
to-device multicast communication. Wireless Personal Communications, 85(3), 1261–1277.

8. Lin, X., Ratasuk, R., Ghosh, A., & Andrews, J. G. (2014). Modeling, analysis, and optimization of
multicast device-to-device transmissions. IEEE Transactions on Wireless Communications, 13(8),
4346–4359.

9. Zhou, B., Honglin, H., Huang, S.-Q., & Chen, H.-H. (2013). Intracluster device-to-device relay algo-
rithm with optimal resource utilization. IEEE Transactions on Vehicular Technology, 62(5),
2315–2326.

10. TR 36.843. (2014). Study on LTE device to device proximity services; radio aspects (release 12).
Technical report, 3GPP Technical report.

11. RP-151952. (2015). Enhanced D2D status report for ran 70. Technical report, Status Report to TSG.
12. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP

heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.
13. Mezzavilla, M., Somasundaram, K., & Zorzi, M. (2014). Joint user association and resource allocation

in UE-relay assisted heterogeneous networks. In 2014 IEEE International Conference on Communi-
cations Workshops (ICC), pp. 628–634.

14. Yu, Y., Hu, R. Q., Bontu, C. S., & Cai, Z. (2011). Mobile association and load balancing in a
cooperative relay cellular network. IEEE Communications Magazine, 49(5), 83–89.

15. Siviloglou, O., Rouskas, A., & Karetsos, G. (2015). Association of mobile stations in cellular networks
with relay nodes. In 2015 38th international conference on telecommunications and signal processing
(TSP), pp. 1–5.

16. Singh, S., Dhillon, H. S., & Andrews, J. G. (2013). Offloading in heterogeneous networks: Modeling,
analysis, and design insights. IEEE Transactions on Wireless Communications, 12(5), 2484–2497.

17. Sadr, S., & Adve, R. S. (2014). Tier association probability and spectrum partitioning for maximum rate
coverage in multi-tier heterogeneous networks. IEEE Communications Letters, 18(10), 1791–1794.

18. Lin, Y., & Yu, W. (2013). Optimizing user association and frequency reuse for heterogeneous network
under stochastic model. In 2013 IEEE global communications conference (GLOBECOM) (pp.
2045–2050). IEEE.

19. West, D. B., et al. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice Hall.
20. Li, Q., Hu, R. Q., Wu, G., & Qian, Y. (2012). On the optimal mobile association in heterogeneous

wireless relay networks. In INFOCOM, 2012 Proceedings IEEE, pp. 1359–1367.
21. Li, G., Zhao, Y., & Bian, K. (2016). Efficient user association in cellular networks with hybrid cognitive

radio relays. IEEE Communications Letters, 20(7), 1413–1416.
22. Ray, D. (2007). A game-theoretic perspective on coalition formation. Oxford: Oxford University Press.

2706 G. Li et al.

123

23. Saad, W., Han, Z., Basar, T., Debbah, M., & Hjorungnes, A. (2011). Hedonic coalition formation for
distributed task allocation among wireless agents. IEEE Transactions on Mobile Computing, 10(9),
1327–1344.

24. Jackson, O. (2006). Definitions of equilibrium in network formation games. International Journal of
Game Theory, 34(3), 305–318.

25. Sui, Y., Guvenc, I., & Svensson, T. (2015). Interference management for moving networks in ultra-
dense urban scenarios. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–32.

26. Raj, J., Dah-Ming, C., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for
resource allocation in shared computer system (Vol. 38). Hudson, MA: Eastern Research Laboratory,
Digital Equipment Corporation.

Geng Li received the B.S. degree in electronics engineering, the B.A.
degree in economics (double major), and the Ph.D. degree in wireless
communications from Peking University, Beijing, China, in 2011,
2011 and 2016, respectively. He is currently working as a postdoctoral
fellow in the Department of Computer Science from Yale University,
USA, and the Department of Computer Science from Tongji Univer-
sity, China. His research interests include Software-defined Network,
LTE Layer 1&2, Protocol Stack, HetNet, relay, D2D, indoor local-
ization, UMTS, signal processing and network security.

Yuping Zhao received the B.S. and M.S. degrees in electrical engi-
neering from Northern Jiaotong University, Beijing, P. R. China, in
1983 and 1986, respectively. She received the Ph.D. and Doctor of
Science degrees in wireless communications from Helsinki University
of Technology, Helsinki, Finland, in 1997 and 1999, respectively. She
was a system engineer for telecommunication companies in China and
Japan. She worked as a research engineer at the Helsinki University of
Technology, Helsinki, Finland, and at the Nokia Research Center in
the field of radio resource management for wireless mobile commu-
nication networks. Currently, she is a Professor in the State Key
Laboratory of Advanced Optical Communication Systems & Net-
works, School of Electronics Engineering and Computer Science,
Peking University, Beijing, P. R. China. Her research interests include
the areas of wireless communications and corresponding signal pro-
cessing, especially for OFDM, UWB and MIMO systems, cooperative
networks, cognitive radio, and wireless sensor networks.

Game-Theoretic User Association in Ultra-dense Networks with… 2707

123

Dou Li is an associate professor in the School of Electronics Engi-
neering and Computer Science, Peking University. She received B.S.,
M.S. and Ph.D. degrees from Peking University, China, in 1989, 1992,
and 2007, respectively. In 1992, she became an assistant professor in
Peking University. Now she is an associate professor of Advanced
Institute of Wireless Communication and Signal Processing, Peking
University. Her current research interests include signal processing for
information system and resource management in wireless communi-
cation system.

2708 G. Li et al.

123

Auc2Reserve: A Differentially Private Auction for Electric

Vehicle Fast Charging Reservation

Invited Paper

Qiao Xiang 1,5, Linghe Kong2,3, Xue Liu2, Jingdong Xu4, Wei Wang1

1Department of Computer Science and Technology, Tongji University, China
2School of Computer Science, McGill University, Canada

3Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
4Department of Computer Science and Technology, Nankai University, China

5Department of Computer Science, Yale University, United States

qiao.xiang@tongji.edu.cn, linghe.kong@sjtu.edu.cn, xueliu@cs.mcgill.ca,

xujd@nankai.edu.cn, wwang@tongji.edu.cn

Abstract—The increasing market share of electric vehicles
(EVs) makes charging facilities indispensable infrastructure for
integrating EVs into the future intelligent transportation systems
and smart grid. One promising facility called fast charging
reservation(FCR) system was recently proposed. It allows people
to reserve fast chargers ahead of time. In this system, fast
chargers are the most scarce resource instead of electricity.
Thus how to allocate these charging points requires careful
designing. A good allocation policy should 1) ensure charging
points to be allocated to EV users who really value them, and
2) prevent users’ private information, e.g., identity, personal
agenda, residing area and etc., from being inferred. A simple
combination of classic multi-item auction and user identity
anonymization cannot satisfy both criteria simultaneously. To
find such an allocation, in this paper we investigate the design of
privacy-preserving auctions in FCR systems. Traditional privacy-
preserving strategies such as cryptography could incur high
computation and communication overhead and hence jeopardize
the efficiency of allocation. To this end, we propose Auc2Reserve, a
differentially private randomized auction. Auc2Reserve applies an
improved approximate sampler and the belief propagation(BP)
technique to accelerate the resource allocation and pricing pro-
cess. As a result, it is much more computationally efficient than
generic exponential differentially private mechanisms and other
theoretical approximate implementations. Through theoretical
analysis, we show that Auc2Reserve is γ-incentive compatible,
individual rational and ε-differentially private. And it provides a
close-form approximation ratio in social welfare of FCR systems.
In addition, we also demonstrate the efficacy of Auc2Reserve
in terms of social welfare and privacy leakage via numerical
simulation.

I. INTRODUCTION

The electric vehicle (EV) is visioned as a crucial component
of intelligent transportation systems (ITS) [5]. Compared with
gasoline-powered vehicles, EVs have the potential benefits of
a lower carbon emission, a lower powering cost and a higher
power efficiency. With these promising benefits, however,
they also introduce a high penetration into the power grid
by shifting the energy load from gasoline to electricity. As
EVs’ market share is increasing, the large-scale integration

Most part of this work is done during the first author’s Postdoctoral
Fellowship in the Cyber-Physical System Lab (CPSL) at McGill University.

of EVs into the future smart grid has drawn great attention
from both academia and industry. And charging facilities
have become indispensable infrastructure to support such
integration[10][13].

Among various charging facilities have been designed and
studied, e.g., home charging point [9] [24], workplace charg-
ing facility [10] [23] and etc., one up-and-coming facility
called fast charging reservation (FCR) system was recently
proposed. In an FCR system, EV users can send requests to
reserve Direct Current (DC) fast charging points at different
locations, which are capable of charging the battery of EV
to 80% capacity, i.e., a 0.8 state of charge(SOC), in half
an hour. Figure 1 gives an overview of the FCR system.
FCR systems facilitate users to charge EVs during a long
distance trip without experiencing long-time charging delay.
Several FCR systems have been deployed in major automobile
markets [4], [1], [2]. For instance, Tesla has deployed over 400
Supercharger stations across the United States [4]. And China
has initiated a project to develop a FCR system with over
600 fast chargers along major highways across the country by
2020[2].

DC Fast
Charger

DC Fast
Charger

R
es

er
ve

R
es

er
ve R

eserveA
pp

ro
ve

A
pp

ro
ve

R
eject

A B C

(a) EVs reserve fast chargers.

DC Fast
Charger

DC Fast
Charger

A

B

30 minutes

A

B

(b) EVs get charged within 30 minutes.

Fig. 1: An overview of fast charging reservation system.

One important observation we can get from these FCR
systems is that the main principle when deploying a FCR
system is to ensure coverage, i.e. distribute DC fast chargers
across a large area. This is because 1) the hardware cost of

2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications

978-1-5090-2479-7/16 $31.00 © 2016 IEEE

DOI 10.1109/RTCSA.2016.19

85

2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications

978-1-5090-2479-7/16 $31.00 © 2016 IEEE

DOI 10.1109/RTCSA.2016.19

85

2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications

978-1-5090-2479-7/16 $31.00 © 2016 IEEE

DOI 10.1109/RTCSA.2016.19

85

DC fast charger is high; and 2) the short charging time of
fast charger determines that a 1:1 ratio between the number
of fast chargers and EV is unnecessary. As a result, in the
FCR system, the number of fast charging points is much less
than that of EVs. This means when EV users send reservation
request to the FCR system, they are competing for not only
the electricity, but also the fast charging points. It is shown
in recent study [3] [35] that in an FCR system where there
are more EVs than fast charging points, fast chargers are
the most scarce resource, instead of the commonly assumed
electricity. Therefore, how to allocate fast chargers in FCR
systems requires careful designing.

Regardless of the differences on hardware and charging
schedule, current FCR systems usually adopt a first-reserve-
first-serve approach with fixed pricing policies, e.g., pay-per-
use or flat-rate, to allocate fast charging points to EV users.
Though this strategy is simple and could help the market
expanding of EVs, they are not efficient allocation mechanisms
in that 1) fast charging points may not be assigned to EV users
who really value them, i.e., EVs with a lower state of charge
(SOC); and 2) overpricing and underpricing could happen due
to the fluctuation of electricity price, thus impairing the benefit
of both EV users and fast charging stations. These deficiencies
have also been identified in other charging facilities. Recently
researchers propose to tackle these drawbacks using auctions
as resource allocation strategy for EV charging. Different
auctions have been proposed to compute an efficient allocation
of electricity and charging points for EV users so that the
system social welfare can be maximized. And social welfare
is the monetary sum of the revenue of charging facilities and
the utility gained by EV users. Exemplary studies in this
area include auctions for residential charging [32], park-and-
charge [29] and FCR systems [35].

As a powerful tool for resource allocation in EV charging,
auctions in current studies are designed to incentivize EV
users to truthfully report their valuation on different sets of
resources, i.e., incentive compatible, so that social-welfare-
maximization allocation and pricing decisions can be derived.
However, forcing EV users to reveal their real valuation profile
during the auction put users at the risk of exposing their
privacy. These real valuation contains users’ preferences on
different charging points and different amount of electricity.
Adversaries may use these information to infer users’ personal
information, such as transportation agenda, residing area and
etc. These information have high commercial value. More
importantly, they are also crucial for EV users’ personal safety.
And due to the fact that EVs need to be charged every
one or two days, users may participate EV charging auction
frequently, which makes inferences on these information even
easier. Though anonymizing users’ valuation profile appears to
be an efficient approach for protecting these information and
users’ identity, recent studies [27], [15] show that adversaries
can easily deanonymize users’ identity and expose all such
private profiles by linking two or more separate sets of
users’ profiles. Such privacy vulnerabilities is a major barrier
preventing the large scale deployment of auction-based EV
charging resource allocation. In this paper, we aim to find
solutions to overcome this obstacle and hence advocate the
further development of electric vehicles. In particular, we take
FCR systems as an example and explore the feasibility and
benefits of designing an efficient privacy-preserving auction
to allocate fast chargers, the most scarce resource in FCR

systems, between EV users. Designing such a mechanism
requires us to address a series of challenges:

Challenge 1. The proposed auction should preserve user
privacy while satisfying other requirements of mechanism de-
sign, i.e., (approximate) incentive compatibility and individual
rationality.

Challenge 2. The proposed auction should provide an ex-
plicit guarantee on social welfare of FCR systems.

Challenge 3. The proposed auction should be computation-
ally efficient so that the allocation and pricing decisions can
be quickly made in large-scale FCR systems.

Dealing with these challenges is a non-trivial mission. Tra-
ditional privacy-preserving mechanisms use cryptosystems to
protect users’ privacy [26][28]. However, the high computation
and communication overhead in such cryptosystems often
compromise the performance of corresponding mechanisms
such as social welfare and incentive compatibility. McSherry et
al. [25] proposed to incorporate differential privacy in mecha-
nism design. In a differentially private mechanism, it is hard to
infer users’ personal information as a single change in users’
reported valuation has very limited impact on the outcome
of the auction. And it is also proved that differential privacy
implies approximate incentive compatibility [25]. Nonetheless,
the generic differentially private mechanism has an exponen-
tial computational complexity. Though some polynomial-time
approximate implementation was proposed afterwards [19], it
is only theoretical and impractical in real-world due to its
O(n13) complexity with a large implied constant.

In this paper we cope with the aforementioned challenges
by designing Auc2Reserve, a computationally efficient differ-
entially private auction. For an FCR system with M EV users
competing for N fast chargers, we developed an improved
randomized approximate sampler in Auc2Reserve to iteratively
allocate fast charging points to EV users. Leveraging the
fact that there are usually more EV users than fast chargers
in FCR system, Auc2Reserve randomly selects an EV user
(agent) for receiving a given fast charging point (item) at
every iteration. In this way, it reduces the sampling overhead
by M−N

M times than that of the original sampler [19]. By
integrating this allocation process with an approximate pricing
function in generic differentially private mechanisms [19] [25],
Auc2Reserve successfully address Challenges 1 and 2. Both
the allocation and pricing policies in Auc2Reserve involve
computing the permanent of non-negative matrix, which is
#P-complete. To resolve Challenge 3, we apply the belief
propagation technique [11][12] for permanent approximation
in Auc2Reserve. As a result, not only does Auc2Reserve ensure
incentive compatibility, individual rationality and differential
privacy, it is also computationally efficient in making social-
welfare-guaranteed allocation and pricing decisions for FCR
systems.

Our main contributions in this paper are as follow:

• We study the novel problem of designing privacy-
preserving auction for EV fast charging reservation systems.
In particular, We propose Auc2Reserve, a differentially pri-
vate randomized auction. Compared with generic exponential
differentially private mechanisms and other approximate im-
plementations, Auc2Reserve is much more computationally ef-
ficient in making allocation and pricing decisions. In addition,
Auc2Reserve can also be generalized for different scenarios in
FCR systems.

868686

• Through theoretical analysis, we show that Auc2Reserve is
γ-incentive compatible, individual rational and ε-differentially
private. It also provides a close-form approximation ratio
on social welfare of FCR system. We also demonstrate the
efficacy of Auc2Reserve under various settings of FCR systems
in terms of social welfare and privacy leakage via numerical
simulation.

The remaining of this paper is organized as follows. We in-
troduce system settings, related solution concepts and present a
formal problem definition in Section II. We give an exponential
generic differentially private mechanism in Section III. We
develop the Auc2Reserve differentially private auction for
FCR systems and analyze its performance in Section IV. We
demonstrate the efficacy of Auc2Reserve via simulation in
Section V. We discuss related work on EV charging facilities
and auction theory in Section VI, and conclude our paper in
Section VII.

II. SYSTEM SETTINGS AND PROBLEM FORMULATION

In this section, we present the settings of EV fast charging
reservation systems, discuss related solution concepts and
formally define the auction problem in FCR system.

A. System Description
We consider a fast charging reservation system composed

of a set of M EV users, indexed by i = 1, 2, . . . ,M , and
N DC fast charging points, indexed by j = 1, 2, . . . , N . We
assume that M > N as the number of EVs is usually higher
than that of DC fast charging points in real world systems.
In our model we divide time into slots with a equal length
of 30-minute. Thus every fast charging can be finished within
one time-slot. To keep a concise presentation, we focus on the
auction scenario where all EV users submit bids to reserve fast
charging points and electricity for the same future time slot.
Our solution to this simpler scenario can be easily generalized
to the reservation auction in multiple time slots, as will be
discussed in Section IV-E.

In the auction, every EV user i can submit multiple bids
to the system central controller to reserve fast charging point.
These bids are sent via mobile devices, personal computers
or a reliable vehicle-to-infrastructure communication system,
e.g., OnStar. Every EV user is unit-demand, i.e., she only
needs at most one charging point. Thus for every EV user,
no duplicate bids on the same charging point is allowed. We
use an M -by-N matrix B to denoted the bids submitted by
EV users. The bids submitted by EV user i are denoted by a
row vector bi. This vector is composed of bij , j = 1, 2, . . . , N ,
where bij ≥ 0 represents user i’s reported valuation on getting
charging point j in a monetary form. A bij > 0 means that
user i submitted a bid of value to reserve the charging point
j, and a bij = 0 means that user i does not submit any bid
to reserve charging point j in this auction. Other than the
reported valuation, every user i also has a real valuation vij
on reserving every charging point j. This real valuation is
private to user i, which can be affected by many factors, e.g.,
personal agenda, distance to a certain charging station, risk
preference and etc., and is also expressed in monetary form. In
addition, given an EV user i, we use b−i and v−i to represent
the reported valuation and real valuation of all EV users other
than i, respectively.

After collecting bids from all EV users, a central controller
of the FCR system makes allocation decision on fast charging

points, and the corresponding pricing decision. We use a set of
binary decision variables yij ∈ {0, 1} to denote the allocation
decision for every bid bij . A yij = 1 means the bid bij is a
winning bid and user i will get a reservation charging point j.
And user i need to pay Γi for this reservation. A yij = 0 means
user i does not win the bid bij and will pay nothing for this bid.

Because every user is unit-demand, we have
∑N

j yij = 1 for
any EV user i. We define ui, the utility for user i as follows:

ui =
N∑
j=1

vijyij − Γi

In the auction, every user is selfish and aims to maximize her
own utility. We use SW to denote the social welfare of FCR
system, which is calculated as the sum of the revenue made
by fast charging points and the utility of all users. And we
can express it as:

SW =
M∑
i

Γi +
M∑
i

ui =
M∑
i

N∑
j

vijyij . (1)

We see that the EV fast charging reservation auction falls
into the category of multi-item auction[7][8]. We use r =
{r[1], r[2], . . . , r[M]} to denote an allocation outcome, where
r[i] records which charging point is assigned to user i. If r[i] ∈
[1, N], we have yir[i] = 1, otherwise yir[i] = 0. We denote
the set of all its allocation outcomes as R. And the number of
possible allocation outcomes in the auction, i.e., the cardinality
of R, can be expressed as |R| = M !

(M−N)! .

B. Solution Concepts

To avoid overpricing and underpricing, and to allocate
the fast charging point to EV users who really value it, a
good auction mechanism for FCR system should possess the
following properties:

Incentive Compatibility. An auction achieves incentive
compatibility if every user i can always maximize her utility by
truthfully reporting her real valuation as the reported valuation
no matter what strategies are adopted by other users, i.e.,
ui(vi,b−i) ≥ ui(bi,b−i) for any bi. Incentive compati-
bility saves users the trouble to perform complex strategic
calculations[22]. In addition, we also consider an approximate
form of incentive compatibility, called γ-incentive compati-
bility. i.e., ui(vi,b−i) ≥ ui(bi,b−i) − γ, where γ ≥ 0 is a
small constant. This relaxed definition further simplifies the
design and analysis of mechanism. When γ = 0, we see that
it reduces to the original definition of incentive compatibility.

Individual Rationality. An auction achieves individual
rationally if every participating user always gets non-negative
utility regardless what strategy is adopted by her and other
users, i.e., ui(bi,b−i) ≥ 0, for any bi. This property is also
known as the “participation constraint” [22] [19].

Social Welfare Maximization. As shown in Equation (1),
the auction maximizes social welfare by maximizing the total
real valuation of all winning bids. However, the real valuation
v of every bid is private information to EV user, and is
unknown to the charging reservation system. When the auction
is incentive compatible, the expression of social welfare in

Equation (1) can be rewritten as SW =
∑M

i

∑N
j bijyij since

the reported valuation for each bid equals to the corresponding
real valuation [22].

878787

Other than incentive compatibility, individual rationality and
social welfare maximization, the auction for EV FCR systems
also needs to ensure the privacy of EV users. This is because
users need to charge their EVs every one or two days. As a
result, they would participate fast charger reservation auction
frequently, which makes the inference on EV users’ personal
preferences much easier. Not only do such information have
high commercial value, they are also crucial in protecting EV
users personal safety. Therefore, it is important to design a
privacy-preserving auction for FCR systems. Among various
privacy standards, in this paper we focus on differential
privacy, a paradigm for private data analysis that has drawn
much attention in the past decade [15] [36].

Differential Privacy. Given a small constant ε > 0, an
auction Auc is ε-differentially private if for any two sets of
reported valuation b and b′ that only differ in one reported
valuation, and for any set of allocations S ⊂ R(Auc), we have

Pr[Auc(b) ∈ S] ≤ Pr[Auc(b′) ∈ S] · exp(ε).
Differential privacy has many elegant theoretical properties

as well as useful applications [16]. And its feasibility and
potentials in mechanism design have been studied under differ-
ent scenarios, such as digital good auction[22] [19], spectrum
auction [37] [36] and etc. Having reviewed related concepts in
mechanism design and privacy, we are able to formally define
the auction design problem for FCR systems.

FCR-Auc Problem: Given the aforementioned settings of
FCR system, design an auction that is γ-incentive compatible,
individual rational, ε-differentially private, and maximizes the
social welfare in a computationally efficient way.

III. EXPONENTIAL DIFFERENTIAL PRIVATE MECHANISM

One general technique in designing differentially private
auction is the exponential mechanism [25] [19]. The basic
idea of exponential mechanism, denoted as EXP , is to first
compute a probability for every feasible allocation outcome
r ∈ R as follows:

Pr[EXP (R,Q,D,ε) = r] = exp(
ε

2Δ
Q(D, r)). (2)

In Equation (2), Q is the quality function in the differential
privacy literature [16]. It takes a data set D and a feasible
allocation outcome r as the input and compute a real-valued
score as the output. When designing differentially private
mechanisms, D is usually the set of reported valuation b,

and Q(b, r) =
∑M

i

∑N
j vijyij(r) is the social welfare of

allocation r. In addition, Δ is the Lipschitz constant. Without
loss of generality, we set it to be 1.

With the probability for every feasible outcome r, the
exponential mechanism randomly selects one outcome based
on the computed probability in Equation (2) as the final
allocation decision in the auction, and then makes correspond-
ing pricing decisions. We present the exponential differential
private mechanism EXPR

ε for the FCR-Auc problem in
Algorithm 1. Among different pricing policies, we use the
well-studied policy proposed in [19] for EXPR

ε .

EXPR
ε has many nice properties, applying the results in

[25] we can have the following theorem on the social welfare
of EXPR

ε .

Algorithm 1 EXPR
ε : An Exponential Differentially Private

Mechanism for FCR-Auc Problem

1: INPUT: An M -by-N bidding matrix B
2: for every feasible allocation outcome r ∈ R do

3: Pr[r]→ exp(
ε

2

M∑

i

bir[i])

4: end for
5: for every feasible allocation outcome r ∈ R do
6: Pr[r]→ Pr[r]

∑
r∈R Pr[r]

7: end for
8: Select an allocation outcome r with probability Pr[r]
9: for i→ 1, 2, . . . ,M do

10: Γi =
2

ε
ln

(∑

r∈R

exp
(ε

2

∑

k �=i

bkr[k]

))

−2

ε
· S

(

EXPR
ε (bi,b−i)

)

− E
r∼EXPR

ε (bi,b−i)

[∑

k �=i

bkr[k]

]

11: end for

Theorem 1: EXPR
ε is ε-differential private and ensures that

Pr

[
SWEXPε < SWopt − ln

|R|
ε
− t

ε

]
≤ exp(−t). (3)

for any t > 0.
Furthermore, in [19] Huang et al. proved the following

theorem regarding the incentive compatibility and individual
rationality of EXPR

ε .
Theorem 2: With the pricing policy in Line 9-11, the

exponential mechanism EXPR
ε is incentive compatible and

individual rational.
Both theorems have been proved in an elegant way. For

instance, the proof of Theorem 2 relies on the connection
between exponential mechanism and a well-known probability
measure called the Gibbs measure. Interested readers may refer
to [25] [19] for more details.

Although with the appealing feature in satisfying all four
requirement in FCR-Auc problem, EXPR

ε has an important
drawback in that it needs to traverse all M !

(M−N)! feasible

allocation outcomes and compute a probability to each of
them. As a result, this high computational complexity makes
EXPR

ε inapplicable in large-scale FCR systems. Therefore, in
the next section, we propose Auc2Reserve, a computationally
efficient differentially private auction as the solution to the
FCR-Auc problem.

IV. AUC2RESERVE: A DIFFERENTIALLY PRIVATE

AUCTION

In this section, we propose Auc2Reserve, a computationally
efficient differentially private auction for EV fast charging
reservation system. Auc2Reserve adopts an approximate ran-
dom sampler to iteratively allocate fast charing point to EV
user. In each iteration, it applies a belief-propagation-based
algorithm for matrix permanent approximation. In this way,
Auc2Reserve is significantly more computationally efficient
than exponential differentially private auction EXPR

ε and
other theoretical approximate implementations [19]. We show
that Auc2Reserve is γ-incentive compatible, individual ratio-
nal, ε-differentially private and provides an explicit guarantee

888888

on social welfare of FCR systems. We also discuss the gener-
alization of Auc2Reserve in other scenarios of FCR systems.

A. Preliminary
Before we present the design of Auc2Charge, we first review

an important concept in linear algebra called permanent.
Definition 1: Given a K-by-K matrix W, W = (Wij |i, j =

1, 2, . . . ,K), its permanent is defined as

perm(W) =
∑

π∈Π(K)

K∏
i=1

Wiπ[i], (4)

where Π(K) is the set of all permutations of set {1, 2, . . . , n}.
One important property of permanent we leverage in the
design of Auc2Charge is that perm(W) = perm(WT),
where WT is the transpose of W. Permanent has many
important applications, i.e., the permanent of a 0-1 matrix is
equivalent to the number of perfect matchings of a bipartite
undirected graph. However, computing the permanent is a
complex problem. The fastest known general algorithm in
computing the permanent of matrix is the Ryser Algorithm,
which requires O(n2n) operations. Even for the case of non-
negative matrix, i.e., Wij ≥ 0, ∀i, j, finding its permanent
is a #P-complete problem. Therefore, people often resort to
different approaches to compute the approximate permanent,
denoted as perma, which is a challenging task as well. To keep
the intactness of the presentation, we leave the discussion on
how to approximate matrix permanent later till Section IV-C.

B. Auc2Reserve in a NutShell
We present the design of Auc2Resrve auction in Algo-

rithm 2. In the FCR-Auc problem, the bidding matrix B is
of size M -by-N , where M > N . Other than N actual fast
charging points, we add another M − N dummy charging
points into the auction. And the reported valuation from all
EV users on these dummy charging points are all zeros. In
this way, Auc2Reserve creates a M -by-M square bidding
matrix Bsq by concatenating a M -by-(M − N) zero matrix
to B (Line 2). After the transformation, we construct an
auxiliary bidding matrix D, which is the transpose of Bsq

(Line 3). For any square matrix W, we define a function G:
G(W) = {exp(ε2wij)}, ∀i, j. And we also use W−i,−j to
denote the matrix obtained by removing the ith row and the
jth column of suqare matrix W.

In Auc2Reserve, we developed an improved approximate
sampler that iteratively allocates charging points to EV users,
one at a time. Given an actual charging point j = 1, 2, . . . , N ,
we first compute xi, the probability that EV user i wins the
reservation of charging point j, for all the users who have
not won any charging point yet (Line 6-15). Auc2Reserve then
randomly selects an EV user i with the normalized probability
xi as the winner of charging point j (Line 16). Once a
charging point j is allocated to a winning user ic, all bids
submitted to reserve j or submitted by user ic are removed
from the auxiliary matrix D (Line 19). We then repeat the
same allocation process using the updated matrix D until all
N actual charging points are allocated.

The allocation process in Auc2Reserve is an item-oriented
randomized allocation, i.e., randomly select a user (agent) to
receive a given charging point (item). It differs from the origi-
nal sampler in [19], which uses an agent-oriented randomized
allocation, i.e., randomly select an item to assign to a given

Algorithm 2 Auc2Reserve: A Differentially Private Auction

for FCR-Auc Problem

1: INPUT: An M -by-N bidding matrix B
2: Bsq → B||0M×(M−N)

3: D→ Bsq
T

4: I → {1, 2, . . . ,M}
5: for j → 1, 2, . . . , N do
6: for i→ 1, 2, . . . ,M − j + 1 do
7: if d1i == 0 then
8: xi → 0
9: else

10: xi → perma(G(D−1,−i))
11: end if
12: end for
13: for i→ 1, 2, . . . ,M do
14: xi → xi∑

i xi

15: end for
16: Randomly allocate charging point j to user i with probability

xi, denote the assigned user as ic
17: yI[ic]j → 1

18: ΓI[ic] → bI[ic]j +
2

ε
ln

(

perma

(
G
(
B(bi = 0,b−i)

))
)

−2

ε
ln

(

perma

(
G(B)

)
)

19: D→ D−1,−ic

20: I → {1, . . . , I[ic]− 1, I[ic] + 1, . . . ,M}
21: end for
22: for i→ 1, 2, . . .M do
23: if

∑
j yij == 0 then

24: Γi → 0
25: end if
26: end for

agent. With the property that perm(W = perm(WT), both
allocation policies would yield the same output in expectation.
However, given the fact that there are more EV users than
fast charging points in the FCR system, i.e., M > N ,
the item-oriented allocation used in Auc2Reserve is more
computationally efficient in that it reduces the computation
overhead by M−N

M times than that of agent-oriented allocation.
This reduction is significant due to the involvement of matrix
permanent computing during the allocation process.

After an actual fast charging point j is allocated to a winning
user ic, Auc2Reserve computes the price ic needs to pay in
Line 18 of Algorithm 2. This pricing policy is an approximated
price of that in the exponential mechanism EXPR

ε . After all
actual charging points have been assigned, users who do not
win any charging point do not need to pay anything (Line
22-26).

Observe the structure of Algorithm 2, we see that the
key step in determining the computational efficiency of
Auc2Reserve is to compute the permanent of non-negative
matrix. This step is needed in both allocation and pricing
process. Due to the #P-completeness of this task[33] , in the
following we review possible approaches in approximating
matrix permanent, and apply a newly developed belief propa-
gation approximation technique in Auc2Reserve.

C. Approximating Matrix Permanent Using Belief Propaga-
tion

Researchers have explored different approaches in devel-
oping approximate algorithms for matrix permanent. In the

898989

seminal paper [20], Jerrum et al. proposed a fully polynomial
randomized approximation scheme (FPRAS) for computing
the permanent of non-negative matrix using Monte-Carlo
sampling. However, its complexity is O(n11) in the general
case. Even though the complexity of this approach was later
improved to O(n7) in [6], it is still impractical for most
realistic applications.

Recently, belief propagation heuristics is applied to com-
puting the matrix permanent and showed surprisingly good
performance[11][12]. The basic idea of this approach is that
given a non-negative K-by-K matrix W, we can build a
graphical model with a bipartite undirected graph G =
(V1, V2, E). In this graph, V1 and V2 are two sets of K
vertices. And binary variables σij = 0, 1 are assigned to
edges (i, j) with the constraints ∀i ∈ V1,

∑
j∈V2

σij = 1 and

∀j ∈ V2,
∑

i∈V1
σij = 1. And Wij is assigned as the weight

of edge (i, j) in graph G. In this way, the graphic model can
express the permanent of matrix W as:

perm(W) =
∑
σ

∏
(i,j)∈E

(Wij)
σij . (5)

With this graphical model, we define a K-by-K matrix β
where βij is the marginal belief corresponding to finding edge
(i, j) in the matching of G. And the following theorem on BP-
based permanent approximation was proposed in [11].

Theorem 3: Given a non-negative K-by-K matrix W with
corresponding graph G and marginal belief matrix β. A belief
propagation function can be developed as perm(W) as

FBP (β|W) =
∑
i

∑
j

(
βij log(

βij

Wij
)−(1−βij) log(1−βij)

)
,

(6)
and the permanent of W can be approximated as:

permBP (W) = exp
(
− FBP (β|W)

)
. (7)

To compute the marginal belief matrix β, standard be-
lief propagation technique can be applied, and an iterative
algorithm is developed and presented as Algorithm 3. The
convergence of this algorithm is proved in [11]. However,
its convergence speed highly depends on the initial value
of matrix β(0). To ensure a fast convergence and hence the
computational efficiency of Auc2Charge, we use a mean-field
heuristic algorithm, presented as Algorithm 4, to precompute
a matrix φ as the initial value β(0). Extensive empirical
experiments in [11] [12] show that using φ computed by
Algorithm 4 as the initial value of marginal belief matrix β
ensures the fast convergence of Algorithm 3 with arbitrary
input matrix W. In addition, the following Theorem 4 provides
a close-form approximation ratio on this BP-based method
[12].

Theorem 4: Given a K-by-K matrix W, compute the
doubly stochastic matrix β using Algorithm 3, and define

αW =

∏
i,j(1− βij)

perm
(
β · (1− β)

) . (8)

Then the approximate permanent computed from Theorem 3
satisfies:

permBP (W) = αW · perm(W). (9)

To summarize, by transforming a given matrix W to a
graphical model and applying belief propagation technique

Algorithm 3 An Iterative Algorithm for Computing Marginal

Belief Matrix β

1: INPUT: a K-by-K non-negative matrix W
2: n→ 0
3: ui(0) = uj(0) = 1, ∀i, j → 1, 2, . . . ,K
4: Initialize βij(0), ∀i, j → 1, 2, . . . ,K
5: while 1 do
6: for i, j → 1, 2, . . .K do
7: βij(n+ 1)→ λβij(n)

+
(1− λ)Wij

Wij + (1
2

∑
s βis(n) +

1
2

∑
s βsj(n)− βij(n))2ui(n)uj(n)

8: end for
9: for i, j → 1, 2, . . .K do

10: βij(n)→ βij(n)/
∑

s βis(n)
11: end for
12: for i, j → 1, 2, . . .K do
13: βij(n)→ βij(n)/

∑
s βsj(n)

14: end for
15: for i→ 1, 2, . . .K do
16: ui(n+ 1)→

∑
s(Wis/u

s(n))

1−∑
j(βij(n))2

17: end for
18: for j → 1, 2, . . .K do
19: uj(n+ 1)→

∑
s(Wsj/us(n))

1−∑
i(βij(n))2

20: end for
21: if maxi,j{|βij(n+ 1)− βij(n)|} > δ then
22: n→ n+ 1
23: else
24: for i, j → 1, 2, . . .K do
25: βij → βij(n)
26: end for
27: break
28: end if
29: end while

to computing its marginal belief matrix, perm(W) can be
approximated very efficiently with a close-form approximation
ratio. We leave the theoretical proof on convergence speed of
this BP approach in future work. In this way, Auc2Reserve is
significantly more computationally efficient than the generic
exponential differentially private mechanism EXPR

ε and other
theoretical approximate implementations[19].

D. Properties of Auc2Reserve

We now analyze the performance of Auc2Reserve auction in
terms of incentive compatibility, individual rationality, differ-
ential privacy and social welfare. To this end, we first propose
the following theorem.

Theorem 5: Auc2Reserve is an ε-differential private and
individual rational.

Proof 1: The proof of this theorem follows the sketch in
[25] [19]. It relies on the connection between the exponential
mechanism and the well-known Gibbs measure, which is also
known as the Boltzmann distribution. With the connection
established in [19], the correctness of this theorem is a
straightforward conclusion.

Next we study the incentive compatibility and social welfare
of Auc2Reserve. Given a matrix W, we define αmax

W =
maxs(W){αs(W)}, where s(W) is any sub-matrix of W.
Then we are able to propose the following theorem.

Theorem 6: Given any M -by-N bidding matrix B, the
Auc2Reserve mechanism is γ-incentive compatible and the

909090

Algorithm 4 A Mean-Field Algorithm for Initializing

Marginal Belief Matrix β(0)

1: INPUT: a K-by-K non-negative matrix W
2: n→ 0
3: vi(0) = vj(0) = 1, ∀i, j → 1, 2, . . . ,K
4: φij(0) = 1, ∀i, j → 1, 2, . . . ,K
5: while 1 do
6: for i, j → 1, 2, . . .K do
7: φij(n + 1)→ Wij

Wij + vi(n)vj(n)
8: end for
9: for i→ 1, 2, . . .K do

10: vi(n + 1)→ vi(n)
∑

j φij(n)
11: end for
12: for j → 1, 2, . . .K do
13: vj(n + 1)→ vj(n)

∑
i φij(n)

14: end for
15: if maxi,j{|φij(n+ 1)− φij(n)|} > δ then
16: n→ n+ 1
17: else
18: for i, j → 1, 2, . . .K do
19: βij(0)→ φij(n)
20: end for
21: break
22: end if
23: end while

social welfare computed by Auc2Reserve satisfies:

Pr

[
SW < SWopt −Mγ − M !

ε(M −N)!
− t

ε

]
≤ exp(−t), (10)

where γ = M ln(αmax
G(Bsq)

) and Bsq is defined in Line 2 of

Algorithm 2, for any t > 0.

Proof 2: The basic idea in this proof is that according to
Bayes’ rule and the BP-based permanent approximation ratio
in Theorem 4, in every iteration of Algorithm 2, the probability
that charging point j is allocated to an user i approximates the
correct exponential allocation distribution by a multiplicative
factor of αmax

G(B). So after allocating all M fast charging points,

the probability that we sample an allocation outcome r ∈ R
differs from the correct exponential allocation distribution by
a multiplicative factor of (αmax

G(Bsq)
)M . Then the correctness of

this theorem can be achieved by directly applying the results in
[25] [19]. To begin with, we first prove the following lemma:

Lemma 1: Auc2Reserve yields an outcome r ∈ R differing
from the correct distribution by at most (αmax

G(Bsq)
)M factor.

We use j → i to denote that charing point j is assigned to user
i. In the exponential mechanism EXPR

ε , for any allocation
outcome r ∈ R, using the Bayes’ rule, the probability r is
chosen as the final allocation outcome can be expressed as
follows:

Pr[EXPR
ε (b) = r] = Pr[point 1 is assigned to r−1[1]]

·Pr[point 2 is assigned to r−1[2]|1→ r−1 [1]]
. . . ·Pr[point N is assigned to r−1[N]
|1→ r−1[1], . . . , N − 1→ r−1[N − 1]].

(11)

Take the first iteration of our Auc2Reserve algorithm as start,

we use the distribution

Pr[point 1 is assigned to user i] = xi ∝ perma(G(D1,i)).

In the exponential mechanism EXPR
ε ,

Pr[point 1 is assigned to user i] ∝ exp(
ε

2
bi1)perma(G(D1,i))

Because xi approximates perma(G(D1,i)) by up to an mul-
tiplicative factor of αmax

G(Bsq)
, we know that the probability

that user i gets charging point 1 in Auc2Reserve approximates
the correct marginal in EXPR

ε up to an αmax
Bsq

multiplicative
factor. Not only for the first iteration, we can find this
αmax
G(Bsq)

multiplicative factor holds for the remaining iterations

in Auc2Reserve. Therefore, the probability that Auc2Reserve
yields an outcome r ∈ R differing from the correct distribution
by at most (αmax

G(Bsq)
)M factor.

Having proved this lemma, the correctness of this theorem
can be achieved by directly applying the results in [25] [19].

Theorem 6 provides an upper bound on the social welfare
of Auc2Reserve. We observe that this bound decreases as the
number of EV users increases, and increases as ε and N
increases. As the differential privacy factor, a smaller ε is
the indicator of a stronger differential privacy. Therefore, this
upper bound indicates that there exists an explicit tradeoff
between maximizing social welfare and providing stronger
differential privacy for more EV users. Theorems 5 and 6
together show that Auc2Reserve satisfies all four require-
ments in the FCR-Auc problem. Compared to the exponential
mechanism EXPR

ε , Auc2Reserve achieves a much higher
computationally efficiency via a tradeoff on an additional γ
factor in incentive compatibility and an additional Mγ factor
in social welfare.

E. Generalization of Auc2Reserve
We design Auc2Reserve under the scenario where all EV

users submit bids to reserve fast charging points for the same
future time slot. In fact, Auc2Reserve can be applied to other
generalized scenarios of FCR systems. One scenario is that
future time slots are to be available for reservation one by
one. Then the central controller in FCR system simply needs
to execute Auc2Reserve for every future time slot after it
becomes available for reservation. Another scenario is that
the administrator opens the reservation for N fast charging
points at T > 1 different time slots at one time, and make
the allocation and pricing decisions all at once. In this case,
the central controller can construct a bidding matrix of size
M -by-NT and then execute Auc2Reserve using this matrix
as the input. If M > NT , Auc2Reserve will use the same
item-oriented allocation process. If M ≤ NT , an agent-
oriented allocation process will be applied. In both scenarios,
Auc2Reserve is able to make fast charging point allocation
and pricing decisions in a computationally efficient manner,
i.e., providing an explicit guarantee on social welfare of
FCR system, and ensure γ-incentive compatibility, individual
rationality and ε-differential privacy simultaneously.

V. PERFORMANCE EVALUATION

In this section, we demonstrate the efficiency of our pro-
posed Auc2Reserve mechanism for EV fast charging reserva-
tion via numerical simulation.

Methodology. In our simulation, we assume a virtual traffic
network where M electric vehicles and N DC fast charging

919191

points are randomly distributed. Because EV users usually
want to get fast charging at certain locations, they would
only submit bids to a limited number of fast charging points.
Therefore, in the simulation, we assume that every EV user
will submit at most 8 bids in the form of (valuation, charging
point) to compete for reservation at these fast charging points.
We assume that the budget, i.e., the maximal valuation, of
each EV user, follows a uniform distribution between 8 and
12 dollars. For every EV user j, the valuation and charging
point in her bids are separately randomly generated. In our
simulation, we set the parameters λ and δ in the BP-based per-
manent approximation algorithm as 0.7 and 0.1, respectively.
We perform simulation of Auc2Reserve under the settings
of M = 60, 70, 80, 90, 100 EVs and N = 10, 20, 30, 40
fast charging points. And we set the privacy parameter ε in
Auc2Reserve to be 0.1 and 0.5. For each combination of M ,
N and ε, we repeat the simulation for 20 times and compute
the average value.

Results. In what follows, we evaluate the performance of
Auc2Charge on both social welfare and user privacy. Figure 2
shows the social welfare achieved by Auc2Reserve under
different numbers of EVs when the number of fast charging
points is fixed at 40 in the FCR system. We first see that the
social welfare of Auc2Reserve with ε = 0.1 is smaller than
that with ε = 0.5 at all cases. This is because a smaller ε
represents a stronger differential privacy of EV users. And as
pointed in Theorem 6, this stronger is achieved through a trade
of social welfare loss. The smaller ε is, the higher this loss
becomes. An interesting observation we find is that when ε
and number of charging points are fixed, the social welfare of
Auc2Reserve decreases as the number of EVs increases. The
reason of this observation is as follows. In our simulation,
the reservation bids submitted by EV users are generated
following the same distribution. Thus when the number of fast
chargers are fixed, the optimal social welfare SWopt should
also be a fixed value in expectation, and independent from
the number of EV users. However, when there are more EVs
participating the auction, Auc2Reserve ensures the differential
privacy of EV users through a higher tradeoff of social welfare
loss. This observation is consistent with the social welfare
bound of Auc2Reserve in Equation (10) from Theorem 6. From
this equation we see that even if SWopt is fixed, both Mγ and

M !
(M−N)! increase as M increases, which leads to the decrease

of upper bound on Auc2Reserve’s social welfare.

60 70 80 90 100
0

50

100

150

200

250

Number of Electric Vehicles

S
oc

ia
l W

el
fa

re

Auc2Reserve ε=0.1
Auc2Reserve ε=0.5

Fig. 2: Social Welfare with N = 40 Fast Charging Points

We then plot the social welfare of Auc2Reserve under
different number of fast chargers when there are 100 EVs in
the FCR system in Figure 3. We also observe that the social
welfare when ε = 0.5 is higher than that of ε = 0.1 due
to the stronger differential privacy of the latter. And opposite

from the trend of varying EV numbers, Auc2Reserve yields a
higher social welfare when there are more fast charging points
in the system. This is because with more resources in the
auction, there are more EV users being allocated a fast charger
when executing Auc2Reserve. And it is also consistent with
Equation (10), where the social welfare loss M !

(M−N)! decreases

as the number of fast chargers N increases.

10 20 30 40
0

20

40

60

80

100

120

Number of Fast Charging Points

S
oc

ia
l W

el
fa

re

Auc2Reserve ε=0.1
Auc2Reserve ε=0.5

Fig. 3: Social Welfare with M = 100 Electric Vehicles

Other than social welfare, we also use the recent proposed
notion privacy leakage [37] [36] to evaluate the efficacy of
Auc2Charge in protecting user privacy.

Definition 2: (Privacy Leakage[36]) Let
a and
a′ be prob-
ability distributions over a price set P for bidding matrix
B and B′, which only differ in one single bid, respectively.
The privacy leakage between the two bidding matrices is the
maximum of absolute differentces between the logarithmic
probabilities of the two distributions, i.e.,

maxi| ln ai − ln a′i|. (12)

60 70 80 90 100
0

0.05

0.1

0.15

0.2

Number of Electric Vehicles

P
riv

ac
y

Le
ak

ag
e

Auc2Reserve ε=0.1
Auc2Reserve ε=0.5

Fig. 4: Privacy Leakage with N = 40 Fast Charging Points

Given an auction, a smaller privacy leakage implies that
when there is one arbitrary EV user changes one of her bids
in the FCR system, the probability distribution over pricing
decisions made by this auction would only have a small change
as well, which proves the differential privacy of this auction.

10 20 30 40
0

0.05

0.1

0.15

Number of Fast Charging Points

P
riv

ac
y

Le
ak

ag
e

Auc2Reserve ε=0.1
Auc2Reserve ε=0.5

Fig. 5: Privacy Leakage with M = 100 Electric Vehicles

Figure 4 plot the privacy leakage of Auc2Reserve under
different number of EVs with 40 fast chargers in the FCR

929292

system. We observe that when ε = 0.1, the privacy leakage of
Auc2Reserve is less than 0.02. And when ε = 0.5, this leakage
is less than 0.15. This observation implies that it is almost
impossible to for an adversary to infer the personal information
of EV users, e.g., charging location preference. When fixing
the number of EVs as 100, from Figure 5 we also have a sim-
ilar observation on the privacy leakage of Auc2Reserve under
different number of fast chargers. Therefore, Auc2Reserve is
efficient in ensuring EV users’ privacy.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of Iterations
(a) Convergence of Algorithm 3 (ε = 0.1)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of Iterations
(b) Convergence of Algorithm 3 (ε = 0.5)

Fig. 6: Computational Efficiency of Auc2Reserve with M = 100 Electric
Vehicles

Furthermore, we demonstrate the computational efficiency
of Auc2Reserve by plotting the cumulative distribution func-
tion on number of iterations in Algorithm 3 when it converges.
It is shown in Figure 6 that in Auc2Reserve, the permanent
of bidding matrices can be approximated very fast under
different values of ε, i.e., converging within 30 iterations in
99% cases. With this fast convergence, Auc2Reserve is highly
computationally efficient in making fast charger allocation and
pricing decisions for FCR systems.

VI. RELATED WORK

EV Charging Facilities. EV charging facilities are indis-
pensable infrastructure of both intelligent transportation sys-
tems and smart grid, and have drawn great attention from both
academia and industry. There has been a growing literature
on various EV charging facilities [23], [10], [5], [17], [9], [4],
[1], [2]. Ardakanian et al. [5] designed a distributed charging
algorithm to adjust EV charging rate for residential chargers.
Lopes et al. [23] designed a framework to integrate EVs into
power system. Chen et al.[10] designed a central controller
to schedule the EV charging using renewable energy. Chen et
al. [9] studied a joint optimal power flow and EV charging
problem, and built an online controller to enable efficient
EV charging. Jin et al. [21] built a stochastic optimization
framework to minimize the cost of single charging station.

Recently, the fast charging reservation (FCR) system, an
innovative charging facility, was developed and has drawn
special attention form both academia and industry. In this

system, EV users can reserve DC fast chargers at different
locations ahead of time. which charge the battery of EV to
80% capacity within 30 minutes. The FCR system facilitate
people to charge EVs during a long distance trip with a
short time delay, and thus are welcomed by EV users. In
major automobile markets, several FCR systems have been
developed. Tesla has deployed a Supercharger network with
over 400 Supercharger stations across the United State s[4].
BMW and ChargePoint develop the ChargeNow program, in
which BMW EV users can reserve public fast chargers via
mobile devices [1]. China has initiated a project to develop a
fast charging reservation system with over 600 fast chargers
along major highways across the country by 2020 [2]. And
over 100 fast chargers have been deployed by early 2015. In
FCR systems, there are usually more EVs than fast charging
points. And recent studies [3] [35] show that fast chargers are
in fact the most scarce resource in FCR systems, instead of
the commonly assumed electricity. Thus how to allocate fast
chargers between EV users requires careful study.

Auction Theory. Auction allocates resources to buyers
who value them most, reduces the chance of overpricing
and underpricing, and thus improves social welfare. It has
been widely used in Internet advertisement [14], wholesale
electricity market [30] and cloud computing [31]. Recently
researchers propose to utilize auction to improve resource
allocation efficiency for EV charging, and different auctions
are designed for different scenarios [18], [34], [29]. Gerding
et al. [18] proposed a two-side truthful online auction with
advanced reservation, in which EV users and the charging
station can exchange their charging preference and cost. Robu
et al. [29] designed an online mechanism, in which EV users
bid for different charging speeds based on their arrival time,
and cancel the charging allocation on departure. Xiang et
al. [34] proposed an online auction framework for EV park-
and-charge. However, these auctions achieve social welfare
maximization by incentivizing EV users to truthfully report
their valuation on different set of resources, e.g., electricity and
charging points, putting EV users at the risk of exposing their
privacy. Adversaries may use these real valuations to infer EV
users’ personal information. And this inference becomes even
easier when EV users participate charging auctions frequently.
Therefore, a privacy-preserving auction is desired to protect
the privacy of EV users against such inference.

McSheery et al. first proposed to use differentially private
mechanisms in auction design in [25]. They showed that
differential privacy implies approximate incentive compati-
bility, and designed exponential mechanism for differentially
private digital auctions and attribute auctions. Huang et al.
[19] instantiate the principle in [25], and develop an ap-
proximate implementation for generic differentially private
auctions. Though the implementation has a polynomial-time
complexity, i.e., O(n13). It is impractical in real-world as
the implied constant in the O function is very large. Zhu et
al. designed differentially private mechanisms for spectrum
auction in [37] [36]. The proposed algorithms leverage unique
characteristics in spectrum auctions and achieves approximate
revenue maximization. In our Auc2Reserve, we developed an
improved approximate sampler for fast charger allocation. To
accelerate the allocation, we applies the belief-propagation
technique in matrix permanent approximation. Therefore, not
only is Auc2Reserve γ-incentive compatible, individual ra-
tional, ε-differentially private, it also makes fast charging

939393

points allocation and pricing decisions with a close-form social
welfare guarantee in a computational efficient way. To the best
of our knowledge, Auc2Reserve is the first differentially private
auction for EV fast charging reservation systems.

VII. CONCLUSION

The FCR system allows EVs to send requests to reserve
DC fast chargers ahead of time. In this system, the allocation
of fast charging points requires careful design because they
are the most scarce resource instead of electricity. Not only
charging points should be allocated to EV users who really
values them, the allocation and the corresponding pricing poli-
cies should also prevent users’ private information from being
inferred. In this paper, we explore the feasibility and benefits
of differentially private auction in FCR systems. We design
Auc2Reserve, a differentially private randomized auction for
FCR system. Auc2Reserve applies the belief propagation tech-
nique to accelerate the randomized allocation process. Thus
it is significantly more computationally efficient than generic
differentially private mechanisms. To the best of our knowl-
edge, we are the first to apply belief-propagation in designing
computationally efficient differentially private mechanisms.
Auc2Reserve is γ-incentive compatible, individual rational, ε-
differentially private and provides an explicit approximation
ratio on the social welfare of FCR systems. Using simulation,
we further demonstrate the efficiency of Auc2Reserve on social
welfare and privacy leakage under various settings of FCR
systems. In future work, we plan to extend the Auc2Reserve
mechanism by including other realistic constraints in both
the electricity market, e.g., electricity allocation, vehicle-to-
grid transmission and ramp-up/ramp-down cost of electricity
generation, and intelligent transportation systems, e.g., the un-
certainty of EV’s mobility. We will also explore the feasibility
of computationally efficient differentially private auctions for
other charging facilities, e.g., EV park-and-charge lot.

VIII. ACKNOWLEDGMENT

We would like to thank Xi Chen, Fanxin Kong, Yuwei Xu
and Rui Zhang for their insightful discussions. The authors’
work are supported in part by the NSERC Collaborative Re-
search and Development Grant (CRDJP 418713), CFI Leaders
Opportunity Fund 23090, NSFC Grant 61303202 and NSFC
Tianjin Research Grant (16JCQNJC00700).

REFERENCES

[1] The bmw chargenow program. www.chargenow.com.
[2] China plan to develop fast charging network across

country. www.ft.com/intl/cms/s/0/1b26d892-9d66-11e4-8946-
00144feabdc0.html.

[3] The economics of ev charging stations.
https://energyathaas.wordpress.com/2015/03/16/the-economics-of-
ev-charging-stations/.

[4] The tesla supercharger. www.teslamotors.com/supercharger.
[5] O. Ardakanian, C. Rosenberg, and S. Keshav. Distributed control of

electric vehicle charging. In ACM e-Energy, 2013.
[6] I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda. Accelerating

simulated annealing for the permanent and combinatorial counting
problems. In the 17th ACM-SIAM symposium on Discrete algorithm.

[7] S. Bhattacharya, G. Goel, S. Gollapudi, and K. Munagala. Budget
constrained auctions with heterogeneous items. In STOC 2010.

[8] S. Chawla, J. D. Hartline, D. Malec, and B. Sivan. Sequential posted
pricing and multi-parameter mechanism design. In STOC 2010.

[9] N. Chen, C. W. Tan, and T. Quek. Electric vehicle charging in smart
grid: Optimality and valley-filling algorithms. Technical Report, 2014.

[10] S. Chen and L. Tong. iems for large scale charging of electric vehicles:
Architecture and optimal online scheduling. In IEEE SmartGridComm,
2012.

[11] M. Chertkov, L. Kroc, F. Krzakala, M. Vergassola, and L. Zdeborová.
Inference in particle tracking experiments by passing messages between
images. Proceedings of the National Academy of Sciences, 2010.

[12] M. Chertkov and A. B. Yedidia. Approximating the permanent with
fractional belief propagation. J. Mach. Learn. Res., 2013.

[13] C. Chung, J. Chynoweth, C. Qiu, C. Chu, and R. Gadh. Design of fair
charging algorithm for smart ev charging infrastructure. In 2013 IEEE
ICTC.

[14] N. R. Devanur and T. P. Hayes. The adwords problem: online keyword
matching with budgeted bidders under random permutations. In ACM
EC’09.

[15] C. Dwork. Differential privacy. In ICALP 2006.
[16] C. Dwork and A. Roth. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science,
9(34):211–407, 2013.

[17] L. Gan, U. Topcu, and S. Low. Optimal decentralized protocol for
electric vehicle charging. Power Systems, IEEE Transactions on,
28(2):940–951, 2013.

[18] E. H. Gerding, S. Stein, V. Robu, D. Zhao, and N. R. Jennings. Two-
sided online markets for electric vehicle charging. In AAMAS’13.

[19] Z. Huang and S. Kannan. The exponential mechanism for social welfare:
Private, truthful, and nearly optimal. FOCS ’12.

[20] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries.
Journal of the ACM (JACM), 51(4):671–697, 2004.

[21] C. Jin, X. Sheng, and P. Ghosh. Energy efficient algorithms for ev
charging with intermittent renewable energy sources. In IEEE PES’13.

[22] R. J. Lipton, V. V. Vazirani, M. Mihail, C. Tovey, and E. Vigoda.
Algorithmic game theory. 2007.

[23] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida. Integration of electric
vehicles in the electric power system. Proceedings of the IEEE, 2011.

[24] Z. Ma, D. S. Callaway, and I. A. Hiskens. Decentralized charging
control of large populations of plug-in electric vehicles. Control Systems
Technology, IEEE Transactions on, 2013.

[25] F. McSherry and K. Talwar. Mechanism design via differential privacy.
FOCS ’07.

[26] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and
mechanism design. In EC 2009.

[27] A. Narayanan and V. Shmatikov. Robust de-anonymization of large
sparse datasets. In 2008 IEEE Security and Privacy.

[28] M. Pan, J. Sun, and Y. Fang. Purging the back-room dealing: Secure
spectrum auction leveraging paillier cryptosystem. Selected Areas in
Communications, IEEE Journal on, 29(4):866–876, 2011.

[29] V. Robu, E. H. Gerding, S. Stein, D. C. Parkes, A. Rogers, and
N. R. Jennings. An online mechanism for multi-unit demand and its
application to plug-in hybrid electric vehicle charging. JAIR, 2013.

[30] G. B. Sheblé. Computational auction mechanisms for restructured power
industry operation. springer, 1999.

[31] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau. An online auction
framework for dynamic resource provisioning in cloud computing. In
SIGMETRICS’14.

[32] S. Stein, E. Gerding, V. Robu, and N. R. Jennings. A model-based online
mechanism with pre-commitment and its application to ev charging. In
AAMAS’12.

[33] L. G. Valiant. The complexity of computing the permanent. Theoretical
computer science, 8(2):189–201, 1979.

[34] Q. Xiang, F. Kong, X. Chen, L. Kong, X. Liu, and L. Rao. Auc2charge:
An online auction framework for electric vehicle park-and-charge. In
ACM e-Energy 2015.

[35] Q. Xiang, F. Kong, X. Liu, X. Chen, L. Kong, and L. Rao. Bid to
charge: Exploring auction design for electric vehicle charging stations.
Technical Report, McGill University, 2015.

[36] R. Zhu, Z. Li, F. Wu, K. Shin, and G. Chen. Differentially private
spectrum auction with approximate revenue maximization. MobiHoc
’14.

[37] R. Zhu and K. G. Shin. Differentially private spectrum auction with
approximate revenue maximization. In INFOCOM’15.

949494

Update Algebra: Toward Continuous, Non-Blocking
Composition of Network Updates in SDN

Geng Li∗†, Y. Richard Yang∗, Franck Le‡, Yeon-sup Lim‡, Junqi Wang§
∗Yale University, USA, †Tongji University, China, ‡IBM T.J. Watson Research Center, USA, §Rutgers University, USA

Abstract—The ability to support continuous network config-
uration updates is an important ability for enabling Software
Defined Networks (SDN) to handle frequent or bursty changes.
Current solutions for updating SDN configurations focus on one
single update at a time, leading to slow, sequential (i.e., blocking)
update execution. In this paper, we develop update algebra,
a novel, systematic, theoretical framework based on abstract
algebra, to enable continuous, non-blocking, fast composition
of multiple updates. Specifically, by modeling each data-plane
operation in the set of data-plane operations to be executed
by an update as a set-theoretical projection, update algebra
defines novel operation composition so that the number of
projections for the same match remains constant regardless of
the number of updates to be composed, leading to substantial
performance benefits. Specifying the dependencies of the data-
plane operations in updates as a subset of a free monoid in the
general case and as partial ordering for basic consistency, update
algebra defines update composition that preserves consistency,
even under partially-executed updates, to guarantee correctness.
We conduct asymptotic analysis, extensive benchmarking using
a real controller, and integration with a real application to
demonstrate the benefits of update algebra. In particular, our
asymptotic analysis demonstrates that in independent-update
dominant settings, update completion time of update algebra
remains asymptotically constant despite growth of the number
of updates to be executed. Our benchmarking shows that update
algebra can achieve 16x reduction in update latency even in
settings with an update arrival rate of only 1.6/s. Our integration
with Hedera, a real SDN traffic engineering application, shows
that update algebra can reduce average link bandwidth utilization
by 30% compared with sequential updates.

I. INTRODUCTION

The ability to provide continuous, rapid, non-blocking
network configuration updates is an essential capability for
Software Defined Networking (SDN). First, it provides a
foundation for the development of advanced applications
with frequent network updates, which are typically prohib-
ited or discouraged in current SDN systems. A recent trend
is the application of machine learning to continuously and
rapidly adapt routing strategies to minimize maximum link
utilization, achieve proportional fairness, or maximize other
objectives [1]–[3]. In addition, with studies having revealed
that traffic in several settings (e.g., data centers) is highly
dynamic, many solutions are advocating switching traffic
at a finer granularity than flows, including subflows, and
flowlets, to reduce congestion, and optimize path choices more
frequently [4]–[6]. These trends and applications emphasize
the need for controllers to support continuous, rapid, non-
blocking network configuration updates. Second, a network
may experience a set of rapid bursts of changes, causing an
SDN controller to receive and handle a batch of network
configuration updates [7]. For example, such updates may stem
from the occurrence of unpredictable events including outages,
Denial of Service attacks, BGP re-routes, or flash crowds.

Although a large amount of research effort has recently
been devoted to developing efficient algorithms to update
forwarding rules in SDN, existing solutions are unsatisfactory,
and do not provide the required capability to handle frequent
or short sudden groups of network changes. This is because
despite having developed algorithms reduce the numbers of
changes, or minimize the network update completion times [8],
or preserve a range of properties [9]–[12] including loop and
blackhole freedom, existing solutions focus on one single
network configuration update at a time. In other words, they
execute consecutive received network updates individually,
and sequentially in a blocking manner [13]. Similar to the
development of pipelining executions of instructions that has
led to fundamental changes and performance improvements
in computer architecture, the ability to execute continuous
and non-blocking updates can lead to significant potential
improvements in SDN control architecture [14].

Achieving continuous, non-blocking network updates is not
straightforward. The first challenge is to guarantee correctness;
a naı̈ve execution may lead to unnecessary blocking due
to dependencies on updates. To illustrate this, consider two
consecutive updates: a first update U1 sets the route for a
flow, and a following update U2 changes part of the route.
Therefore, in a straightforward execution, the execution of U2

cannot start until U1 is finished, leading to a sequential (i.e.,
blocking execution) update model. The second challenge is
that a network configuration update often consists of multiple
operations that must be executed at different switches in
a specific order to guarantee properties, such as blackhole
freedom and waypoint routing (e.g., to traverse a sequence
of VNFs) [12]. When executing consecutive updates in a non-
blocking manner, these properties must also be preserved. The
third challenge is that because network configuration updates
often consist of multiple operations, updates do not operate
atomically, and when a new update arrives, previous updates
may be mid-execution. The execution status may even be
unknown to the controller due to the fundamentally distributed
nature of the SDN system.

In this paper, we develop a novel, systematic, and foun-
dational theoretical framework based on abstract algebra to
reason about and support continuous, non-blocking updates.
The framework is motivated by the following two insights.
First, when handling multiple updates (i.e., multiple batches
of operations), operations on the same flow rules from con-
secutive updates may be replaced by fewer equivalent ones.
For example, the creation of a flow rule followed by its
modification can be replaced by the creation of an updated
rule. To realize this insight, we model each operation as a
set-theoretical projection, which provides flexible composition

1081

between operations. As such, the first challenge can be ade-
quately addressed. Second, an update can be represented by
a set of feasible sequences of operations whose order ensures
the desired properties, and composition of multiple updates
can be modeled as the application of different mathematical
operations on these sequences. In abstract algebra, such a
model can be well defined by a free monoid (of which a typical
example is words with letters). By modeling each update as a
subset of a free monoid on a set of projections, we can take
advantage of the algebraic properties (i.e., associativity, idem-
potence, selectivity, commutativity) of the structure to identify
equivalent operation sequences that preserve correctness and
consistency properties, whether the former updates have been
completely or partially executed. This insight addresses the
second and third challenges.

We conduct asymptotic analysis, extensive benchmarking
using a real controller, and integration with a real application
to demonstrate the benefits of update algebra. The asymptotic
analysis demonstrates that in independent-update dominant
settings, the completion time with the existing sequential
execution grows linearly, while that of the update algebra
remains asymptotically constant. The benchmarking results
show that update algebra can achieve 16x reduction in update
latency even in settings with an update arrival rate of only 1.6/s
Finally, the integration with a real application shows that by
applying update algebra, SDN Traffic Engineering applications
(e.g., Hedera [2]) can reduce the average link bandwidth
utilization by 30% compared to sequential execution.

II. BASIC MODELS

This section introduces the basic models to represent the
network data plane configuration and individual network up-
dates. The update algebra framework for the continuous, non-
blocking composition of consecutive network updates will
be specified in Section III. TABLE I summarizes the main
variables and notations used in the following content.

TABLE I: Terminologies

SW = {sw} the set of switches (forwarding tables)
M = {m} the set of all possible match values
PR = {pr} the set of priorities
key = (key.m, key.pr) flow rule key, defined by a match value

endowed with a priority
KEY = {key} = M ×PR the set of 2-tuple flow rule keys
AC = {ac} the set of all possible actions
AC+ = AC ∪ {Null} the action set with a null value
C : SW ×KEY → AC+ data plane configuration
o(sw, key, ac) : C → C′ data plane operation
u = o1o2...ok update representative
U = {u1, u2, ...} : C → C′ data plane update
O(U) constituent operations of U
Ω(U) order constraint of update U

A. Data Plane Configurations
An SDN is comprised of a set of switches SW . A data

plane configuration C consists of a collection of flow rules
that determine the packets’ forwarding states in the network.
A flow rule defines an action ac ∈ AC for flows matching
a key ∈ KEY at switch sw ∈ SW . A key therefore has
two attributes: (1) the matching criteria (key.m), and (2) a
priority (key.pr). Equation (1) illustrates four flow rule keys.

 ! = {",#, $, %}

" # $ %

&'(=

{)*+-,)*+.}

/012 345_6 7 345_' 345_8 345_9 :;<<

/01> :;<< :;<< :;<< :;<<

Fig. 1: Illustration of a data plane configuration C with four switches
and two keys. A data plane operation o(A, key1, fwd E) : C → C′

is applied on C to get C′ where the changed value is labeled in red.

The matching criteria key.m can have wildcards (*) to match
ranges of values, and key.pr is set to a finite integer number
where a higher number means a higher priority: if a flow
matches the matching criteria from multiple keys, the one with
the highest priority is preferred and selected.

key1 = (pr = 1,m = {src ip = 10.0.0.1}),
key2 = (pr = 1,m = {src ip = 10.0.0.2}),
key3 = (pr = 2,m = {dst ip = 10.0.0.∗}),
key4 = (pr = 2,m = {src ip = 10.0.1.1, dst port = 22}).

(1)

An action ac of a flow rule represents the instruction
that is applied to the flows matching it. An action can be
forwarding to a specified next-hop, modifying a packet, or
pipeline processing. The proposed models support the concept
of multi-table pipelines in a switch: each flow table can simply
be represented as an individual virtual sw. Formally, we define
a data plane configuration as follows.

Definition 1 (Data Plane Configuration). A data plane con-
figuration C of a network is defined as a map from the
set of switches and flow rule keys to the set of actions
C : SW ×KEY → AC+, where AC+ = AC ∪ {Null}.

Therefore, a configuration C can be expressed with a 2-
dimensional matrix over SW × KEY where each element
Csw,key is an action ac ∈ AC+ for (sw, key). Csw,key =
Null represents the absence of a flow rule with key key at
sw. Fig. 1 illustrates an example of C with four switches and
two keys.

B. Data Plane Updates
A data plane update U consisting of a set of data plane op-

erations O(U) on multiple switches and flow rules can change
one configuration to another. Data plane operations act on keys
at a particular switch and fall into one of three categories:
addition, modification, or deletion. We denote these operations
as {add(sw, key, ac),mod(sw, key, ac), del(sw, key)}; e.g.,
add(sw, key, ac) means to add an action ac for key at sw.
For example, consider the network topology depicted in Fig. 2.
In the first update U1, flows from source IP address 10.0.0.1
(key1) are forwarded along the route A→ B → C → D; in
the second update U2, flows from source IP address 10.0.0.2
(key2) are forwarded along B→C→D, and the forwarding
path for key1 is changed to A→E→C→D (e.g., to balance
the network load). Fig. 2 illustrates the corresponding data
plane operations in both U1 and U2.

For further derivation, we introduce a more general expres-
sion o, parameterized by SW × KEY × AC+: add, mod
and del are all special cases of o; e.g., add(sw, key, ac) or
mod(sw, key, ac) can be expressed as o(sw, key, ac), and
del(sw, key) as o(sw, key,Null). An operation o transforms
an arbitrary configuration C to another C ′ as follows:
Definition 2 (Data Plane Operation). A data plane operation
o(sw, key, ac) is defined as a morphism between two config-
urations, i.e., o : C → C ′ or C o−→ C ′, using:

1082

First update !

Install ABCD for !"#

$%# = &''(), !"#, *+'_-.

$/# = &''(-, !"#, *+'_0.

$1# = &''(0, !"#, *+'_2.

Second update !

Change to AECD for !"# Install BCD for !"#

$%&' = ($)*+, !"&, -.)_/0

$1&' =)!2*3, !"&0

$4& = 5))*/, !"&, -.)_60

$1# = 5))*3, !"#, -.)_60

$7# = 5))*6, !"#, -.)_80

o
c1

o
a1

o
b1

o
e1

o
a1'

o
b1'

o
c2

o
b2

CA

B

E

D

E

 !"# = $% = 1,& = {'%()$ = 10.0.0.1}

 !"* = +$% = 1,& = {'%()$ = 10.0.0.2}-

DAG

for /#

DAG

for /*

Fig. 2: An example of two consecutive updates involving common
flows (match key1). The order constraint ensuring blackhole freedom
for each update is illustrated as a DAG of data plane operations.

C ′sw′,key′ = [o(sw, key, ac)(C)]sw′,key′ (2)

=

{
ac if sw = sw′, key = key′,
Csw′,key′ otherwise. (3)

That is, o(sw, key, ac) maps C to C ′ by changing C ′sw,key =
ac but preserving other values of C. Fig. 1 shows an example
of applying the operation oa1′ = o(A, key1, fwd E) on
configuration C to obtain C ′, where the changed value is
labeled in red.

Due to the distributed nature of the data plane, operations
in an update can be applied in any order, resulting in different
intermediate configuration states. However, some intermediate
configurations during an update may violate consistency prop-
erties such as blackhole/loop-freedom; an order constraint is
required to specify the feasible operation orders in an update.

Definition 3 (Order Constraint). The order constraint of
update U is defined as Ω(U), which specifies the feasible
operation orders in U to ensure consistency properties.

A concrete instantiation of Ω(U) will be given in Sec-
tion III-C. Fig. 2 presents an example of the order constraint
to avoid blackholes where no matched rule exists during the
updates; the order constraint is represented in the form of a
directed acyclic graph (DAG); e.g., the DAG for U1 shows that
oa1 must be applied after ob1 and oc1. Note that generating
the order constraints for various consistency properties is well
studied in literature [9]–[12], and therefore not the focus of
our work.
Issues with Multiple Updates. The model for individual
updates is simple and well documented, but new issues arise
when attempting to compose and execute multiple consecutive
updates in a non-blocking manner. First, a naı̈ve parallel exe-
cution of consecutive updates could lead to non-deterministic
or incorrect outcomes. For example, in the scenario of Fig. 2,
the execution of U1, and U2, could lead to non-deterministic
configurations. This is because the operations oa1, and oa1′ ,
apply to the same key1 at switch A, but differ in action-
s: oa1.(sw, key) = oa1′ .(sw, key), but oa1.ac 6= oa1′ .ac.
Consequently, depending on the order in which they were
applied, the two operations would lead to different configu-
rations. Further, the order constraints in different updates may
have dependencies that affect the non-blocking composition

III-B2. General Update Composition

III-A. Operation as a Set-Theoretical Projection

III-B1. Update as a Subset of

a Free Monoid (Enumerating all

acceptable operation sequences)

III-C. Efficient

Composition for Basic

Consistency

III-D. Composition with Partial Execution

III-C. Efficient

Representation using

Partial Orders

Operation

Update

Update

Composition

Fig. 3: Roadmap of update algebra.

of consecutive updates and may be difficult to identify. For
example, oa1′ in U2 must be applied after oc1 in U1 to
guarantee the absence of blackholes. Lastly, when a new
update arrives, previous updates may be mid-execution. The
execution status may even be unknown to the controller due
to the fundamentally distributed nature of the SDN system.
For example, if U1 is partially executed when U2 arrives, the
exact execution status may be unknown to the controller.

III. UPDATE ALGEBRA FRAMEWORK

In this section, we present our update algebra framework
based on advanced abstract algebra. Specifically, data plane
operations and updates are modeled by the notions of set-
theoretical projection (Section III-A) and free monoid (Sec-
tion III-B1), which provide the foundation and substantial
algebraic properties for further composition. Based on these
models, Section III-B2 proposes a general solution to compose
consecutive updates. The solution is general as it can preserve
any consistency property. Then, Section III-C introduces an
efficient representation and composition using partial order to
guarantee specific but commonly required properties. Lastly,
Section III-D addresses the issue of composition with partially-
executed updates to guarantee correctness under uncertainty.
The roadmap of update algebra is illustrated in Fig. 3.

A. Operation as a Set-theoretical Projection
As the basic unit of an update, operation and its composition

are first introduced in update algebra, providing the foundation
and freedom to replace and rearrange the data plane operations
within one update or across distinct updates.

Recall Definition 2 where a data plane operation is defined
as a morphism from one configuration to another with one
value changed. The operation morphism can be viewed as a
set-theoretical projection as follows:

Definition 4 (Operation Projection). Considering the set of
all possible configurations over a fixed SW × KEY , such
a set is the Cartesian product (AC+)SW×KEY . Then the
operation o(sw, key, ac) can be considered a projection from
(AC+)SW×KEY to the subset {C|Csw,key = ac}.

Definition 4 helps us to visualize an operation as a mor-
phism of the configuration space, i.e., the Cartesian product
(AC+)SW×KEY as shown in Fig. 4. For example, assume
|SW × KEY | = 2, then the space is two-dimensional.
Therefore, o(sw, key, ac) projects any configuration points
onto a line with (sw, key)-component = ac, and the operation
on the other (sw∗, key∗) is “orthogonal” to o(sw, key, ac).

Definition 5 (Morphism Equality). Two morphisms π1 and π2
are equivalent iff for any configuration C, π1(C) = π2(C).

1083

Since both the domain and codomain of an operation
morphism are the configuration space, a set of data plane
operations {o1, o2, ...} can be “composed”, i.e., arranged in
a sequence to form a new morphism. Formally, we define a
binary operation ◦, called composition of morphisms, such
that for any o1 : C0 → C1 and o2 : C1 → C2, we have
o2 ◦ o1 : C0 → C2. By modeling an operation as a set-
theoretical projection based on Definition 4, the operation
composition holds the following properties:

Theorem 1 (Operation Composition Properties). The univer-
sal operation set O = {o1, o2, ...} and the binary operator ◦
have the following four properties under Definition 5.

1) Idempotence (general): ∀o1
o1 ◦ o1 = o1. (4)

2) Associativity (general): ∀o1, o2, o3
(o3 ◦ o2) ◦ o1 = o3 ◦ (o2 ◦ o1). (5)

3) Selectivity (conditional): if o1.(sw, key) = o2.(sw, key),

o2 ◦ o1 = o2. (6)

4) Commutativity (conditional): if o1.(sw, key) 6=
o2.(sw, key),

o2 ◦ o1 = o1 ◦ o2. (7)

Here o1.(sw, key) = o2.(sw, key) means both the sw and
the key of o1 and o2 are equal. Theorem 1 can be directly
proven by Definition 2. Intuitively, if each morphism is con-
sidered as a projection based on Definition 4, we can visualize
the four operation properties in the form of projections in a
configuration space as in Fig. 4.

C

C1

C2

C3

C1 = o1(C), C2 = o2(C1),

C3 = o3(C2) = (o3 ◦ o2)(C1)

Associativity

C1 = C2
C

C1 = o0(C), C2 = o0(C1)

Idempotence

C
C1

C2

C1 = o1(C), C2 = o2(C1) =
o2(C)

Selectivity

C′
1

C1

C12 = C21

C

C1 = o1(C), C12 = o2(C1),

C2 = o2(C), C21 = o1(C2)

Commutativity
Fig. 4: Visualization of the four properties satisfied by projec-
tions.

The properties of real-world SDN implementation (e.g.,
Flow table modification messages in OpenFlow) align exactly
with these properties except for Selectivity. TABLE II illus-
trates a concrete example of Selectivity, where o1.(sw, key) =
o2.(sw, key). Note that if o2 is a mod, all results after
composition become an add. Because in our framework
add(sw, key, ac2) = mod(sw, key, ac2) = o(sw, key, ac2),

and an add can act as a potent mod (an add operation can
override an action even though an action for the identical key
already resides in the requested table sw), therefore Selectivity
property can still hold. Note that o.key is endowed with a
determined priority, so operations on overlapping flow rules
can be distinguished in composition.

TABLE II: Composition rules for o2 ◦ o1.

o2 \ o1 add(ac1) mod(ac1) del()
add(ac2) add(ac2) add(ac2) add(ac2)
mod(ac2) add(ac2) add(ac2) add(ac2)

del() del() del() del()

B. General Update Representation and Composition
1) Update as a Subset of a Free Monoid: Given the concept

of operation composition, an update can be considered as the
composition of data plane operations in different sequences,
e.g., o1 ◦ o2 ◦ o3 and o3 ◦ o1 ◦ o2. Therefore, we extend the
definition of an update using a free monoid [15] to address
possible operation sequences and capture the order constraint.
The formal definitions of the monoid and the free monoid are
given as follows:

Definition 6 (Monoid). A monoid (sometimes called a semi-
group with identity element) is a 3-tuple (S, e, ∗), where S
is a set, e ∈ S is an element, and ∗ is a binary operation
S×S → S such that for all x, y, z ∈ S, x∗(y∗z) = (x∗y)∗z
and e ∗ x = x ∗ e = x.

Definition 7 (Free Monoid). A free monoid S∗ on a generat-
ing set S is a monoid whose elements are all finite sequences
(or strings) of zero or more elements from S, with string
concatenation as the monoid operation ∗.
Example: Letter and Words - A typical free monoid example
is about letters and words. Start with an alphabet S of letters,
S = {a, b, c, ..., z}. A word on the generating set S is a finite
sequence of letters, e.g., infocom, and paris. Thus, S∗ is the
set of all possible words, the identity element e is an empty
word, and the operation ∗ is word-concatenation. In this free
monoid, any words can be simply composed together to get a
new word, e.g., no ∗ on = noon.

Consider a free monoid O∗, in which the generating set is
a data plane operation set O and the identity element e is an
empty update ∅ (i.e., applying nothing on a configuration C).
Then an update can be modeled as follows:

Definition 8 (Update Representation). An update is represent-
ed as a set U = {u1, u2, ...} where ui, called a representative,
is a sequence of elements from O(U), and satisfies the order
constraint Ω(U) and the following conditions:
• Constitution: ∀o ∈ O(U), o ∈ ui;
• Distinction: ∀oi, oj ∈ ui, oi.(sw, key) 6= oj .(sw, key).

Remark. U is a subset of the free monoid O(U)∗ on the
generating set O(U). Constitution condition guarantees that
all representatives have the constituent operations. Distinction
condition avoids configuring a flow rule twice in an update.
Each representative ui representing an order to compose O(U)
can transform a C to another as follows:

Definition 9 (Update Representative Morphism). An update
representative ui = o1o2...ok can be considered as a mor-

1084

C C′
u2 = o2 ◦ o1 ◦ · · · ◦ on

u1 = o1 ◦ o2 ◦ · · · ◦ on

ui ∈ U

...

(a) Equivalence of representatives.

C0 C1

C2

U1

U2 ◦ U1

U2

(b) Update composition.

Fig. 5: Diagrams of the update algebra. (a) Applying any represen-
tative of an update achieves the same result. (b) If U1 : C0 → C1

and U2 : C1 → C2, then U2 ◦ U1 : C0 → C2.

phism between two configurations, i.e., ui : C → C ′, where
C ′ = ui(C) = (o1 ◦ o2 ◦ ... ◦ ok)(C).

Theorem 2 (Equivalence of Representatives). Given an update
U , for any configuration C, we have ui(C) = uj(C),
∀ui, uj ∈ U .

Theorem 2 can be simply proven with Commutativity
in Theorem 1 and the conditions in Definition 8. Fig. 5(a)
illustrates the diagram of Theorem 2. According to the monoid
presentation theory [15], an update U is an equivalence class
of representatives in a free monoid, thus can be further defined
as follows:

Definition 10 (Update Morphism). An update U can be
considered a morphism between two configurations, i.e., U :
C → C ′, where C ′ = U(C) = ui(C), ∀ui ∈ U .

Definitions 8 and 10 illustrate an update in the perspec-
tives of representation and morphism respectively. Updates as
morphisms are equipped with a composition operation. The
diagram of the update composition is illustrated in Fig. 5(b),
and such composition presents the following properties:

Theorem 3 (Update Composition Properties). The universal
update set U = {U1, U2, ...} and the binary operator ◦ have
Associativity and Idempotence properties under Definition 5;
i.e., ∀U1, U2, U3, we have (U3 ◦ U2) ◦ U1 = U3 ◦ (U2 ◦ U1)
and U1 ◦ U1 = U1.

Associativity in Theorem 3 is inherited from a monoid as in
Definition 6, and Idempotence can be proven by Idempotence
and Commutativity of operation composition in Theorem 1.

2) General Update Composition: Represented by a subset
of O(∗U) enumerating all acceptable operation sequences, an
update can be determined by its constituent operations O(U)
and order constraint Ω(U). Therefore, the composition Uk ◦
... ◦U1 is determined by O(Uk ◦ ... ◦U1) and Ω(Uk ◦ ... ◦U1).
Computation of O(Uk ◦ ... ◦ U1). The goal of update
composition is to obtain the equivalent operation sequences
with a lower operation number. Based on Associativity in
Theorem 1, multiple updates can be concurrently composed
in a flexible way. Given a set of updates {U1, U2, ..., Uk}, we
propose a general solution to compute O(Uk ◦ ... ◦ U1) with
the following steps:

1) Choose an arbitrary representative ui from each update
Ui, i ∈ [1, k],

2) Concatenate them with ◦, i.e., uk ◦ ... ◦ u1,
3) Simplify the concatenated sequence of operations using

the properties in Theorem 1 until Distinction condition
in Definition 8 is satisfied,

Example. Consider the composition of U1 and U2 in Fig. 2,
i.e., U2 ◦ U1. Randomly choose their representatives as u1
and u2 respectively, and then the composition u2 ◦ u1 can be
simplified as follows:

u2 ◦ u1 = (oa1′ob1′oe1ob2oc2) ◦ (oa1ob1oc1)

= (oa1′ ◦ ob1′ ◦ oe1 ◦ ob2 ◦ oc2) ◦ (oa1 ◦ ob1 ◦ oc1)

= oa1′ ◦ oa1 ◦ ob1′ ◦ ob1 ◦ oe1 ◦ ob2 ◦ oc2 ◦ oc1
by Associativity and Commutativity in Theorem 1

= oa1′ ◦ ob1′ ◦ oe1 ◦ ob2 ◦ oc2 ◦ oc1
by Selectivity Theorem 1

= oa1′′ ◦ ob1′ ◦ oe1 ◦ ob2 ◦ oc2 ◦ oc1
oa1′ is changed to oa1′′ according to TABLE II

Computation of Ω(Uk ◦ ... ◦U1). To obtain all acceptable
update sequences (representatives) from O(Uk ◦ ... ◦ U1), we
also need Ω(Uk◦...◦U1), so that the consistency properties can
be preserved. Given a set of operations, existing work on con-
sistent updates provide a large number of efficient algorithms
to generate an order constraint for various consistency prop-
erties, including loop-freedom [9], and waypoint routing [11].
A general solution is to take O(Uk ◦ ... ◦ U1) as an input and
run one of the algorithms to get Ω(Uk ◦ ...◦U1). For properties
whose order constraint consists of partial orders, Section III-C
below presents a solution to compute Ω(Uk ◦ ... ◦ U1) more
efficiently.

C. Efficient Representation and Composition for Basic Con-
sistency

The update representation using a subset of a free monoid
is complete, but the sequence set U can get large, especially
when composing updates with long sequences of operations;
for example, if U1 has n1 sequences and U2 has n2, a naı̈ve
concatenation could result in n1×n2 possible sequences. This
section introduces an efficient and compact way to specify and
derive the order constraints consisting of partial orders. This
format of order constraint guarantees the basic consistency
property defined in Definition 11 below.

Definition 11 (Basic Consistency). The basic consistency
property is defined as blackhole- and loop-freedom.

Basic consistency is commonly used in networks to avoid
packet drops and traffic loops [9], [16]. To ensure it, the update
execution can be represented by a DAG as in Fig. 6. Consider
each edge in the DAG to be a partial order pair, the Ω(U)
for the basic consistency can be represented by a strict partial
order set, whose elements are of the form o1 ≺ o2, denoting
that o1 ought to be applied before o2. The generation of the
DAG and partial order set for the composition can be found
in [17]. For example in Fig. 6, Ω(U1) = {oc1 ≺ oa1, ob1 ≺
oa1} and Ω(U2) = {oe1 ≺ oa1′ , oa1′ ≺ ob1′ , oc2 ≺ ob2}. The
strict partial order ≺ satisfies the following properties:

1) o ⊀ o,
2) if o1 ≺ o2 and o2 ≺ o3, then o1 ≺ o3,
3) if o1 ≺ o2, then o2 ⊀ o1.
Based on the partial ordering, we propose an efficient

solution to achieve update composition, e.g., Uk ◦ ... ◦ U1.
In our solution, the constituent operations O(Uk ◦ ...◦U1) can
be obtained by the same solution as in Section III-B2, while
Ω(Uk ◦ ... ◦ U1) is computed as follows:

1085

o
c1

o
a1

o
b1

o
e1

o
a1'

o
b1'

o
c2

o
b2

o
e1

o
a1''

o
b1'

o
c2

o
b2

o
c1

 !° " ! "

Fig. 6: An example of the efficient composition of U1 and U2 in
Fig. 2 to preserve the basic consistency, oa1′′ = oa1′◦oa1 is computed
according to TABLE II.

• Step 1: Combine the order constraints together, i.e.,
Ω(Uk ◦ ... ◦ U1) = Ω(U1) ∪ Ω(U2) ∪ ... ∪ Ω(Uk);

• Step 2: Replace operations by composed counterparts in
O(Uk ◦ ... ◦ U1);

• Step 3: Search cycles in Ω(Uk ◦ ... ◦ U1) based on the
properties of ≺;

• Step 4.1: Break each cycle by removing the order
element inherited from earlier updates, i.e., if ∃o′1 ≺
o′2 ∈ Ω(Ui), o

′′
2 ≺ o′′1 ∈ Ω(Uj), s.t. o1.(sw, key) =

o′1.(sw, key) = o′′1 .(sw, key), o2.(sw, key) =
o′2.(sw, key) = o′′2 .(sw, key) and i < j, then remove
element o1 ≺ o2;

• Step 4.2: After removing o1 ≺ o2, inherit the implicit
dependencies between o′1’s parents and o′2’s children from
the previous update Ui, i.e., ∀m,n, if ∃om ≺ o′1 ∈ Ω(Ui)
and o′2 ≺ on ∈ Ω(Ui), add elements om ≺ on into Ω(Uk◦
... ◦ U1);

• Step 5: Simplify Ω(Uk ◦ ... ◦ U1) to a minimal partial
order set by removing redundant elements based on the
transitivity of ≺.

Theorem 4. If the sequential execution from Ω(U1), Ω(U2),...,
to Ω(Uk) guarantees the basic consistency, the non-blacking
execution of Ω(Uk ◦ ... ◦U1) in update algebra can guarantee
the basic consistency.

The detailed proof of Theorem 4 is omitted due to s-
pace limitation. The intuition here is that the first two
steps allow Ω(Uk ◦ ... ◦ U1) to inherit the orders from
{Ω(U1),Ω(U2), ...,Ω(Uk)}. In Step 3, any cycle indicates
the presence of order conflicts between Ui and Uj for the
same flow rules. Since based on Selectivity in Theorem 1,
the conflicting operations are overwritten by the last one,
applying the same rationale into the order constraint, only
the order element in Uj , (i < j), is preserved as depicted
in Step 4.1. Because of the transitivity property, many of
the order dependencies are hidden and implicit in the order
constraint. But to break cycles, we remove some elements,
which may lead to the loss of these implicit dependencies. For
the example in Fig. 6, if we remove oe1 ≺ oa1′ from Ω(U2),
the implicit dependency oe1 ≺ ob1′ will be lost. Therefore
in Step 4.2, to avoid such loss, for each element we remove
from Ω(Uk◦...◦U1), we inherit its implicit dependencies from
the previous corresponding update. The goal of Step 5 is to
remove redundant order elements in the constraint, e.g., if Ω
contains o1 ≺ o2, o2 ≺ o3 and o1 ≺ o3, the last component
o1 ≺ o3 is redundant and should be removed.
Example. Fig. 6 shows the efficient composition of U1 and U2

in the example of Fig. 2. We use the format of DAGs for simple
illustration. After Steps 1 and 2, there is a cycle between oa1′′
and ob1′ , where oa1′′ = oa1′ ◦ oa1 is computed according to

Idle Scheduled

sent to the data plane

Completed

initial

response: failed

response: successful

Fig. 7: Finite machine of an operation.

TABLE II. Since ob1′ ≺ oa1′′ is inherited from Ω(U1) but
conflicts with Ω(U2), it will be removed as depicted in Step 4.1
of our solution. This example does not involve Steps 4.2 and 5,
but more interesting and complicated examples can be found
in our technical report [17].

D. Composition with Partial Execution

The update algebra in the previous sections assumes that
all operations of updates to be composed are not executed.
However in practice, new updates can arrive while previous
ones are partially executed. The problem is that such a partial
execution results in uncertainty of configuration states. To
resolve this problem, we 1) introduce an uncertainty model
to reflect partial executions, and 2) provide a solution for
continuous and non-blocking composition for updates with
partial executions.

1) Uncertainty Model: An SDN controller sends operations
of an update to a data plane (in a proper order) to execute the
update. Once switches receive the operations, they reply to
the controller with the progress of execution. Therefore, from
the perspective of the SDN controller, each operation has one
of the following states: Idle, Scheduled or Completed. Fig. 7
shows the finite machine of an operation state. Initialized with
state Idle, once an operation is sent to the data plane for
installation, its state becomes Scheduled. After installation,
switches return a response message to notify whether the
operation is applied successfully. A successful response turns
the operation state into Completed state whereas a failed
response turns it back to Idle.

The configurations according to the states of an operation
o : C → C ′ are as follows:
• Invariant 1: If o is at Idle, it is not applied at the data

plane; i.e., the configuration is C.
• Invariant 2: If o is at Completed, it is applied at the data

plane; i.e., the configuration is C ′.
• Uncertainty: If o is at Scheduled, it can be applied or

not; i.e., the configuration is C or C ′.
Partial Execution. Consider an update composition of U1 and
U2 in which U1 is partially-executed when U2 arrives at the
controller. Let U+

1 denote the part of U1 that has been applied
(Completed), and U−1 the remainder, i.e., U1 = U−1 ◦ U

+
1 .

Based on Associativity in Theorem 3, we have:

U2 ◦ U1 = U2 ◦ (U−1 ◦ U
+
1) = (U2 ◦ U−1) ◦ U+

1 (8)

Fig. 8(a) presents the transitions of configuration states
according to executed updates. Note that we compose U1 and
U2 at the configuration state C ′1 with a partial execution U+

1 ,
which means U2 ◦U−1 is our target composition. The problem
is that C ′1 and U−1 may be unknown to the controller due to the
uncertainty state of operations at Scheduled state. A solution is

1086

C0 C′1

C1 C2

U+
1

U1

U−1
U2 ◦ U−1

U2

(a) Uncertainty model.

CS
1 C2

CF
1

C′1

o1 failed

o1 succeeded

o1
US ◦ o1

US

(b) Illustration of Problem 1.

Fig. 8: (a) Uncertainty model where C′1 and U−1 may be unknown.
(b) Illustration of Problem 1 where o1 is at the Scheduled state, so
its execution can be either failed or successful.

to prohibit Scheduled states during composition; i.e., once U2

arrives, the controller stops scheduling new operations in U1

and collects responses for all Scheduled ones until their states
become steady one such as Idle and Completed. However, this
solution inefficiently blocks updates due to the interruption for
collecting the responses.

2) Solution: The basic idea behind our solution is to treat
Scheduled operations as “not applied” at a data plane during
composition. Consider an update composition U2 ◦ U1 in
Fig. 8(a). Assume that one operation o1 in the update U1 is in
Scheduled state. Suppose that CF

1 and CS
1 are the configura-

tions after failed and successful responses for o1, respectively.
Based on the two Invariants, the current configuration C ′1
must be either CF

1 or CS
1 . Then, we aim to solve:

Problem 1. Given C ′1 ∈ {CF
1 , C

S
1 }, find U : C ′1 → C2.

Let US : CS
1 → C2 denote the composed update to achieve

U2. As depicted in Fig. 8(b), we have

CS
1 = o1(CF

1), (9)

C2 = US ◦ o1(CF
1). (10)

Recall that our solution treats Scheduled operations as “not
applied”, i.e., C ′1 = CF

1 . Based on the assumption C ′1 = CF
1 ,

the solution is U = US ◦o1 from Equation (10). We show that
the solution yields U(C ′1) = C2 even in the case of C ′1 = CS

1
as follows:

US ◦ o1(C ′1) = US ◦ o1(CS
1) (11)

= US ◦ o1(o1(CF
1)) (12)

= (US ◦ o1) ◦ o1(CF
1) (13)

= US ◦ (o1 ◦ o1)(CF
1) (14)

= US ◦ o1(CF
1) (15)

= C2, (16)

where Equation (12), (14), (15) and (16) are deduced from (9),
Associativity, Idempotent in Theorem 1 and Equation (10),
respectively.

Therefore, regardless of the uncertainty due to Scheduled
operations, the update algebra is able to compute an update
composition and achieve correctness based on our solution.

IV. EVALUATION

This section evaluates the benefits of update algebra through
asymptotic analysis (Section IV-A), extensive benchmarking
using a real controller (Section IV-B), and integration with a
real application (Section IV-C).

A. Asymptotic Analysis

We conduct an asymptotic analysis to compare the cor-
rectness, overhead, and completion time of the composition
of consecutive updates using sequential, parallel, and update
algebra based executions. We denote p ∈ [0, 1] the probability
that two consecutive updates are related, i.e., involve common
flows. In other words, 1 − p denotes the probability that
two consecutive updates are fully independent. Each update
is represented as a sequence of operations. For simplicity,
if two consecutive updates U1 and U2 are related (with
probability p), the two sequences are modeled as overlapping,
and the common segment is randomly selected using a uniform
distribution. The total length of the update after composition
is provided by Equation (17), with N1 and N2 representing
the lengths of U1 and U2. The details of the proof are omitted
due to space limitation.

f(N1, N2) =
N2

1 +N1N2 +N2
2

N1 +N2
− 1 (17)

TABLE III summarizes the results. First, as explained in
Section II, parallel execution may violate correctness as it
does not respect update dependencies. Second, TABLE III
shows that the completion time of a sequential execution
increases linearly with the number of updates. In contrast,
in independent-update dominant settings, the completion time
with update algebra stays asymptotically constant, similar to
that of a parallel execution, while guaranteeing correctness.

TABLE III: Asymptotic analysis of the composition of two
consecutive updates U1 and U2.

Correctness Operation Number
(N)

Update Completion
Time (T)

Sequential
√

N1 + N2 T1 + T2

Parallel × N1 + N2 max(T1, T2)
Update
Algebra

√
≈ f(N1, N2)p +

(N1 + N2)(1− p)
≈ f(T1, T2)p +

max(T1, T2)(1− p)

B. Benchmarking

Methodology: We deploy update algebra in a SDN network
running a Ryu 4.24 controller, and twenty Open vSwitch [18]
2.5.4, connected in a FatTree topology, which is common in
data centers.

We generate updates as follows: each update involves a ran-
dom number of flows ranging from 17 to 20. Two successive
updates include common flows with a probability of p. We
vary p, and for each case, we synthesize 300 network update
events with different Poisson arrival rates λ.

The controller schedules the arriving updates according to
the order constraints (i.e., DAG) derived using the algorith-
m [9] proposed by Forster et al. to ensure a lack of blackholes
and loops during the updates. We compare two composition
approaches: in the first, the controller keeps track of the
state of each operation, and continuously merges new arriving
updates with ongoing ones through update algebra; in the
second approach, the controller executes the arriving updates
in a sequential (blocking) manner, i.e., according to a First-
In-First-Out (FIFO) policy.

To compare the performance, we report two metrics: aver-
age operation number, and average update completion time.

1087

The former is the average number of operations applied in
the data plane for the 300 updates. The latter is the average
duration of an update which begins when it is considered by
the controller, and ends when the last operation is completed
or merged with new updates.
Results:
• Control Overhead: Fig. 9(a) shows the average number of
operations, which reflects the control message overhead in the
system. The sequential execution yields a constant number
of operations for different values of λ as all updates are
executed individually and sequentially, independent of their
arrival rate. In contrast, the overhead of update algebra based
execution varies with λ: the number of operations is similar
to that of the sequential execution when λ is low, as each
update completes before the next one arrives. However, as λ
increases, fewer updates are completed before new ones arrive.
Therefore, consecutive updates can be merged, reducing the
number of operations. Comparing the results of different p,
we observe that when successive updates are more related
(i.e., larger p), more operations can be merged through update
algebra, resulting in a reduction in numbers of operations.
As such, with λ = 2/s (the network being updated twice
a second on average), the non-blocking execution in update
algebra reduces the control message overhead by up to 30%.
• Completion time: Fig. 9(b) shows the average update com-

pletion time. It includes both the results from the experimental
evaluation, and the theoretical upper and lower bounds.

For the theoretical bounds, we model the sequential exe-
cution as an M/M/1 system where the arrival rate is λ and
the service rate µ is 1/(average update execution time); note
that the execution time of individual updates is exponentially
distributed in our experiments. For the parallel execution, as
updates can be executed concurrently, the execution bottleneck
comes from the operation queues at the switches. Considering
that updates arrive at switches uniformly at random, the
parallel execution can be approximated by an M/M/c system,
where c is the number of switches in the network. Therefore,
the average response time in the M/M/1 system reflects the
upper bound of the update completion time, and that the
M/M/c system corresponds to the lower bound.

Fig. 9(b) depicts the theoretical bounds, and the measured
update completion times of both the sequential execution and
update algebra. Both the sequential and update algebra based
executions yield similar constant times at low arrival rates as
all updates are completed without blocking. However, as λ
becomes larger, our approach completes updates faster than the
sequential execution. This is because the sequential execution
suffers from long waiting times due to the blocking in the
queue, while update algebra enables updates to be executed
concurrently, and reduces the number of operations, e.g., by
merging operations with same keys. When p = 0.2 and λ =
1.2/s, update algebra improves network update speed by up to
8x compared to the sequential execution, and when p = 0.8
and λ = 1.6/s, the gain can reach 16x.

The close-up figure in Fig. 9(b) (right-hand) clearly shows
the impact of different update patterns on the update perfor-
mance. As p increases, update algebra achieves higher gain,
and the update completion time with update algebra gets closer
to that of the theoretical lower bound. The results demonstrate
that by maximizing the execution parallelism while preserving

consistency properties, update algebra can handle frequent
network changes in a non-blocking, but also efficient way.

C. Performance in a Real Application
This section evaluates the performance benefits of update

algebra integrated with a real application. We deploy Hed-
era [2] in the SDN controller. Hedera continuously collects
network statistics, and updates flow routes to maximize the
aggregate network utilization. We use an unbalanced traffic
pattern with a large workload, and measure the average link
bandwidth utilization with different update frequencies. The
update frequency is an adjustable parameter (with a default
value 0.2/s) of Hedera specifying how frequently the updates
are generated.

Fig. 10 shows that the update algebra based execution
outperforms the sequential execution. As the update frequency
increases, more updates are generated. The sequential execu-
tion cannot complete the updates before the next ones arrive.
As a result, the arriving updates accumulate and the controller
fails to update the network as directed by Hedera, causing
network performance to degrade quickly. This is the reason
frequent updates are prohibited in current systems, and the
default frequency is set to 0.2/s (an update every five seconds).
In contrast, by merging consecutive updates in a non-blocking
manner, update algebra allows updates to be quickly enforced,
and the network performance keeps increasing with the update
frequency. With an update frequency of 1.2/s, update algebra
increases the network utilization by 13% compared to the
default value 0.2/s, and outperforms the sequential execution
by 30%. These results demonstrate the benefits of update
algebra with a real application.

V. RELATED WORK

Consistent Updates: A concerted research effort has recently
been made to tackle the problem of network updates in SDN
for different aims. Xitao et al. [8] minimize the number and
latency of rule updates for TCAM-based switches by elim-
inating redundant and unnecessary entry moves. Reitblatt et
al. [19] introduce the notion of consistent network updates, and
propose a two-phase update approach. Solutions supporting a
broad range of consistent properties are proposed, including
loop freedom [9], congestion-freedom [10], waypoint rout-
ing [11] and customizable properties [12]. However, existing
work is limited to a single network update at a time, and
does not handle consecutive network updates. Peter et al. [13]
mention the inter-update scheduling problem in their future
work, but only provide a strawman solution as an enhancement
to the sequential approach. In contrast, our work allows
controllers to efficiently merge multiple network updates to
handle continuous and non-blocking network changes while
preserving desired properties. To the best of the authors’
knowledge, our work is the first to handle multiple updates
as a group.
Policy Composition: Researchers have also investigated com-
posing policies. Several recent SDN policy languages and
controller hypervisors (e.g., NetKAT [20], Pyretic [21]) sup-
port taking multiple high-level policies and generating flow
tables that fulfill the semantics of the sequential and par-
allel composition. However, network update operations are
different from flow rules, and present unique challenges as
well as distinct requirements. For example, as discussed in

1088

0.5 1.0 1.5 2.0
 (s 1)

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0
Av

er
ag

e
Op

er
at

io
n

Nu
m

be
r

p=0.2
p=0.4
p=0.8
Sequential
Update Algebra

(a) Average operation number.

0.25 0.50 0.75 1.00 1.25 1.50
 (s 1)

0
2
4
6
8

10
12
14

Av
er

ag
e

Up
da

te
 C

om
pl

et
io

n
Ti

m
e

(s
)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
 (s 1)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sequential (p=0.2)
Update Algebra (p=0.2)

Update Algebra (p=0.4)
Update Algebra (p=0.8)

M/M/1
M/M/c

(b) Average update completion time. The right figure is a close-up view of a specific area from the
left figure.

Fig. 9: Benchmarking results.

0.2 0.4 0.6 0.8 1.0 1.2
Frequency(s 1)

0.75

0.80

0.85

0.90

Ba
nd

wi
dt

h
Ut

iliz
at

io
n

Sequential
Update Algebra

Fig. 10: Bandwidth utilization of Hedera with sequential execution
and update algebra.

Section III-D, network updates may be partially executed, and
controllers may not have a complete and precise up-to-date
view of the update progress. In addition, network updates
have distinct consistency requirements that differ from those
of policy composition. Consequently, existing work on policy
composition cannot be applied to composing network updates.
Instead, we developed a theoretical framework that captured
the unique characteristics of network updates, and allowed us
to reason about their properties and composition.

ACKNOWLEDGMENT

We would like to thank Sanat Khurana who found a counter
example of our earlier algorithm and helped with the design of
a new solution. This research was supported in part by NSFC
#61701347, NSFC #61702373 and NSFC #61672385; NSF
grant #1440745, CC*IIE Integration: Dynamically Optimizing
Research Data Workflow with a Software Defined Science
Network; Google Research Award, SDN Programming Using
Just Minimal Abstractions. This research was also sponsored
by the U.S. Army Research Laboratory and the U.K. Ministry
of Defence under Agreement Number W911NF-16-3-0001.

REFERENCES

[1] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” INFOCOM, 2018.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks.” in Proc.
of NSDI, 2010.

[3] Q. Xiang, H. Yu, J. Aspnes, F. Le, L. Kong, and Y. R. Yang, “Optimizing
in the dark: Learning an optimal solution through a simple request
interface,” in AAAI, 2019.

[4] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “CONGA:
Distributed congestion-aware load balancing for datacenters,” in Proc.
of SIGCOMM, 2014.

[5] G. Li, Y. Qian, L. Liu, and Y. R. Yang, “JMS: Joint Bandwidth
Allocation and Flow Assignment for Transfers with Multiple Sources,”
in 2018 IEEE Third International Conference on Data Science in
Cyberspace (DSC). IEEE, 2018, pp. 123–130.

[6] Q. Xiang, J. J. Zhang, X. T. Wang, Y. J. Liu, C. Guok, F. Le,
J. MacAuley, H. Newman, and Y. R. Yang, “Fine-grained, multi-domain
network resource abstraction as a fundamental primitive to enable high-
performance, collaborative data sciences,” in Proceedings of SC, 2018.

[7] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCPs Burstiness using
Flowlet Switching,” in Proc. of HotNets, San Diego, CA, 2004.

[8] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and
C. Hu, “RuleTris: Minimizing rule update latency for TCAM-based SDN
switches,” in Proc. of ICDCS, 2016.

[9] K.-T. Förster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in Proc. of IFIP Networking, 2016.

[10] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free consistent
data plane update in software defined networks,” in INFOCOM, 2016.

[11] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network updates
for bad packets: Waypoint enforcement beyond destination-based routing
policies,” in Proc. of HotNets, 2014.

[12] W. Zhou, D. K. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing
customizable consistency properties in Software-Defined Networks.” in
Proc. of NSDI, 2015.

[13] P. Pereı́ni, M. Kuzniar, M. Canini, and D. Kostić, “ESPRES: transparent
SDN update scheduling,” in Proc. of HotSDN, 2014.

[14] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[15] D. S. Dummit and R. M. Foote, Abstract algebra. Wiley Hoboken,
2004.

[16] G. Li, Y. Qian, C. Zhao, Y. R. Yang, and T. Yang, “DDP: Distributed
Network Updates in SDN,” in 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2018.

[17] G. Li, Y. R. Yang, F. Le, Y. sup Lim, J. Wang, and S. Khu-
rana, “Update Algebra: Toward Continuous, Non-Blocking Com-
position of Network Updates in SDN (extended version),” http-
s://cpsc.yale.edu/sites/default/files/files/tr1548.pdf, Yale Technical Re-
port TR1548, Tech. Rep.

[18] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The Design and
Implementation of Open vSwitch.” in Proc. of NSDI, 2015.

[19] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” Proc. of SIGCOMM, 2012.

[20] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in ACM SIGPLAN Notices, 2014.

[21] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al., “Com-
posing Software Defined Networks.” in Proc. of NSDI, 2013.

1089

Public Review for

On Max-min Fair Allocation for
Multi-source Transmission

G. Li, Y. Qian, Y. Richard Yang

Max-min fairness is one of the classical objectives for tra�c engineering or

congestion control schemes. It is well understood and widely used by the

community. When we received this submission, we were a bit surprised to

see another paper on this rather old topic. In the classical max-min fair-

ness formulation, each source produces its own stream of data and max-min

fairness ensures a fair distribution of the ressources among competing flows.

The new model proposed in this paper adapts the formulation to the more

general case of data streams which can originate from multiple sources. This

corresponds to the utilization of replicas such as CDNs where multiple hosts

can source the same data stream. The authors formulate this problem as

an optimization problem and propose a MultiSource Water-Filling algorithm

(MS-WF) to compute the bandwidth allocations and the flow assignments.

The proposed algorithm is described and evaluated by simulations. Unfortu-

nately, the authors could not release this simulator and the associated results

as software artifacts.

The reviewers discussed the merits of the paper. Some were convinced by the

nice formulation of the problem and the initial simulation results. A draw-

back of the approach is that MS-WF assumes a centralized controller that

has a precise information about the tra�c matrix, which might be unrealistic

in some deployments. The simulation results should be analyzed with this

caveat in mind. Other reviewers were more concerned about the applicability

and the deployability of the proposed solution. These are clearly left for fur-

ther work. They also questioned whether max-min was the right goal. The

paper was discussed during the rebuttal phase and the authors have revised

the paper accordingly and added the proofs in a technical report.

Public review written by
Olivier Bonaventure

UCLouvain

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

2

On Max-min Fair Allocation for Multi-source Transmission
Geng Li+⇤, Yichen Qian⇤, Y.Richard Yang+

+ Yale University, ⇤ Tongji University
geng.li@yale.edu,92yichenqian@tongji.edu.cn,yry@cs.yale.edu

ABSTRACT
Max-min fair is widely used in network tra�c engineering to allo-
cate available resources among di�erent tra�c transfers. Recently,
as data replication technique developed, increasing systems enforce
multi-source transmission to maximize network utilization. How-
ever, existing TE approaches fail to deal with multi-source transfers
because the optimization becomes a joint problem of bandwidth
allocation as well as �ow assignment among di�erent sources. In
this paper, we present a novel allocation approach for multi-source
transfers to achieve global max-min fairness. The joint bandwidth
allocation and �ow assignment optimization problem poses a major
challenge due to nonlinearity and multiple objectives. We cope
with this by deriving a novel transformation with simple equiv-
alent canonical linear programming to achieve global optimality
e�ciently. We conduct data-driven simulations, showing that our
approach is more max-min fair than other single-source and multi-
source allocation approaches, meanwhile it outperforms others
with substantial gains in terms of network throughput and transfer
completion time.

CCS CONCEPTS
• Networks→ Packet scheduling;

KEYWORDS
Max-min Fairness, Tra�c Engineering, Multi-source Transmission

1 INTRODUCTION
Max-min fair is a simple, classical and well-recognized sharing
principle to de�ne fairness in the �eld of data networks [14]. In
particular, it deals with the �ow control problem in network tra�c
engineering (TE), where available resources (such as link band-
width) are allocated among di�erent tra�c transfers [13]. Aiming at
allocating rates to available links as evenly as possible, the max-min
fair allocation is such that the result for the transfer with smallest
sharing has been maximized over all feasible resource allocation so-
lutions. As the development of software-de�ned networking (SDN),
max-min fair has become the most widely used principle in modern
datacenter networks or WANs, such as B4 [9], BwE [11], SWAN [8],
OWAN [10]. Leveraging a centralized controller, max-min fairness
results in more stable service quality than other principles, e.g.,
proportional fairness.

Data replication, a technique that amends both data availability
and access e�ciency, is emerging increasingly in recent datacen-
ter networks and distributed �lesystems [7, 15, 17]. To maximize
network utilization and improve transmission performance, it is in-
creasingly allowed to convey data in parallel from multiple sources
for a transfer with multiple data replicas, a.k.a a multi-source trans-
fer [2, 16]. However, a multi-source transfer will result in multiple
�ows, so multiple potential bottlenecks might be considered simul-
taneously to achieve transfer-level fairness. Existing TE approaches

are no longer applicable because the allocation becomes a joint
problem to optimally allocate each �ow’s bandwidth as well as to
assign �ows among the sources [8, 9, 11].

In this paper, we present a novel max-min fair allocation ap-
proach that jointly optimizes bandwidth allocation and �ow as-
signment. The major challenge stems from the direct formulation
which is nonlinear and multi-objective. We cope with this by de-
riving a novel transformation with simple equivalent canonical
linear programming (LP) to achieve global optimality. We perform
extensive simulations, which show that our approach leads to better
performance on network throughput with a gain of up to 52% and
reduces transfer completion time by up to 44%, compared to other
single-source and multi-source allocation approaches.

2 NETWORK MODEL AND PROBLEM
FORMULATION

A network is comprised of a set of nodes and a set of links L. Let
Cj denote the capacity of link Lj (j 2 [1,M]). Consider N data
transfers, coming from one or multiple sources, so each transfer i
(i 2 [1,N]) is assigned with a set of �ow paths {Pi1, ..., Pik }, and
each such path is identi�ed with the set of links that it uses, i.e.,
Pik ✓ L. Now we de�ne the data rate of transfer i as ri , which is
the sum bandwidth of the constituent �ows from all sources. We
use a variable setXi = {xi1, ...,xik } to express the �ow assignment
proportions from di�erent sources for transfer i , so

ÕKi
k=1 xik = 1,

where Ki is the total source number of transfer i .
Objective and constraints. Our goal is to solve a joint band-

width allocation and �ow assignment problem, i.e., �nding the
transmission rate ri and the assignment proportions Xi of each
transfer. When computing allocated bandwidth, the objective is to
maximize network utilization while in a max-min fair manner. A
vector of transfer rate allocations {ri } is said to be max-min fair
if and only if, for any other feasible allocation {r 0i }, the following
has to be true: 8r 0p > rp for the data transfer p, there exists another
transfer q such that p,q 2 [1,N], r 0q < rq , rq rp . The constraints
of this problem are given as below. Constraint (1) is called the ca-
pacity constraint, which assures that for any link Lj , its load does
not exceed its capacity Cj . Constraints (2) and (3) promise the sum
fractions of a transfer from all available sources equal to 1.

s .t .
’

Lj ✓Pik
ri · xik Cj 8j, (1)

Ki’
k=1

xik = 1 8i, (2)

0 xik 1 8i,k . (3)

Figure 1 shows an example where the six links {L1, ...,L6} have
capacities {8, 5, 4, 5, 7, 6} in Gbps respectively. Consider three data
transfers, among which transfer 1 and 2 have a single data source

ACM SIGCOMM Computer Communication Review Volume 48, Issue 5, October 2018

3

A B

C

D

F

E

L3

L1
L2

L6

L4
L5

L3

1

4

L1

L6

2

L

f1

f2

f31

f32

Figure 1: An example with 3 transfer requests. Transfer 3
comes from two feasible sources B and C, corresponding to
two parallel �ows f31 and f32.

while transfer 3 has two. As a result, there are four potential �ows
in total, including f1 : A ! C ! B ! D, f2 : A ! C ! E,
f31 : B ! D ! F and f32 : C ! E ! F . Given the topology and
values of link capacities, we aim at �nding the max-min fair solution
of the rate vector {r1, r2, r3} and the �ow assignment {x31,x32} for
transfer 3.

3 APPROACH SPECIFICATION
One of the biggest challenges for multi-source transmission stem-
s from changing the optimized object from an individual 5-tuple
�ow into a group of �ows that belong to the same transfer. Hence,
multiple potential bottlenecks might be considered simultaneously.
To this end, we design a MultiSource Water-Filling (MS-WF) algo-
rithm which can jointly compute bandwidth allocation and �ow
assignment while providing global max-min fairness. The key to
MS-WF algorithm is a novel transformation with simple equivalent
canonical LP. In this section, we �rst brie�y describe the traditional
water-�lling algorithm and its limitation. Then we present the MS-
WF with one multi-source transfer for clear illustration. A general
solution that optimizes arbitrary �ow transfers is provided after-
ward. At last we discuss some practical issues of the multi-source
framework.

3.1 Flow-link Mapping Matrix and Traditional
Water-Filling Algorithm

The proposed MS-WF algorithm is based on a �ow-link mapping
matrix (FL matrix) with solvable variables. Here we de�ne the FL
matrix, and illustrate the traditional water-�lling algorithm with
this matrix.

De�nition 1 (Flow-link Mapping Matrix). The �ow-link mapping
matrix (FL matrix) { f li j } expresses the �ow paths and the tra�c
assignment of each transfer in matrix form. The element f li j 2
[0, 1] is de�ned as the proportion of �ow i in its belonging transfer
that uses link Lj .

Water-Filling (WF) Algorithm. The traditional WF algorithm
can compute the bandwidth allocations for single-source transmis-
sion. Using the FL matrix as an input, we �rst denote the saturated
average bandwidth allocation as �j = Cj/nj , where nj is the total
number of �ows that use link Lj . TheWF algorithm iteratively �nds
the minimum � ⇤ and the corresponding bottleneck link Lj⇤ . Set the
bandwidth of the �ows that use link Lj⇤ to � ⇤. The FL matrix is

L1 L2 L3 L4 L5 L6
f1 1 1 1 0 0 0
f2 1 0 0 1 0 0
f31 0 0 1 0 0 1

Cj 8 5 4 5 7 6
nj 2 1 2 1 0 1

τj 4 5 2 5 NA 6

(a)

L1 L2 L4 L5 L6
f2 1 0 1 0 0

Cj 6 3 5 7 4
nj 1 0 1 0 0

τj 6 NA 5 NA NA

(b)

Figure 2: An example of the FL matrix for single-source
transmission, where transfer 3 only uses one source. Cj is
the bandwidth capacity, nj =

Õ
i f li j is the total number of

�ows that use link Lj , and �j = Cj/nj is the saturated average
bandwidth share. (a) Illustration of the �rst iteration, where
L3 is found as the bottleneck link withminimum �j . (b) Illus-
tration of the second iteration with the updated FL matrix,
where L4 is then found as the bottleneck link.

then updated by subtracting these �ows and the bottleneck link to
calculate a new set of {�j }. Such process repeats until all transfers
attain their allocated rates, i.e., all �ows have bottleneck links.
Example. Consider a single-source version of Figure 1, where we
assume transfer 3 only uses source B, so there are 3 �ows over the
network. Figure 2 illustrates the allocation algorithm for this single-
source example. In the �rst iteration, L3 is �rst saturated because
�3 is of the minimum value � ⇤ = 2. We allocate the bandwidth of
f1 and f31 that traverse L3 to 2, and then remove the rows of f1,
f31 and column L3. The FL matrix is updated accordingly for the
next iteration, where link L4 is then found as the bottleneck and
bandwidth of f2 is set to 5. By this point, the ultimate solution to
the rate allocation for the 3 transfers is (2, 5, 2).

The traditional WF algorithm is successful in obtaining the max-
min fair allocation for single-source transmission. Though it is
incapable of dealing with multi-source transfers. This is mainly due
to the fact that, instead of transfers, the WF algorithm is based on
�ows. For the example provided in Figure 1, by using the traditional
WF algorithm, transfer 3 will have double weights, which is unfair
to the others. A naïve solution is to normalize the weight of each
transfer, and then to assign an equal share to the �ows from di�er-
ent sources. Regarding the example, the elements for f31 and f32
become 1/2 and 1/2 in the FL matrix, such that each transfer has the
same sum weight of 1. The allocation result turns into (8/3, 10/3, 3),
which is slightly better than the (2, 5, 2) - using only source B and
(2.5, 4, 2.5) - using only source C , namely the single-source cases.
However, as we will soon learn, simply sharing the �ow weights
equally is still not the optimal solution. The transfer-level max-min
fair allocation is conditioned by the optimal �ow assignment.

3.2 MS-WF Algorithm with One Multi-source
Transfer

Given the FL matrix and its application, now let’s consider a more
complex case by adding one multi-source transfer into the network.
We assume there are Km available sources for the particular trans-
ferm, though the �ow assignment Xm is unknown and needs to be
solved. The MS-WF algorithm continues to use the FL matrix, but

ACM SIGCOMM Computer Communication Review Volume 48, Issue 5, October 2018

4

Algorithm 1MS-WF Algorithm with one multi-source transfer
Input:

Flow-link mapping matrix: FL = {f li j };
Capacity of each link:

�
Cj

, 1 6 j 6 M ;

Output:
Transmission rate of each transfer: {ri } , 1 6 i 6 N ;
Flow assignment of transferm: Xm = {xm1, ..., xmk };

• Step 1: . Initiation
1: ri 0, 8i = 1, ..., N ;
2: L {L1, L2, ..., LM };

• Step 2: . Calculate the saturated average bandwidth
3: nj (Xm) Õ

i f li j , 8j 2 L;
4: �j (Xm) Cj /nj (Xm), 8j 2 L;

• Step 3: . Find the bottleneck fair share � ⇤
5: if min {�j (Xm)} is a constant then
6: X⇤ ?;
7: else
8: X⇤ Xm |max min {�j (Xm)};
9: end if
10: � ⇤ min {�j (Xm)};
• Step 4: . Set data rate and update the FL matrix
11: Lj⇤ {Lj |�j (Xm) = � ⇤ };
12: L {Lj⇤ L;
13: for i |Pi \ Lj⇤ , ? do
14: ri ri + � ⇤;
15: Remove fi from FL;
16: end for
17: Update FL;
• Step 5: . Iteration
18: if No transfers left then
19: return {ri } and Xm ;
20: else
21: goto Step 2.
22: end if

replaces the elements from 0 and 1 as in the traditional WF into
the unknown variables in Xm for transferm. The MS-WF algorith-
m with one multi-source transfer (Algorithm 1) is described as
follows:

• Step 1: Start from zero allocation and build the FL matrix
with variables Xm .

• Step 2: Compute the saturated average bandwidth �j (Xm)
on each link Lj .

• Step 3: Find the bottleneck fair share � ⇤ =min{�j (Xm)} by
solving X⇤ = Xm |maxmin{�j (Xm)}.

• Step 4: Set the data rate to � ⇤ for the �ows that traverse
the bottleneck links, and update the FL matrix by removing
those �ows and links.

• Step 5: Stop if there are no transfers left; otherwise return
to Step 2.

In Step 2, similar to the traditional WF algorithm, MS-WF com-
putes nj (Xm) by summarizing the elements of column j in the FL
matrix. Here nj (Xm) is the number of transfers that traverses link
Lj . Since transferm comes from multiple parallel �ows, there might
be only a part of it using link Lj . Therefore,nj becomes a function of
Xm instead of an integer value as in the traditional WF. After that,
MS-WF calculates the average bandwidth �j (Xm) = Cj/nj (Xm),
which is also a function of Xm .

L1 L2 L3 L4 L5 L6
f1 1 1 1 0 0 0
f2 1 0 0 1 0 0
f31 0 0 x 0 0 x
f32 0 0 0 1� x 1� x 0

Cj 8 5 4 5 7 6
nj 2 1 1+ x 2� x 1� x x

τj 4 5 4
1 +

5
2 −

7
1 −

6

Figure 3: An example of MS-WF, where transfer 3 comes as
two �ows. x is the �ow assignment variable to be calculated.
�j in orange cell is found as the minimum bottleneck share.

In Step 3, potential bottleneck links are found given {�j (Xm)} on
the current link set. Speci�cally, the �ow assignment is determined
by X⇤ = Xm |maxmin{�j (Xm)}. We use � ⇤ to denote the minimum
bandwidth share, and the set of {Lj⇤ } is found as the bottleneck
links. As all the variables Xm are within a certain range [0, 1],
min{�j (Xm)} is sometimes a constant value. In that case, no �ow
assignment variable is calculated, i.e., X⇤ = ?.

Back to the example in Figure 1, transfer 3 has two available
sources to access, leading to two parallel �ows f31 and f32. With-
out loss of generality, we use only one variable x to denote the
proportion of f31, so the proportion of f32 will be 1 � x . Figure 3
illustrates the FL matrix, followed by the saturated average band-
widths {�j (Xm)}.

In MS-WF, Step 3 �ndingX⇤ that maximizesmin{�j (Xm)}, is the
major challenge. Speci�cally, it is to �nd x⇤ = x |maxmin(4, 5, 4/(1+
x), 5/(2 � x), 7/(1 � x), 6/x) in Figure 3. First, as formulated in
Problem 1, it is a nonlinear programming problem, which can not
be directly solved. Second, even though there is a linear expression,
the solution needs long sequences of LPs for the max-min objective
(multi-objective), which are computationally intense in practice.

Problem 1 (The nonlinear optimization problem in Step 3).

max min{�j (Xm)}, (4)

s .t .
Km’
k=1

xik = 1 xik 2 Xm , (5)

0 xik 1 8i,k . (6)

To this end, we propose a novel transformation which converts
the nonlinear optimization problem into a canonical form of LP
problem based on Theorem 1. The equivalent canonical LP prob-
lem is de�ned in Problem 2, which can be e�ciently solved under
limited computational complexity.

Problem 2 (The equivalent canonical LP problem in Step 3).

min t (7)

ACM SIGCOMM Computer Communication Review Volume 48, Issue 5, October 2018

5

s .t . t � � 0j (Xm) 8j, (8)
Km’
k=1

xik = 1 xik 2 Xm , (9)

0 xik 1 8i,k . (10)

Theorem 1. Problem 1 is equivalent to Problem 2 as a canonical LP
problem, where � 0j (Xm) = 1/�j (Xm).

P����. Given an arbitrary instance of the FL matrix, �j (Xm) sat-
is�es two conditions: i) �j (Xm) � 0, and ii) the inverse of �j (Xm) is a
linear function of Xm . So we let � 0j (Xm) = 1/�j (Xm), and the objec-
tive ofmaxmin{�j (Xm)} is then equivalent tominmax{� 0j (Xm)},
which becomes linear accordingly. Next, we introduce a temporary
variable t = max{� 0j (Xm)}, and use a sequence of inequality con-
straints t � � 0j (Xm) for all j to express t . Since � 0j (Xm) is a linear
function of Xm , the constraint (8) as a set of inequalities is also
linear. In the end, the optimization problem in Step 3 (Problem 1)
turns into an equivalent canonical LP problem (Problem 2), where
the decision variables to be solved are the �ow assignment set Xm
and t . ⇤

Consequently, the optimization problem in Figure 3 can be trans-
formed into a simple equivalent LP problem shown as follows.

min t (11)

s .t . t � 1
4
, (12)

t � 1
5
, (13)

4t � x � 1, (14)
5t + x � 2, (15)
7t + x � 1, (16)
6t � x � 0, (17)
0 x 1. (18)

The results of the above LP come out as x = 1/3 and t = 1/3.
So � ⇤ = 1/t = 3 is the minimum fair share, and L3 and L4 are
the bottleneck links that are saturated in this iteration. We set
r1 = r2 = 3 as the bandwidth of f1 and f2, and r3 = 3 as the sum
bandwidth of f31 and f32. Meanwhile, the data volume assignment
of transfer 3 concludes with 1/3 from source B and 2/3 from source
C . The �nal rate allocation to the 3 transfers are (3, 3, 3), which
is more max-min fair than the allocation (2, 5, 2) where transfer 3
uses only source B (as in Figure 2), as well as the allocation (2.5, 4,
2.5) where transfer 3 uses only source C . In addition, if we don’t
consider the impact of date volume and assume each transfer has
the equal volume of 3Gbits , then MS-WF outperforms the single
source approaches in terms of the average completion time (MS-
WF: (3/3+3/3+3/3)/3=1, source B: (3/2+3/5+3/2)/3=1.2) and sourceC :
(3/2.5+3/4+3/2.5)/3=1.05), as well as total completion time (MS-WF:
3/3=1, source B: 3/2=1.5 and source C: 3/2.5=1.2).

3.3 General MS-WF
Having solved the preliminary instance with onemulti-source trans-
fer, now we consider the general MS-WF with arbitrary transfer
combinations. Here the variables become the �ow assignments

{Xi } (i 2 [1,N]) for all transfers. Except for the transfers with a
single source, whose Xi = {1} for all the time, the rest of {Xi } are
to be computed by MS-WF. The main challenge is that the �ow
assignments of di�erent transfers correlate to each other and can
not be calculated independently. One transfer’s assignment plan
may a�ect another’s optimal decision. Therefore, the max-min fair
allocation requires joint calculation for all �ow assignments.

The general MS-WF mainly follows the procedures in Algorith-
m 1. Exceptionally, we put all sets of the variables {Xi } into the
FL matrix, such that �j turns into a function of {X1, ...,XN }. By
the same token, we transform the nonlinear optimization problem
in Step 3 into an equivalent canonical LP problem with the help
of one additional decision variable t . In each iteration, parts of
the �ow assignment sets are solved by LP based on Theorem 2.
Then we plug the values into the FL matrix and remove them from
{X}. Continue iterating until all �ow assignment variables Xi are
determined. Finally, we sum up the constituent �ow rates as the
multi-source transfer rate, i.e., ri =

ÕKi
k=1 rik , where Ki is the total

source number of transfer i . The detailed proof of Theorem 2 can
be found in our technical report [1].

Theorem 2. Multiple sets of variables Xi can be jointly calculated
by MS-WF.

3.4 Discussion
Extension. The MS-WF algorithm is scalable and extensible for
more complex use cases. For instance, di�erentiated qualities of
service lead to transfers with variations in priority or other require-
ments, such that MS-WF is capable of supporting weighted fair
allocation by taking priority factors into account. The max-min fair
principle can also be applied to di�erent optimization objectives
(e.g., transfer completion time), and the adaption of MS-WF with
consideration of data size can likewise yield the optimal results for
multi-source transfers.
Applicability. The driving application scenario for the MS-WF
algorithm is the Large Hadron Collider (LHC) network, which re-
quires deadline scheduling of large-scale datasets (e.g., petabytes) to
be transferred around over 180 member sites all over the world [5].
Fairness among large-scale science data�ows is one of the most
important metrics for the LHC network, and the current schedul-
ing system performs poorly in terms of fairness due to missing a
fairness-aware scheduling framework for the multi-source trans-
fers. Our multi-source transmission framework is part of the pre-
production deployment of Unicorn [18], an SDN geo-distributed
data analytic system in the CMS (one of the largest scienti�c exper-
iments in the LHC network).

The experimental SDN system relies on a logically centralized
controller to orchestrate bulk transfers. Since the system is for large-
scale datasets, the average �ow duration may vary from hours to
several days. The computation complexity is signi�cantly reduced
in MS-WF by transforming a nonlinear multi-objective problem
into a single LP. Experimental results show that the computation
time for 1000 concurrent �ows in MS-WF is at most 40 seconds, and
it can be further reduced by removing the redundant constraints in
implementation [12]. Therefore, our approach is scalable to practi-
cally handle large-scale datasets and networks.

ACM SIGCOMM Computer Communication Review Volume 48, Issue 5, October 2018

6

4 PERFORMANCE EVALUATION
To evaluate the performance of MS-WF algorithm on a large-scale
network, we develop a simulator on a datacenter network.

4.1 Simulation Methodology
Topologies: Our experiments were conducted by emulating a 3-
tier datacenter network topology with 8:1 oversubscription. The
topology contains 64 servers; the capacity of each edge link is
1Gbps; the capacity of the aggregated link is 10Gbps .
Workloads:We synthesize a stream of transmission requests with
a total number of 1000. A Poisson process is used to model the
arrival of requests; the arrival rate � is de�ned as the average num-
ber of new transfers per time slot. We set the slot length to be
only a second for fast simulation. A transfer has multiple sources
with probability �. We assume that a multi-source transfer have
a random number of replicas between [2,5], which are randomly
placed in servers. We ignore the �uctuation of transfer size in the
simulations, and assume a uniform size V for all transfers.
Performance metrics: We use average transfer completion time
and network throughputto show the improvements of MS-WF.
Alternative approaches: We compare the following bandwidth
allocation approaches, each of which adopts the traditional WF
algorithm.

• Best-source: This approach selects a best replica source
based on the algorithm in [16] for multi-source transmission.

• Equal-share: This approach splits a transfer across di�erent
sources equally. For instance, each replica will send 1/3 of
the data, if a transfer has 3 replicas.

• Random-source: This approach randomly selects an avail-
able source for each transfer.

4.2 Simulation Results
Figure 4 displays the simulation results of network throughput,
for which the arrival rate � = 2 and the data size V = 10Gbits
for all of the 1000 transfers. Shown by the results, Random-source
approach, disregarding the dissimilarity of the sources, performs
the worst, and retains a constant throughput value. Equal-share
approach takes advantage of source diversity in a naïve manner;
when we have limited diversity to a small number of multi-source
transfers (at low multi-source probabilities), equal �ow sharing can
approximate the optimal assignment, therefore obtaining a similar
performance as MS-WF. But as the multi-source proportion rises,
the 1000 transfers lead to more potential �ows. The e�ect of “bad
�ows” enlarges, and therefore pulls down the overall throughput
improvement. This way, Best-source approach outperforms Equal-
share. MS-WF achieves a much higher throughput than the others
by jointly optimizing the bandwidth allocation and �ow assign-
ment, leading to higher network utilization. When all transfers
have multiple sources (� = 1), compared with the Random-source
transmission, MS-WF obtains a substantial throughput gain for up
to 52%.

Figure 5 compares the transfer completion time versus three
factors respectively: the multi-source probability �, the transfer
size V and the transfer arrival rate �. We observe directly from
the �gure: across all parameter con�gurations, MS-WF achieves

0 0.2 0.4 0.6 0.8 1
Multi-source Probability ρ

25

30

35

40

45

Th
ro

ug
hp

ut
 (G

bp
s)

MS-WF
Best-source
Equal-share
Random-source

Figure 4: Network throughput vs. multi-source probability
�, where the arrival rate � = 2 and the data size V = 10Gbits.

the smallest transfer completion time. This improvement is mainly
acquired from a more max-min fair allocation by MS-WF.

Figure 5(a) illustrates the impact of �, which approximately e-
quals to the proportion of multi-source transfers. The constant gap
between Random-source and the other approaches demonstrates
that, leveraging multiple sources is more e�cient for data transmis-
sion and can perform much better by placing more replicas in the
network. Compared to single-source transmission, MS-WF cuts the
average completion time down by up to 44%. Figure 5(b) shows the
relationship with V . As transfer size goes up, the transfer backlog
begins to cause more bottleneck links, which results in degradation
of transmission rates. Therefore, the completion time surges super-
linearly along with the transfer size for all the allocation approaches.
But by completing transfers as quickly as possible, MS-WF is able
to achieve almost linear completion time growth. This way, it is
capable of optimizing data transfers for both small and large �les.
Figure 5(c) illustrates the impact of �. As expected, at higher arrival
rates, the number of �ows is likely to be increased, and links are
more likely to become congested. Accordingly, the performance
degrades quickly for all approaches other than MS-WF. The smaller
growth in completion time demonstrates that, by e�ectively avoid-
ing the congestion point, MS-WF manages to handle a relatively
larger amount of tra�c without degrading the performance.

5 RELATEDWORK
Distributed �lesystems. Several high-performance distributed
�lesystems with su�cient data replicas have been developed, in-
cluding GFS [7], HDFS [17] and Quantacast File System [15]. Lever-
aging SDN, May�ower [16] performs global optimizations to make
intelligent replica selection and �ow scheduling decisions based
on both �lesystem and network information. Nevertheless, current
solutions focus heavily on best replica selection and data replication
placement, instead of multi-source transmission as in our work.
As shown in the proceeding sections, single-source transmission
fails to achieve transfer-level max-min fairness, therefore provides
sub-optimal performance.
Co�ow scheduling. The works that schedule parallel �ows have
been developed to optimize transfers at the level of co�ow rather
than individual ones. Co�ow [3], Varys [4] and Barrat [6] improve

ACM SIGCOMM Computer Communication Review Volume 48, Issue 5, October 2018

7

0 0.2 0.4 0.6 0.8 1
Multi-source Probability ρ

35

40

45

50

55

60

65

70

Av
er

ag
e

C
om

pl
et

io
n

Ti
m

e
(s

)

MS-WF
Best-source
Equal-share
Random-source

(a)

8 9 10 11 12
Transfer Size V (Gbits)

20

40

60

80

100

120

Av
er

ag
e

C
om

pl
et

io
n

Ti
m

e
(s

)

MS-WF
Best-source
Equal-share
Random-source

(b)

1.4 1.6 1.8 2 2.2
Transfer Arrival Rate λ

40

50

60

70

80

90

Av
er

ag
e

C
om

pl
et

io
n

Ti
m

e
(s

)

MS-WF
Best-source
Equal-share
Random-source

(c)

Figure 5: Impact of (a) themulti-source probability �, (b) the data sizeV and (c) the transfer arrival rate � on average completion
time. In each sub�gure, we adjust one factor and �xed the other two. The three default values are � = 0.5, V = 10 and � = 2.

application-level performance by minimizing co�ow completion
times and guaranteeing predictable completions. However, their
basic assumption is that the �ows are streamed for di�erent data
and the volume of each �ow is designated in advance, so they can
easily predict the completion time and allocate the rate to meet
their deadlines. The improvement of our approach over them is that
the �ow volume assignment is jointly optimized with bandwidth
allocation to achieve global optimality.

6 CONCLUSION
We present a novel max-min fair allocation approach for multi-
source transmission which conveys data in parallel from multiple
sources and dynamically adjusts the �ow volumes to maximize
network utilization. The allocation relies on a MultiSource Water-
Filling algorithm that jointly computes the bandwidth allocation
and �ow assignment with simple equivalent canonical LP to achieve
global optimality. Extensive simulations validate that, compared to
other single-source and multi-source allocation approaches, our ap-
proach achieves a better throughput gain of up to 52% and decreases
transfer completion time by up to 44% for large-scale transfers. We
believe this approach is applicable to various tra�c management
systems that orchestrate arbitrary bulk transfers. Developing such
systems will be the next step of this research.

ACKNOWLEDGMENT
This research was supported in part by NSFC #61701347, NSFC
#61702373 and NSFC #61672385; NSF grant #1440745, CC*IIE In-
tegration; Google Research Award, SDN Programming Using Just
Minimal Abstractions. This research was also sponsored by the U.S.
Army Research Laboratory and the U.K. Ministry of Defence under
Agreement NumberW911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the o�cial policies, either ex-
pressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government.
The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

REFERENCES
[1] Anoymous Technical Report. https://github.com/technical-report-2018/

CCR2018.
[2] Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica. Leveraging endpoint

�exibility in data-intensive clusters. In ACM SIGCOMM CCR, volume 43, 2013.
[3] Mosharaf Chowdhury and Ion Stoica. Co�ow: A networking abstraction for

cluster applications. In Proceedings of HotNet, 2012.
[4] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. E�cient co�ow scheduling

with varys. In ACM SIGCOMM CCR, 2014.
[5] CMS Collaboration et al. The cms experiment at the cern lhc (journal of instru-

mentation 3 s08004, 2008) p. 158.
[6] Fahad R Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron.

Decentralized task-aware scheduling for data center networks. InACM SIGCOMM
CCR, 2014.

[7] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �le system.
In ACM SIGOPS operating systems review, 2003.

[8] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and RogerWattenhofer. Achieving high utilization with software-driven
wan. In SIGCOMM CCR, 2013.

[9] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a globally-deployed software de�ned wan. SIGCOMM CCR,
2013.

[10] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and
Jennifer Rexford. Optimizing bulk transfers with software-de�ned optical wan.
In Proceedings of SIGCOMM 2016 Conference.

[11] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, et al. Bwe: Flexible, hierarchical bandwidth allocation for
wan distributed computing. In SIGCOMM CCR, 2015.

[12] Geng Li, YichenQian, Lili Liu, and Y Richard Yang. Jms: Joint bandwidth allocation
and �ow assignment for transfers with multiple sources. In 2018 IEEE Third
International Conference on Data Science in Cyberspace (DSC). IEEE, 2018.

[13] Qingming Ma, Peter Steenkiste, and Hui Zhang. Routing high-bandwidth tra�c
in max-min fair share networks. In Conference proceedings on Applications,
technologies, architectures, and protocols for computer communications, 1996.

[14] Dritan Nace and Michal Pioro. Max-min fairness and its applications to routing
and load-balancing in communication networks: a tutorial. IEEE Communications
Surveys & Tutorials, 10(4):5–17, 2009.

[15] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram Rao, and
Jim Kelly. The quantcast �le system. Proceedings of the VLDB Endowment, 2013.

[16] Sajjad Rizvi, Xi Li, Bernard Wong, Fiodar Kazhamiaka, and Benjamin Cassell.
May�ower: Improving distributed �lesystem performance through sdn/�lesystem
co-design. In Distributed Computing Systems (ICDCS), 2016 IEEE 36th International
Conference on, 2016.

[17] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed �le system. In Mass storage systems and technologies (MSST),
2010 IEEE 26th symposium on, 2010.

[18] Qiao Xiang, X. Tony Wang, J. Jensen Zhang, Harvey Newman, Y. Richard
Yang, and Y. Jace Liu. Unicorn: Resource Orchestration for Multi-
Domain, Geo-Distributed Data Analytics. https://datatracker.ietf.org/doc/
draft-xiang-alto-multidomain-analytics, 2018.

ACM SIGCOMM Computer Communication Review Volume 48, Issue 5, October 2018

8

https://github.com/technical-report-2018/CCR2018
https://github.com/technical-report-2018/CCR2018
https://datatracker.ietf.org/doc/draft-xiang-alto-multidomain-analytics
https://datatracker.ietf.org/doc/draft-xiang-alto-multidomain-analytics

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019 805

An Objective-Driven On-Demand Network
Abstraction for Adaptive Applications

Kai Gao , Member, IEEE, Qiao Xiang, Member, IEEE, Xin Wang, Yang Richard Yang, Member, IEEE,

and Jun Bi , Senior Member, IEEE

Abstract— Revealing an abstract view of the network is
essential for the new paradigm of developing network-aware
adaptive applications that can fully leverage the available com-
putation and storage resources and achieve better business
values. In this paper, we introduce ONV, a novel abstraction of
flow-based on-demand network view. The ONV models network
views as linear constraints on network-related variables in
application-layer objective functions, and provides “equivalent”
network views that allow applications to achieve the same optimal
objectives as if they have the global information. We prove the
lower bound for the number of links contained in an equivalent
network view, and propose two algorithms to effectively calculate
on-demand equivalent network views. We evaluate the efficacy
and the efficiency of our algorithms extensively with real-world
topologies. Evaluations demonstrate that the ONV can simplify
the network up to 80% while maintaining an equivalent view
of the network. Even for a large network with more than
25 000 links and a request containing 3000 flows, the result can
be effectively computed in less than 1 min on a commodity server.

Index Terms— Software-defined networking, routing algebra,
quality of service, resource abstraction.

I. INTRODUCTION

LARGE-SCALE distributed systems, such as geo-
distributed data centers [1] and international scientific

research programs [2], [3], have components (data cen-
ters, sites, etc.) located in different cities, countries and

Manuscript received November 4, 2017; revised June 9, 2018; accepted
January 25, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor S. Mascolo. Date of publication March 26, 2019; date of current
version April 16, 2019. This work was supported in part by the U.S.
Army Research Laboratory and the U.K. Ministry of Defence under Grant
W911NF-16-3-0001, in part by the National Science Foundation under Grant
CC-IIE 1440745, in part by the National Natural Science Foundation of China
under Grant 61472213 and Grant 61502267, and in part by the National Key
Research and Development Plan of China under Grant 2017YFB0801701.
(Corresponding author: Kai Gao.)

K. Gao was with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China, and also with the Department
of Computer Science, Yale University, New Haven, CT 06511 USA. He is
now with the College of Cybersecurity, Sichuan University, Chengdu 610065,
China (e-mail: kaigao@scu.edu.cn).

Q. Xiang and Y. R. Yang are with the Department of Computer Science,
Yale University, New Haven, CT 06511 USA (e-mail: qiao.xiang@yale.edu;
yry@cs.yale.edu).

X. Wang is with the Department of Computer Science and Technology,
Tongji University, Shanghai 201804, China, and also with the Key Laboratory
of Embedded System and Service Computing, Ministry of Education, Beijing
100816, China (e-mail: 13xinwang@tongji.edu.cn).

J. Bi is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China, and also with the Beijing National
Research Center for Information Science and Technology, Tsinghua Univer-
sity, Beijing 100084, China (e-mail: junbi@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2019.2899905

even continents. To ensure connectivity and minimal perfor-
mance guarantees, these components are usually connected by
tunnels with resource reservations.

Advanced network management technologies such as Soft-
ware Defined Networking (SDN) have enabled network ser-
vice providers to provide on-demand resource reservations,
such as AT&T’s Domain 2.0 [4] and ESNet’s OSCAR
system [5]. Network tenants can adjust the reservations flexi-
bly to better match their demands.

However, demands of large-scale distributed systems are
usually not fixed because of data replications and service
load balancing – the same transfer job can be done using
different components. In the meantime, orchestration systems
such as Microsoft’s Clarinet system [6] have been developed
to optimize the large-scale query jobs across different geo-
distributed data centers based on real-time inter-connection
qualities, i.e., the optimal demands of such systems depend
on the available resources.

It is quite common that tenants decide their optimal
demands based on a certain objective function of avail-
able resources and end-to-end metrics, such as high tun-
nel utilization [1], flow completion time [7], job completion
time [6], throughput [8], etc. Without the ability to accurately
know the available resources, a tenant can only make blind
guesses which may lead to conservative or unrealistic reserva-
tions, and hurt the tenant’s quality of service. Thus, it’s becom-
ing increasingly important that network service providers offer
on-demand resource abstractions to help tenants better exploit
the flexibility of on-demand resource reservations.

SDN enables a network to collect information from all
the devices and construct a global view, which may contain
essential quality of service (QoS) metrics such as available
bandwidth, loss rate and routing cost values, which are critical
to performance of distributed applications.

Unfortunately, while northbound APIs for “apps” (manage-
ment programs) to access the global view have been provided
by many SDN controllers (e.g., [9]–[12]), they are usually
not open to non-administrative parties. Major concerns include
privacy and security, because the global view contains sensitive
information that can be leveraged to conduct attacks on the
SDN infrastructure [13]. Also, the global view is not friendly
to program with because it can contain a lot of redundant
information and lead to unnecessary communication overhead.

Thus, a problem arises on how to provide an abstract
network view which can both eliminate these drawbacks and

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2037-4427
https://orcid.org/0000-0002-8695-1047

806 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

still provide high-quality information. It is non-trivial because
of the following challenges:

• Feasibility: A decision made with the abstract view
should also be feasible in the original network. Infeasible
reservations are either rejected, or lead to over-subscribed
tunnels which may eventually lead to congestion.

• Generality: The abstract view should be general enough
to provide fine-grained information and suffice the
demands of applications with heterogeneous objectives.

• Optimality: A decision made with the abstract view
should be as optimal as with the original network infor-
mation. A suboptimal solution will affect the quality of
service and cannot fully utilize the network resources.

• Privacy: The abstract view must be able to protect the pri-
vacy of the network service provider, making it difficult
for malicious applications to infer the global information.

• Efficiency: The abstract view should not introduce too
much computation/communication overhead, even with
moderately large networks and workloads.

Existing abstractions [14]–[23] usually target at a cer-
tain type of scenario and cannot support applications which
require fine-grained QoS metrics. For example, many of these
abstractions cannot accurately represent bottlenecks shared by
multiple correlated flows in an arbitrary network, which is
critical in emerging use cases such as geo-distributed data
centers [1], [24], [25] and scientific computing platforms [26].

In this paper, we take the first step towards providing
high-quality network information for network-aware adap-
tive applications with ONV, an abstraction for flow-based
On-demand Network View. Based on the observation that net-
work information is eventually used by applications to conduct
optimizations, ONV provides equivalent network view which
satisfies the aforementioned properties simultaneously.

The main contributions in this paper include:
• We systematically investigate the problem of provid-

ing on-demand network view for network-aware adap-
tive applications with heterogeneous optimization goals,
a missing functionality from current SDN northbound
API design.

• We address the challenges by proposing ONV, an abstrac-
tion for flow-based on-demand network view. ONV
is based on the concept of equivalent network view.
We derive the criteria of equivalent network view and
gives the lower bound of number of links.

• We propose two algorithms which conduct equivalent
network transformations to obtain the equivalent network
view.

• We implement a prototype of ONV and evaluate its
performance using real applications over simulated net-
works of real topologies. Evaluations show that ONV
guarantees both feasibility and optimality, improves pri-
vacy by reducing information leak, and reduces the
communication overhead by a factor of 1.25 to 5 even
for large networks (real ISP network topologies with up
10000 nodes and 30000 links) and large workloads (more
than 3000 flows).

The rest of the paper is organized as follows. We sum-
marize the demands for fine-grained network views, existing

abstractions and their limitations in Section II. Formal descrip-
tions of the abstraction problem and the equivalent net-
work view are then given in Section III and Section IV
respectively, followed by the transformation algorithms in
Section V. We evaluate the prototype and analyze the
results in Section VI. Finally, we discuss the related work
and give conclusions in Section VII and Section VIII
respectively.

II. MOTIVATION

In this section we discuss the motivation that drives our
research. See the network in Fig. 1(a). Assume an application
(a web service provider) has three services colored in red,
blue and brown respectively on the left-hand side, while
there are six clients using different services on the right-hand
side. Assume the red service is live streaming, blue is video
subscribing and brown is large file downloading. All three
services require high bandwidth so it is important to know
the bottlenecks in the network. Thus, the application sends
a request on the bandwidth correlation of the six flows to
the network. Meanwhile, the application does not want the
network to know about how it would manage the services.
Thus, it does not provide any further information.

The naive approach returns the slice containing 1) all the
links on the flow paths with the associated bandwidth infor-
mation, and 2) how the links are shared by the flows, as shown
in Fig. 1(a) in this case. However, this can lead to information
leaks so that malicious applications may leverage this service
to infer the network information, which jeopardizes the privacy
of the network service provider. Also as the network size
increases, the topology cannot be effectively represented.

The hose model, also known as the one-big-switch abstrac-
tion, returns the network as a single big switch as demonstrated
in Fig. 1(b). However, the application would only know
the available bandwidth on the ingress/egress “port”. If the
bottleneck is the upper middle link, it is not propagated to
the application. Thus, the application may incorrectly increase
the traffic for the blue flows without knowing that they are
correlated with r1, which leads to congestion. Because of the
TCP congestion control mechanism, congestion would reduce
the throughput of all the flows sharing the same link, leading
to an overall performance degradation.

The end-to-end abstraction as demonstrated in Fig. 1(c)
is completely useless in this case. It has the same problem
as the one-big-switch abstraction that information about the
bottleneck within the network cannot be accurately provided
to the application.

Topology aggregation [22] is a common technique to reduce
the topology size. However, it also suffers from the inca-
pability of providing accurate information about the flow
correlations. What is worse, if not aggregated correctly as
in Fig. 1(d), it may introduce unnecessary bottlenecks that
lead to suboptimal decisions right in the beginning.

A simple observation is that the lower middle link and
the lower right link are both shared by r2 and y2 only.
Thus, we can aggregate them together as a new virtual link,
as demonstrated in Fig. 1(e). One may think we can just
delete one of them. However, if the application asks for the

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 807

Fig. 1. Comparison between different network view abstractions. (a) The sliced network view. (b) One-big-switch abstraction. (c) End-to-end abstraction.
(d) Incorrect topology aggregation. (e) Simple equivalent aggregation. (f) Advanced equivalent transformation.

end-to-end routing metrics such as hop count at the same time,
deletion would return incorrect values for the two flows.

Meanwhile, if we already know that the upper middle
link would not be the bottleneck, the network view can be
further reduced, as demonstrated in Fig. 1(f). It is worth
noticing that just like the case with the simple equivalent
aggregation, we cannot just delete it if end-to-end metrics are
also requested.

Thus, the question arises on how we can determine what
kind of links can be reduced and how to reduce them correctly.
In order to answer this question, we introduce the concept
of equivalent network view and propose ONV with efficient
algorithms to compute the equivalent network view.

III. ON-DEMAND NETWORK VIEWS

In this section, we formally define the model of on-demand
network views and the theoretical foundations – the variant
routing metric algebra, and the unified network element.
We also discuss how to encode on-demand network views.

A. Basic Settings

We first formally define the models for the networks and
applications discussed in this paper, as summarized in Table I.

1) Network: A network is a graph of arbitrary topology
consisting of a set of M unified network elements or simply
element (defined in Section III-C). For each element, the net-
work can provide two kinds of routing metrics:

• A flow-independent metric represents a metric whose
value is independent of the flow correlations, i.e., the
existence of a flow would not affect the value of another
flow’s flow-independent metric sharing the same network
element. Common flow-independent metrics used in QoS
routing [27] include hop count, delay, and loss rate.1 We
also require these metrics to be linearly addictive, i.e.,
for a given metric w and two network elements a and b,
w(a + b) = w(a)⊕ w(b).

1Delay, and loss rate are sensitive to traffic volumes so their real time values
are not flow independent. However, they are considered flow independent
when measured statistically, as used in network tomography [28].

TABLE I

SYMBOLS FOR NETWORK VIEW ABSTRACTION

• A flow-correlated metric represents a network resource
that is shared among flows. Bandwidth is the most
common and also the most important flow-correlated
metric. Other shared resources such as flow entries or
middlebox-related metrics may also exist in certain sce-
narios. We require the resource constraints to be linear,
i.e., for a given resource and two flows f1 and f2,
w({f1}) + w({f2}) = w({f1, f2}).

Without loss of generality, we number the elements
from 1 to M where the j-th element is denoted as ej .
Let E = {e1, . . . , eM}. Assume each element has Ki

flow-independent metrics and Kc flow-correlated metrics.

808 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE II

THE VARIANT ROUTING METRIC ALGEBRA

For the j-th element ej , the k-th flow-independent metric is
denoted as pj,k and the k-th flow-correlated metric is denoted
as qj,k. Let P = (pj,k)M×Ki and Q = (qj,k)M×Kc .

2) Application: Each application contains a set of N unidi-
rectional flows, which is based on the observation that appli-
cations may have asymmetric traffic demands. An application
has a private objective function, which depends on three types
of information as listed below and is subject to some private
constraints:

• Per-flow end-to-end metrics: An end-to-end metric rep-
resents the end-to-end performance a certain flow can
obtain, such as delay, loss rate, etc. End-to-end metrics
correspond to the flow-independent metrics.

• Per-flow resource allocations: A per-flow resource allo-
cation represents how much resource (e.g., bandwidth) a
given flow can use, and corresponds to a flow-correlated
metric.

• Private variables: A private variable represents informa-
tion that is not known by the network provider, such
as CPU utilization, available memory or even bandwidth
constraints in a private network.

The flows are numbered from 1 to N and the i-th flow is
denoted as fi. Let F = {f1, . . . , fN}. Assume Ki represents
the number of end-to-end metrics, Kc represents the number of
resources, and Kp represents the number of private variables.
For the i-th flow, we use xi,k to denote its k-th end-to-end
metric and yi,k to denote its allocation for the k-th resource.
We number the private variables from 1 to Kp and denote the
k-th variable as zk.

We use U(X, Y, Z) to represent the private objective func-
tion, where X = (xi,k)N×Ki , Y = (yi,k)N×Kc , and Z =
(zk)1×Kp . Without loss of generality, we assume smaller
objective values indicate better results. For objective functions
that an application wants to maximize, we can easily construct
U ′(X, Y, Z) = −U(X, Y, Z) and use U ′ as the objective
function instead.

Assume there are Kpc private constraints, and the
i-th private constraint is denoted as gi(X, Y, Z) ≤ 0. Both U 2

and gi are arbitrary functions with the mild assumption that the
application can find the minimum objective under all private
constraints and additional linear constraints on X and Y .

3) Routing: We consider the case where the tunnels are
simple paths, i.e., there are no loops or branches. Let
ai,j denote whether fi traverses ej and routing matrix
A = (ai,j)N×M .

2Even though the correctness of this paper does not have any additional
assumption on U as long as the application can solve it under linear constraints
and the given set of private constraints, a common assumption in practice is
that the objective function is concave.

Fig. 2. Topology to demonstrate different definitions of path.

B. The Variant Routing Metric Algebra

The routing metric algebra, introduced by Sobrinho to
implement QoS-based routing [29], is based on path concate-
nation. It can be represented as (P ,S, w, ◦,⊕,�). P is the
set of paths and S is a closed set of metrics. The weight
function w maps a path from P to a given metric in S. The
concatenation operator ◦ is a binary operator on P , which
takes two paths and returns a new one. Operator ⊕ is a binary
operator on S and � is a binary relation on S.

In this paper, we introduce a variant of the routing metric
algebra. First, to better formulate the constraints on flow-
independent metrics, we introduce a new ⊗ : N × S �→
S operator to linearize the metric calculation. The opera-
tor basically means the same link is traversed for multiple
times.

Second, we relax the constraint on path concatenation in
the original algebra, by extending the meaning of path from
a walk of nodes to a set of unified network elements (defined
in Section III-C). Consider the network in Fig. 2, the only
valid path from v0 to v4 in the original QoS algebra is
〈v0, v1, v2, v3, v4〉, but with our algebra a path can be any
permutation of {e1, e2, e3, e4} (24 combinations).

We use (P ,S, w, ◦,⊕,�,⊗) to describe our variant routing
algebra. (S,⊕) is a semigroup so that ⊕ is commutative and
associative. We also require that the ⊗ operator is distributive
over ⊕. Concrete examples of some common routing metrics
are demonstrated in Table II.

C. Unified Network Elements

Traditional graph representations of a network would treat
links and nodes differently because the routing capability
is only provided on nodes (switches/routers/middleboxes).
However, since routing is not a mandatory functionality in our
network view definition, we can generalize the nodes and links
as unified network elements to simplify the representation.

For example, a deep packet inspection (DPI) middlebox
may have a maximum processing speed, which yields a
constraint on the total throughput passing through this DPI
node. From the applications’ perspective, it is not different
from a bottleneck link.

However, certain metrics may only appear on certain types
of network elements. To guarantee that these unified network
elements would not affect the results of routing metric algebra,

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 809

we must alter the weight function w as:

w∗(p) =

{
w(p) if w(p) exists

e otherwise

where e is the identity of w and some concrete examples are
given in Table II.

Links, nodes and middleboxes are transformed into unified
elements differently. For example, a duplex link should be
treated as two unified network elements because flows could
traverse it from both directions. Meanwhile, a middlebox
should be treated as a single element because flows from dif-
ferent directions are throttled by the computation capability –
a single bottleneck.

Unified network elements have several benefits. First, this
unified representation of links/nodes greatly simplifies our
analysis. Second, it provides a high-level abstraction which
focuses on the metrics’ semantics rather than how the metrics
are computed/constrained.

D. Abstract Network View

We use the symbols defined in Section III-A and formally
define the on-demand network view.

Flow-independent metrics are formulated as equations
according to the variant routing metric algebra. For example,
the hop count between two end hosts is equal to the sum of
hop counts of each link on the path. We have:

xi,k =
⊕

j

ai,j ⊗ pj,k ⇔ X = A× P.

If fi consumes the same resource on all network elements it
traverses, the flow-correlated metrics are formulated as linear
constraints. The total resource consumption of all the flows on
a single element must not exceed the available amount, i.e.,∑

i

ai,jyi,k ≤ qj,k ⇔ ATY ≤ Q.

Thus, the network view can be formulated as a tuple of
three elements: V = (A, P, Q). Based on this network view
model, an abstraction can be defined as follows:

Definition 1 (Network View Abstraction): A network view
abstraction is a transform function T which takes the original
network view V and returns an abstract view V ′, i.e.,

V ′(A, P, Q) = T (V (A, P, Q))

E. Encoding Abstract Network Views

We use flow path map and element map to efficiently encode
an abstract network view. The flow path map, as the name
suggests, is a dictionary object which maps a flow identifier
to its flow path. Each flow path is a list of element identifiers.
Each element identifier uniquely represents a unified network
element, and each appearance in a flow path indicates that the
flow traverses the corresponding network element once. The
element map is a dictionary object which maps an element
identifier to its properties. Properties are encoded in a key:
value style. The Backus-Naur Form (BNF) for our abstract
network view encoding is given in Fig. 3. An example is given

Fig. 3. The BNF for abstract network view encoding.

Fig. 4. Encoding an abstract network view for Fig. 2.

in Fig. 4, which uses the topology in Fig. 2 with one end-
to-end metric (“routingcost”) and one flow-correlated metric
(“bandwidth”). There are two flows, one from v0 to v4 and
the other from v4 to v0. Each link is denoted as two elements,
where ei = (vi−1, vi) for i ∈ [1, 4] and ei = (vi−4, vi−5) for
i ∈ [5, 8]. However, this abstract network view is not optimal
because it contains some redundant information.

Since the number of flows is fixed, the size of an abstract
network view is mostly determined by the number of elements
and their appearances in the flow path map. We use ‖V ‖ to
denote the size of a view, which is measured by the number
of unified network elements.

IV. EQUIVALENT NETWORK VIEW

In this section, we introduce equivalent network view and
an effective criterion to verify the equivalence. Furthermore,
we give a lower bound of the number of unified network
elements contained in an equivalent on-demand network view.

A. Equivalence of On-Demand Network Views

A key insight is that the returned information is the input
parameters of an objective function, whose result can help
applications make decisions. If the applications can make the
same optimized decision with an abstract network view, we
can say the abstract network view is equivalent.

Consider an application as we model in Section III-A,
the optimization problem can be formulated as

Umin = min U(X, Y, Z)
s.t X = A× P,

O ≤ ATY ≤ Q,

gi(X, Y, Z) ≤ 0, ∀i ∈ [1, Kpc].

810 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Let Umin(V) denote the optimal objective for a given
network view V . We define “equivalence” as follows:

Definition 2 (Network View Equivalence): Two network
views V and V ′ are equivalent, if and only if for any
application with flows F and objective function U ,
Umin(V) = Umin(V ′).

We use the symbol “∼” to represent the network view
equivalence. It can be easily proved that the network view
equivalence is an equivalence relation. We also propose the
criterion in Theorem 1 to simplify the verification.

Theorem 1 (Network View Equivalence Criterion): Two
network views V (A, P, Q) and V ′(A′, P ′, Q′) are equivalent
if and only if for any application with flows F

A× P = A′ × P ′ (1a)

R =
{
Y | ATY ≤ Q

}
=
{
Y | A′TY ≤ Q′

}
= R′ (1b)

Proof: For two network views V and V ′, we use V ∼∗ V ′

and V ∼ V ′ to represent that V and V ′ are equivalent by the
criterion and are equivalent by definition respectively. It can
be easily proved that if V ∼∗ V ′, V ∼ V ′ because they have
exactly the same domain space and thus the same image space.
For the other direction, we prove it by contradiction.

We first assume that there exists V ∼ V ′ but V �
∗ V ′,

i.e., either Equation 1a or Equation 1b does not hold.
Assume Equation 1a does not hold. For any X = A×P �=

A′ × P ′ = X ′, we find one entry that is not equal in X
and X ′, say xi,k �= x′

i,k and construct an objective function
U(X, Y, Z) = xi,k or U(X, Y, Z) = −xi,k based on whether
smaller xi,k is better. Thus, the two network views have
different optimal values and are not equivalent by definition,
which contradicts with our assumption.

Assume Equation 1b does not hold, ∃Ŷ ∈ (R \R′) ∪
(R′ \R). Without loss of generality, let Ŷ ∈ R \ R′. Since
Ŷ /∈ R′, there exist j, k such that (A′TŶ)j,k = û > qj,k.
Now we construct a linear objective function U(X, Y, Z) =
−(A′TY)j,k, and assume the optimal objectives are u and u′

respectively. We have u ≤ −û < −qj,k = u′ which means
the objective function has different optimal objective values
for the two network views. Again, we get a contradiction.

Thus, we can conclude that if V ∼ V ′, V ∼∗ V ′ and the
criterion is both sufficient and necessary.

We have proved that the network views satisfying this crite-
rion also satisfy Definition 2. Thus, it allows us to effectively
verify two network views are equivalent for applications with
arbitrary objective functions and arbitrary fine-grained routing
metrics as long as they fit in the variant routing metric algebra.

B. Lower Bound of ‖V ‖
For a given on-demand network view, there exists a set of

equivalent network views which construct an equivalent class.
To improve privacy and reduce communication overhead, one
might want to return the minimal equivalent network view.

In this section, we present two extreme cases:
1) only flow-independent information is requested, and
2) only flow-correlated information is requested.

As we demonstrate in Section V-B, the general case can be
processed in two stages and each stage corresponds to an
extreme case.

1) Lower Bound of ‖V ‖ for Flow-Independent Metrics:
When only flow-independent information is requested,
the equivalent network view only needs to provide the same
X for each flow. Since ‖V ‖ equals the column rank of A,
the equivalent network view with the minimal ‖V ‖ has the
smallest column rank of A. The problem is equivalent to the
optimal non-negative matrix factorization problem, which has
been proved to be NP-Hard [30].

2) Lower Bound of ‖V ‖ for Flow-Correlated Information:
When only flow-correlated information is requested, equiva-
lent network views should return the same feasible region,
which is determined by a set of linear constraints. Since each
constraint is essentially one network element, ‖V ‖ is directly
related to the number of constraints.

We first introduce the definition of redundant linear con-
straint by Telgen [31] and propose Theorem 2.

Definition 3 (Redundant Linear Constraint – elgen [31]):
For a linear system whose feasible region R =

{
�x | A�x ≤ �b

}
,

the k-the constraint Ak�x ≤ bk is redundant if and only if the
feasible region Rk = {�x | Ai�x ≤ bi, i �= k} is equal to R,
i.e. Rk = R.

Theorem 2: If only flow-correlated information is
requested, ‖V ‖ is minimal if and only if the corresponding
constraint set C = {cj|cj : AT

jY ≤ Qj} has no redundant
constraints.

Proof: ⇒: Consider the opposite that ‖V ‖ is minimal but
C contains redundant constraints. According to the definition
of redundant constraints by Telgen [31], we can remove the
redundant constraints but still obtain the same feasible region.
Thus, we have a network view with a smaller ‖V ‖ and it leads
to a contradiction.
⇐: Consider the opposite that C contains no redundant

constraints but ‖V ‖ is not minimal. Let C′ represents the
equivalent constraint set of the minimal size and ‖C′‖ <
‖C‖. Since C and C′ have the same feasible region, they
also have the same feasible region as C ∪ C′. Since C
contains no redundant constraints, there exists at least one
c∗ ∈ (C ∪C′) \ C which is redundant. Thus, C′ contains
a redundant constraint and cannot have the minimal num-
ber of element, which leads to a contradiction with our
assumption.

The problem of finding redundant linear constraints has
been widely studied. For example, Paulraj and Sumathi [32]
have summarized several algorithms to find the redundant
constraints. Since there exists polynomial time algorithms for
linear programming [33], the problem can also be solved in
polynomial time.

V. EQUIVALENT NETWORK VIEW TRANSFORMATIONS

In this section, we introduce ONV, the On-demand Network
View Abstraction which conducts equivalent transformations to
obtain an equivalent network view. ONV consists of two algo-
rithms, namely equivalent element aggregation and equivalent
element decomposition. We prove both algorithms guarantee
the equivalence condition, and analyze how they can improve
efficiency and privacy.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 811

Fig. 5. Equivalent element aggregation.

Algorithm 1: Equivalent Element Aggregation

Input: V (A, P, Q)
Output: V ′(A′, P ′, Q′)

1 Function EQUIVAGGREGATION(V)
2 V ← {

Vj | Vj ←
(
Aj , Pj , Qj

)
, 1 ≤ j ≤M

}
;

3 G ← GROUPBY(V , Vj ⇒
(
vj ← Aj , Vi

)
);

4 for Gj ∈ G do
5 V ′

j ← AGGREGATE(vj , {Vmj,1 , . . . , Vmj,|Gj |});
6 M ′ ← |G|;

7 V ′ ←

⎛
⎜⎝[A′1 · · · A′M ′]

,

⎡
⎢⎣

P ′
1
...

P ′
M ′

⎤
⎥⎦ ,

⎡
⎢⎣

Q′
1

...
Q′

M ′

⎤
⎥⎦
⎞
⎟⎠;

8 return V ′

9 Function AGGREGATE(vj , {Vmj,1 , . . . , Vmj,|Gj |})
10 A′j = vj ;

11 P ′
j ←

[⊕
i

pmj,i,1, . . . ,
⊕

i

pmj,i,Ki

]
;

12 Q′
j ←

[
min

i
qmj,i,1, . . . , min

i
qmj,i,Kc

]
;

13 return
(
A′j , P ′

j , Q
′
j

)

A. Equivalent Element Aggregation

In this section, we introduce the equivalent aggregation.
The example in Fig. 5 demonstrates the intuition: There are
three flows with different colors and only they traverse both
e1 and e2, so that we “aggregate” them together as a single
element e∗. We give an algorithm in Algorithm 1 which
guarantees that the resulted network view is equivalent to
the original one. We analyze its efficiency and prove its
correctness.

The network view is represented as row vectors (com-
ponents), as demonstrated in Line 2. Line 3 groups the
j-th component Vj(Aj , Pj , Qj) using the j-th row vector in
A, Aj , as the key. M ′ denotes the number of groups, and
the index of the k-th member in the j-th group is denoted
as mj,k. Line 5 computes the aggregation of the components
in each group. Finally Line 7 constructs the new network
view by merging all the aggregated components. For each

component Vj , the time complexity for the grouping and
the aggregation is O(N(Ki + Kc)) and O(N(Ki + Kc))
respectively while the MERGE process is totally logical, which
yields a total time of O(MN(Ki + Kc)).

Now we prove the element aggregation algorithm is correct,
in the sense that it maintains the equivalence condition.

Theorem 3: V ′ ← EQUIVAGGREGATION(V), V ′ ∼ V .
Proof: Assume gj,i represents the index of the

i-th components in Gj , and let bj ← mini mj,i and cj,k ←
argmin qmj,i,k.

First we check Equation 1a is met. Since X = A× P , we
have

xi,k

=
⊕

j

ai,j ⊗ pj,k =
⊕

1≤j′≤M ′

⎛
⎝ ⊕

1≤l≤|Gj′ |
ai,mj′,l

⊗ pmj′,l,k

⎞
⎠

=
⊕

1≤j′≤M ′

⎛
⎝ ⊕

1≤l≤|Gj′ |
ai,bj′ ⊗ pmj′,l,k

⎞
⎠

=
⊕

1≤j′≤M ′
ai,bj′ ⊗

⎛
⎝ ⊕

1≤l≤|Gj′ |
pmj′,l,k

⎞
⎠

=
⊕

1≤j′≤M ′
ai,bj′ ⊗ p′j′,k = x′

i,k.

The key steps are based on the facts that ⊕ is transi-
tive and commutative, ⊗ is distributive over ⊕, and ∀l ∈
[1, |Gj′ |], ai,bj′ = ai,mj′,l

.
Now we check Equation 1b. We have

R =
{
Y | AT

jY
k ≤ qj,k, ∀j, k}

R′ =
{

Y | A′T
jY

k ≤ q′j,k, ∀j, k
}

=
{

Y | A′T
cj′,k

Y k ≤ qcj′,k,k, ∀j′, k
}

.

Since the constraints of R′ is a subset of R, R ⊆ R′. If R′ �=
R, ∃Ŷ ∈ R′ \ R, meaning Ŷ at least violates one constraint
in R, say for ĵ and k̂, i.e.,

AT
ĵ
Ŷ k̂ > qĵ,k̂ ≥ min

l
qmĵ′,l,k̂

= qcĵ,k̂,k̂,

which means Ŷ also violates one constraint in R′ and leads
to contradiction with our assumption. So we have R = R′.

By Theorem 1, V ′ ∼ V .

B. Equivalent Element Decomposition

In this section, we introduce the details of equivalent
element decomposition, which can substantially improve the
performance of equivalent element aggregation.

Algorithm 1 guarantees the equivalence condition which
is important to prove the correctness of ONV, however,
the condition to aggregate components is not easy to be
satisfied without further processing. Thus, we need to conduct
another equivalent transformation in practice, namely equiva-
lent element decomposition. An example of equivalent element
decomposition is given in Fig. 6, where only the red flow
traverses ea, only the blue flow traverses eb and only the red

812 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 6. Equivalent element decomposition.

and the blue flows traverse ec. The three elements have the
following metrics:

ea : routingcost = 1, bandwidth = 100Mbps

eb : routingcost = 2, bandwidth = 100Mbps

ec : routingcost = 3, bandwidth = 200Mbps

Aa =
[
1
0

]
, Ab =

[
0
1

]
, Ac =

[
1
1

]
.

According to grouping condition, there will be three differ-
ent groups. But we can make the observation that since the
constraint for ec: bw1 + bw2 ≤ 200 is redundant, we can
decompose ec as two unified network elements ec1 and ec2

where

ec1 : routingcost = 3, bandwidth = 200Mbps

ec2 : routingcost = 3, bandwidth = 200Mbps

Ac1 =
[
1
0

]
, Ac2 =

[
0
1

]
.

After ec is decomposed, we can invoke EQUIVAGGREGATION

(Algorithm 1) and ec1 and ec2 can be aggregated with a and b
respectively.

Theorem 4 gives the condition when an element can be
safely decomposed without affecting the equivalence condi-
tion. The efficiency and privacy of equivalent decomposition
depend on 1) how to identify redundant components, and
2) how to find the “basis”. The first step corresponds to finding
the minimal equivalent network view with only flow-correlated
information, as discussed in Section IV-B.2, while the second
step is similar to finding the minimal equivalent network view
with flow-independent information, with the constraints that
non-redundant network elements must be contained. Since
the second step has been proved to be NP-Hard, in this
paper, we use a heuristic approach which aims to simplify
the selection of basis, as introduced in Algorithm 2.

Theorem 4: For Vj(Aj , Pj , Qj), we say Vj is redundant if
and only if AT

jY
k ≤ qj,k is redundant for all k. If and only

if Vj is redundant, we can construct an equivalent network
view V ′ = V \ Vj ∪ {Vj,l} where Vj is decomposed as
Vj,l(A′l, P ′

l , Q
′
l) with Aj =

∑
l A

′l, Pj = P ′
l and Qj = Q′

l.
Proof: We still consider the criteria Equation 1a and

Equation 1b and use the same symbols in Theorem 3.

First we can prove criterion Equation 1a holds whether Vj

is redundant or not.

xi,k =
⊕

u

ai,u ⊗ pu,k =
⊕
u�=j

ai,u ⊗ pu,k + ai,j ⊗ pj,k

=
⊕
u�=j

ai,u ⊗ pu,k +

(∑
l

a′
i,l

)
⊗ pj,k

=
⊕
u�=j

ai,u ⊗ pu,k +
⊕

l

a′
i,l ⊗ pj,k

=
⊕
u�=j

ai,u ⊗ pu,k +
⊕

l

a′
i,l ⊗ p′l,k = x′

i,k.

For Equation 1b, first we consider the case when Vj is
redundant but V � V ′. Vj is redundant so that ∀k, AT

jX
k ≤

qj,k is redundant. According to Definition 3, we have feasible
regions R = Rj = R′ for all k. Since we have already proved
that Equation 1a holds, according to Theorem 1, V ∼ V ′

which leads contradiction.
If Vj is not redundant but V ∼ V ′, we can similarly

construct a contradiction between the definition of redundancy
and the equivalence criterion.

Thus, we have proved that Vj can be equivalently decom-
posed if and only if Vj is redundant.

We introduce the concept of dominance of components.
From Theorem 4, we can easily conclude that if an element
can be decomposed, it dominates all the elements in the basis.

Definition 4 (Dominance of Components): We say a com-
ponent Vj is dominated by another component Vj′ , if and
only if, ∀i, ai,j ≤ ai,j′ .

Now we present the details of Algorithm 2. Line 2 iden-
tifies the set of decomposable components D according to
Theorem 4, i.e. ∀Vj ∈ D, Vj is redundant. In each iteration
(Line 4-11), we try to decompose a decomposable elements
into other network elements greedily, in the sense that ∀l,
Vl is dominated by Vj , we decompose Vj to Vl and its
complement. If the routing matrix for Vj is empty, it means
Vj is decomposed to a set of Vls. Otherwise, Vj cannot be

Algorithm 2: Equivalent Element Decomposition

Input: V (A, P, Q)
Output: V ′(A′, P ′, Q′)

1 Function EQUIVDECOMPOSITION(V,F)
2 D ← FINDEQUIVDECOMPOSABLE(V)
3 V ′ ← V
4 foreach Vj ∈ D do
5 V ′ ← V ′ \ {Vj}
6 foreach Vl ∈ V ′ do
7 if Vj can be decomposed to Vl then
8 Vl ← (Al, Pl ⊕ Pj , Ql)
9 Vj ← (Aj −Al, Pj , Qj)

10 if Aj �= �0 then
11 V ′ ← V ′ ∪ {Vj}
12 return V ′

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 813

Fig. 7. The architecture of ONV.

decomposed to existing components so its remnant must be
added back (Line 11).

Finally we invoke EQUIVAGGREGATION(V ′) to aggregate
V ′

j with the same Aj , which is also proved to maintain the
equivalence condition as in Theorem 3. Thus, Algorithm 2
returns the equivalent network view.

For each iteration, the decomposition needs to check
whether a component is dominated by another one, which may
take O(N) time and yield a total running time of O(M2N2).
Since we have assumed that flows only traverse simple paths,
we encode the routing matrix for a component, which is
a binary vector of size N × 1, as a binary integer. This
pre-processing step takes O(MN) time. Thus, the dominance
can be verified in O(log(N)) time using bit and operation.
The update on Line 8 takes only O(Ki) time. The subtraction
on Line 9 can be done using the bit xor operation, which
also takes O(log(N)) time. The routing matrix Aj can be
reconstructed in O(N) time in the outer loop. There are at
most M2 inner iterations and M outer iterations, so the total
execution time is O(M2(log(N) + Ki) + MN).

C. Privacy Enhancement

The equivalent aggregation and equivalent decomposition
are equal to matrix transformations. While the application can
only infer the network elements which cannot be decomposed
without jeopardizing feasibility or optimality, it is impossible
to infer the complete original network state without knowing
the exact value of the transform matrix. Thus, Algorithm 2
can improve the privacy and reduce information leak.

It is worth noting that ONV does not require applications
to specify private information, e.g. private constraints and
objective functions. Thus, it also protects the privacy of the
applications.

D. System Implementation

The architecture of ONV is demonstrated in Fig. 7. User
requests are first sent to the path computation engine, which
obtains the routing matrix A. The ONV engine also pulls the
attribute vectors, i.e., P and Q from a monitoring component.

EQUIVAGGREGATION is first executed to avoid corner cases
in finding redundant resource constraints. If no flow-correlated
information is requested, the FINDEQUIVDECOMPOSABLE

function returns all network elements. Otherwise, it uses
the algorithm in [31] to find network elements with redun-
dant constraints. Finally, EQUIVDECOMPOSITION is executed
and the resulted equivalent network view is encoded as in
Section III-E and returned to the user.

VI. EVALUATION

In this section, we evaluate ONV extensively to answer
the following questions: 1) Can ONV achieve feasibility and
optimality for heterogeneous objective functions? 2) How
much can ONV simplify the network view? 3) How fast can
ONV compute the abstract on-demand network view?

A. Experimental Setup

In this section, we introduce the general experimental setup
of our evaluations and leave the methodologies for each
experiment to the corresponding section.

Topology and Metrics: We use real-world topologies from
two data sets: the topology zoo [34] and rocketfuel [35]. If a
topology already has bandwidth information, we use the values
directly. Otherwise, we generate stepped values for links
from edge to core. We allocate the “routingcost” randomly,
following the standard distribution around the reciprocal of
bandwidth. The values are multiplied by a given constant to
avoid precision issues. For each topology, we generate three
different routing cost distributions.

Algorithms to Find Redundant Constraints: To find the
redundant network elements, we use the linear programming
method introduced in [32].

Abstractions: We use six different network abstractions.
1) The raw network view is computed by the naive

approach which contains all network elements on the
paths.

2) Three various network views are computed by ONV
with different guarantees. The onv-bw view only
guarantees the equivalence of flow-correlated network
resources. All decomposable network elements can be
directly removed and its ‖V ‖ is equal to the number of
non-decomposable network elements. The onv-rc view
only guarantees the equivalence of flow-independent
metrics so it considers all network elements to be
decomposable, i.e., Line 2 of Algorithm 2 returns V .
The onv-both view guarantees equivalent network views
where Line 2 of Algorithm 2 finds redundant network
elements using an paralleled implementation of the
algorithm in [31].

3) The one-big-switch (as in SDX [36]) view removes all
network elements except the ingress/egress ones.

4) The e2e view (as in ALTO [21]) creates a virtual
network element for each flow whose attributes are
calculated with the variant routing algebra.

Flow Requests: We have 7 groups with different num-
bers of flows. There are three types of requests, depending
on the metrics: routingcost-only (rc) bandwidth-only (bw),
and hybrid. As the names suggest, they represent the cases
where 1) only flow-independent metrics are requested, 2) only
flow-correlated metrics are requested, and 3) both metric types
are requested. The flows used in our benchmark are randomly
generated based on the server-client communication pattern.
We select a given subset of endpoints as servers, and for each
server, we pick random endpoints as clients.

Runtime and Data Collection: The prototype system is built
with Python and uses the PuLP framework. The COIN Branch

814 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 8. Normalized results for different objective functions using different abstractions. (a) Results for weighted throughput (wpt). (b) Results for flow
completion time (fct). (c) Results for total routing cost (trc).

and Cut (CBC) solver is used solve linear programming
problems. The evaluations are emulated on a server with Linux
kernel 3.19.0-25, 6 quad-core Intel(R) Xeon(R) E5-2620 v3
@2.40GHz CPU and 128 GB memory.

We collect the results for each 〈topology+metrics, flow
size+distribution, metric types〉 combination. For each com-
bination, we generate 10 different samples and calculate the
average, standard deviation, the minimum and the maximum.

B. Optimality and Feasibility for Heterogeneous Objectives

To understand how different network views may have an
impact on the optimality and feasibility of an application’s
objective functions, we conduct the following evaluation with
multiple objective functions.

Objective Functions: We consider three objective functions
from existing researches: 1) For the wtp objective function
case, we give each flow a random weight and optimize the
weighted throughput [37]. 2) For the fct objective function
case, we give each flow a random data size and minimizes
the total flow completion time [38]. 3) For the trc objective
function case, we divide hosts into client and server groups.
For each host in the client group, it selects the server node
with the smallest routing cost. We sum the total routing cost
as the value of the objective function.

Topology and Metrics: We use the Kdl topology (752 nodes,
1790 links) from the topology zoo. Since the coefficients of
the objective functions are generated randomly, the values of
objective functions may not be useful. Thus, we normalize the
results as follows:

Normalized =
Optimal objective using a given view

Optimal objective using raw
.

The normalized results serve as indicators of whether the
corresponding network view guarantees optimality and fea-
sibility. Consider the optimization problem is to maximize a
given objective function (as in wpt), if the normalized objective
value opt > 1, it means that the objective value is larger
than the real optimal value and thus the value is infeasible.
On the other hand, if the normalized objective value opt < 1,
it means that the objective value is smaller than the real
optimal one and thus the value is suboptimal. For optimization
problems that minimize a given objective function (fct and trc),
the conclusion is the opposite. The conditions of whether a
network view is feasible and optimal are listed in Table III.

TABLE III

CONDITIONS FOR FEASIBILITY AND OPTIMALITY

As demonstrated in Fig. 8, we can see that 1) one-big-switch
abstraction can lead to infeasible solutions in all three cases; 2)
end-to-end abstraction achieves both optimality and feasibility
for trc but can lead to infeasible solutions for wpt and fct
objective functions, indicating that it can provide accurate
flow-independent information but very inaccurate information
on flow-correlated resource (shared bottlenecks); 3) onv-both
achieves both optimality and feasibility for all cases while
the two variants also achieves optimality and feasibility for
their targeted use cases, which indicates that ONV can provide
accurate information on both flow-correlated information (onv-
bw and onv-both), flow-independent information (onv-rc and
onv-both) and the two types of metrics combined (onv-both).

C. Network Simplification

In this section, we demonstrate how much ONV can sim-
plify the network and reduce the communication overhead with
the following settings:

Metrics: We use the normalized ‖V ‖ to evaluate how much
a network view is simplified and use the number of bytes in the
encoded JSON string to evaluate the communication overhead
of an abstract network view.

As we can see form Fig. 9, ONV can simplify the network
significantly. Specifically, the bandwidth-equivalent network
view only uses less than 40% of the network elements in the
original one for all six topologies except Colt. It even uses
less network elements than the one-big-switch abstraction in
certain topologies. While the routingcost-equivalent and the
completely equivalent network views typically contain more
elements, they can still reduce 50% to 80% of the network
information for 200 flows, and 20% to 60% of the network
information even for more than 3,000 flows.

We also analyze the factors that may determine the sim-
plification results. From Fig. 9, we can see that the number
of elements increases as the number of flows increases. Thus,
we consider the largest flow requests, i.e., with 3,200 flows

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 815

Fig. 9. Normalized ‖V ‖ for different topologies.

TABLE IV

TOPOLOGIES AND THE ABSOLUTE RESULTS FOR 3200 FLOW REQUESTS

Fig. 10. Computation time. (a) Computation time of EQUIVAGGREGATION. (b) Computation time of EQUIVDECOMPOSITION. (c) Computation time
breakdown.

and summarize the absolute values in Table IV.3 The relative
size of a given view is calculated as proportion of network
elements compared with the one in the raw view, i.e.,

relative size =
‖V ‖ of a given view
‖V ‖ of the raw view

.

As shown in Table IV, the network elements revealed in
abstract network views are much less than the ones contained
in the topologies, suggesting that on-demand network views
can protect the privacy of network providers while providing
useful information to network-aware adaptive applications.

D. Computation Time

Methodology: The time complexity depends on both the
number of flows N and the number of network elements
M . We choose 3 different numbers of flows: 800 (20 servers
and 40 clients per server), 1800 (30 servers and 60 clients
per server) and 3200 (40 servers and 80 clients per server).
For each M , we generate 10 samples for topologies AS 1221,
AS 2914 and AS 7018. For equivalent decomposition, we also
turn on/off the binary code optimization.

3Edges are bidirectional so the total number of elements in a topology is
twice the number of edges.

As we can see in Fig. 10(a), the time curve fits well with
a linear function of the number of network elements M . The
coefficients of x also roughly grows linearly as the number of
flows N , which demonstrates the time complexity analysis for
Algorithm 1 is correct.

Also, we can also see that in Fig. 10(b), the time curve also
fits with a quadratic function of M . While we cannot derive
directly from the coefficients that the time complexity is linear
with the logarithm of N , the comparison to an unoptimized
implementation (i.e., using linear scan as in Definition 4)
demonstrates an improvement of 40 to 60.

Finally we demonstrate how much each component
contributes to the total execution time. As we can see
in Fig. 10(c), the total execution is less than a minute even
for resource reservation for a lot of flows in very large
scale networks. In particular, both EQUIVAGGREGATION

(denoted as aggr) and EQUIVDECOMPOSITION (denoted
as decomp) only take a very small proportion. While the
time is sufficient to traditional traffic engineering which
may take hours or days, the operator can optionally skip the
equivalent decomposition procedure if the application-
layer scheduler demands smaller traffic engineering
intervals.

816 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

E. Summary

In this section, we evaluate the performance of ONV thor-
oughly. We demonstrate that ONV guarantees both feasibility
and optimality for heterogeneous objective functions. ONV
can substantially reduce the number of leaked information
and also the communication overhead (up to 4.5x improve-
ment). It can produce an abstract on-demand network view
within a minute for very large scale networks (>20,000 nodes
and >25,000 edges) and flow requests (>3,000 flows). Thus,
ONV effectively enables collaborative optimization with non-
administrative network-aware adaptive applications.

VII. RELATED WORK

A. Demands for Network Views

The demands for being network-aware are quite com-
mon. For services built on top of the Internet, user
experience depends heavily on the quality of networking
service [39]–[41]. Previous studies [42] have already shown
that obtaining end-to-end metrics can significantly improve the
user experience of peer-to-peer services and content delivery
networks.

Meanwhile, several studies [38], [43], [44] have also
addressed the need to conduct flow scheduling over the net-
work, suggesting the importance of obtaining the correlations
between different data transfers. Such demands are usually
associated with traffic with large volumes, such as inter-data
center communication, e.g, Google’s globally-deployed B4 [1]
system and global data intensive science networks [26]. Feed-
ing these applications with more accurate network information
allows them to make more intelligent operating decisions.
Network information is also used to optimize video streaming
for multiple objectives, such as QoE [45] and fairness [46].

Another example where being aware of the network per-
formance can be beneficial is fine-grained routing. Latest
approaches such as the Software Defined Internet Exchange
point (SDX) [36] have enabled Autonomous Systems to set
up fine-grained forwarding rules. With the ability to query the
expected network performance, an AS would be able to make
routing decisions based not only on the cost, but also on the
real-time quality of service. Meanwhile, such information can
also be provided to QoS-based routing protocols [27], [29].

SOL [47] and CoFlow [38] are SDN-based network opti-
mization frameworks which provide abstractions to simplify
the modeling of network optimization problems. However,
it would require the optimizer to provide all the information to
the network, which jeopardizes the privacy. General collabo-
rative optimization [48]–[50] typically protects the privacy by
multiplying a monomial matrix. ONV enables collaborative
optimization by providing the network views to the optimizer,
while conducting equivalent transformations to reduce the
communication overhead as well as protect the privacy.

B. Providing Network View

The most straight-forward way of providing network views
is to use its graph representation. Several routing proto-
cols [17]–[20] including OSPF and IS-IS conceptually provide
such an abstraction of the network and it is also adopted by the

I2RS (Interface to Routing System) IETF Working group [51].
Modern SDN controllers [9]–[12] also provide the global view
using the annotated graph model.

The hose model [15] is first introduced for VPN provision-
ing in 1999. Each endpoint is associated with a hose in this
model and the details of the actual VPN tunnels are hidden.
It is sometimes referred to as the one-big-switch in the context
of SDN because the network is abstracted as a single logical
switch in this model. Because of its simplicity, the hose model
is widely used, for example, by many network programming
languages [52], [53]. SDX also uses this model to encapsulate
the underlying network topology. Data center fabrics are
highly customized for scalability [16] and can be modeled as
a non-blocking switch where congestion only occurs on access
links [23], thus, the one-big-switch abstraction is also widely
used for data center flow scheduling and tenant resource
provisioning [38], [43], [44].

The mesh model is mostly used by web-based applications
or measurement frameworks, which have no control over
the network. The mesh model consists of several flows (host
pairs) and provides a single mesh for each flow (pair) with
the associated metrics. PerfSONAR [54], Meridian [55] and
ClosestNode [56] are some concrete examples which provide
such end-to-end network views based on measurement,
while P4P [42] and the ALTO (Application-Layer Traffic
Optimization) protocol [21] are leveraging the network
providers’ information.

ONV is similar to ALTO in the sense that in both cases
information is provided by the network to non-administrative
applications, which is likely to achieve better accuracy. Mean-
while, we overcome the limitations of ALTO by adopting
the equivalence abstraction to provide fine-grained metrics,
in particular the flow correlations, which makes it possible
to suffice the demands from a broader range of applications.
This underlying philosophy also distinguishes ONV from other
(especially QoS related) routing protocols and network views
based on topological aggregation [19].

Recently Nikolenko et al. [57] has introduced an algorithm
to simplify the network topologies, which is also based on
the principle of equivalence and equivalent network trans-
formations. Compared with their work, we have a different
definition of equivalence originated from the applications’
perspective. While their work is still transforming the topol-
ogy, our equivalent transformations are based on a more
abstracted network representation which allows us to conduct
more sophisticated transformations beyond the topological
constraints. Similar ideas are also applied in some newer
researches [58], [59].

VIII. CONCLUSION

In this paper, we systematically study the problem of provid-
ing an accurate on-demand network view for application-layer
multi-flow optimization. Our abstraction is based on the princi-
ple of equivalence which guarantees generality, feasibility and
optimality. We design the ONV framework to construct equiv-
alent network views and evaluate its performance compared
with some well-known network view abstractions. Currently,
ONV leverages the SDN technology to provide the network

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 817

view service in a centralized way, and leaves distributed
on-demand network view as a future extension.

ACKNOWLEDGMENT

The authors would like to thank C. Gu, J. Zhang,
S. Chen, X. Lin, H. Wang, and H. Du for their help during
the preparation of the paper. This paper is an extension to
a conference paper [60], which is also published as a poster
earlier [61]. They would also like to thank the anonymous
TON reviewers for their valuable feedback. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.

REFERENCES

[1] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM Conf. (SIGCOMM) New York, NY,
USA, 2013, pp. 3–14.

[2] Official Public Website for the ATLAS Experiment at CERN,
CERN, Meyrin, Switzerland, 2018. [Online]. Available:
https://home.cern/science/experiments/cms

[3] The Compact Muon Solenoid Experiment, CERN, ATLAS Exp., Geneva,
Switzerland, 2018. [Online]. Available: https://atlas.cern/

[4] AT&T Vision Alignment Challenge Technology Survey—AT&T Domain
2.0 Vision White Paper,” AT&T, Dallas, TX, USA, 2013.

[5] OSCARS, Lawrence Berkeley Nat. Lab., Energy Sci. Netw., Berkeley,
CA, USA, 2018. [Online]. Available: https://www.es.net/engineering-
services/oscars/

[6] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
WAN-aware optimization for analytics queries,” in Proc. 12th USENIX
Symp. Oper. Syst. Design Implement. (OSDI). Savannah, GA, USA:
USENIX Association, 2016, pp. 435–450.

[7] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in Proc. ACM Conf. SIGCOMM, New York, NY, USA,
2014, pp. 443–454.

[8] J. Rehn et al., “PhEDEx high-throughput data transfer management
system,” in Proc. Comput. High Energy Nucl. Phys. (CHEP), 2006,
pp. 1–4.

[9] N. Gude et al., “NOX: Towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[10] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. OSDI, vol. 10, 2010, pp. 1–6.

[11] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
3rd Workshop Hot Topics Softw. Defined Netw. (HotSDN), New York,
NY, USA, 2014, pp. 1–6.

[12] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a model-driven SDN controller architecture,” in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[13] S. Gao, Z. Peng, B. Xiao, A. Hu, and K. Ren, “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2017,
pp. 1–9.

[14] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),
document RFC 4271, 2005.

[15] N. G. Duffield et al., “A flexible model for resource management in
virtual private networks,” in Proc. ACM Conf. Appl., Technol., Archit.,
Protocols Comput. Commun. (SIGCOMM), New York, NY, USA, 1999,
pp. 95–108.

[16] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. SIGCOMM ACM SIGCOMM Conf. Data Commun., New York,
NY, USA, 2009, pp. 51–62.

[17] J. Moy, OSPF Version 2, document RFC 2178, 1997. [Online]. Avail-
able: https://tools.ietf.org/html/rfc2178

[18] D. Oran, OSI IS-IS Intra-domain Routing Protocol, document RFC 1142,
1990.

[19] T. Vu, A. Baid, H. Nguyen, and D. Raychaudhuri, “EIR: Edge-aware
interdomain routing protocol for the future mobile Internet,” WINLAB,
Rutgers Univ., New Brunswick, NJ, USA, Tech. Rep. WINLAB-TR-414,
2013.

[20] W. C. Lee, “Topology aggregation for hierarchical routing in ATM
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 25, no. 2,
pp. 82–92, 1995.

[21] R. Alimi, Y. Yang, and R. Penno, Application-Layer Traffic Optimization
(ALTO) Protocol, document RFC 7285, 2014.

[22] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analysis of
topology aggregation techniques for QoS routing,” ACM Comput. Surv.,
vol. 39, no. 3, p. 7, 2007.

[23] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O. Guedes,
“Gatekeeper: Supporting bandwidth guarantees for multi-tenant data-
center networks,” in Proc. WIOV, 2011, pp. 1–8.

[24] A. Kumar et al., “BwE: Flexible, hierarchical bandwidth allocation
for WAN distributed computing,” in Proc. ACM Conf. Special Inter-
est Group Data Commun. (SIGCOMM), New York, NY, USA, 2015,
pp. 1–14.

[25] H. Xu and B. Li, “Joint request mapping and response routing for
geo-distributed cloud services,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 854–862.

[26] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The sci-
ence DMZ: A network design pattern for data-intensive science,” Sci.
Program., vol. 22, no. 2, pp. 173–185, 2014.

[27] H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “Algebra and
algorithms for efficient and correct multipath QoS routing in link state
networks,” in Proc. IEEE 23rd Int. Symp. Qual. Service (IWQoS),
Jun. 2015, pp. 261–266.

[28] M. Rabbat, R. Nowak, and M. Coates, “Multiple source, multiple
destination network tomography,” in Proc. IEEE INFOCOM, vol. 3,
Mar. 2004, pp. 1628–1639.

[29] J. L. Sobrinho, “Algebra and algorithms for QoS path computation and
hop-by-hop routing in the Internet,” IEEE/ACM Trans. Netw., vol. 10,
no. 4, pp. 541–550, Aug. 2002.

[30] S. A. Vavasis, “On the complexity of nonnegative matrix factorization,”
SIAM J. Optim., vol. 20, no. 3, pp. 1364–1377, Jan. 2010.

[31] J. Telgen, “Identifying redundant constraints and implicit equalities
in systems of linear constraints,” Manage. Sci., vol. 29, no. 10,
pp. 1209–1222, 2002.

[32] S. Paulraj and P. Sumathi, “A comparative study of redundant constraints
identification methods in linear programming problems,” Math. Prob-
lems Eng., vol. 2010, Sep. 2010, Art. no. 723402.

[33] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in Proc. 16th Annu. ACM Symp. Theory Comput., 1984,
pp. 302–311.

[34] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[35] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, Feb. 2004.

[36] A. Gupta et al., “SDX: A software defined Internet exchange,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562, 2015.

[37] Y. Bartal et al., “Online competitive algorithms for maximizing weighted
throughput of unit jobs,” in Proc. Annu. Symp. Theor. Aspects Comput.
Sci. Berlin, Germany: Springer, 2004, pp. 187–198.

[38] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. 11th ACM Workshop Hot Topics Netw.
(HotNets-XI), New York, NY, USA, 2012, pp. 31–36.

[39] R. K. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the quality
of experience of HTTP video streaming,” in Proc. 12th IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM) Workshops, May 2011, pp. 485–492

[40] N. Zhang, Y. Lee, M. Radhakrishnan, and R. K. Balan, “GameOn: P2P
gaming on public transport,” in Proc. MobiSys, 2015, pp. 105–119.

[41] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye, “Measurement and
estimation of network QoS among peer Xbox 360 game players,” in
Proc. Int. Conf. Passive Active Netw. Meas. Berlin, Germany: Springer,
2008, pp. 41–50.

[42] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silber-
schatz, “P4P: Provider portal for applications,” in Proc. ACM SIG-
COMM Conf. Data Commun. (SIGCOMM) New York, NY, USA, 2008,
pp. 351–362.

[43] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, vol. 10, 2010, p. 19.

[44] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf. SIGCOMM, New York, NY, USA, 2013,
pp. 435–446.

818 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

[45] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,
“Towards network-wide QoE fairness using openflow-assisted adap-
tive video streaming,” in Proc. ACM SIGCOMM Workshop Future
Hum.-Centric Multimedia Netw. (FhMN), New York, NY, USA, 2013,
pp. 15–20.

[46] G. Cofano et al., “Design and performance evaluation of network-
assisted control strategies for HTTP adaptive streaming,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 13, no. 3s, pp. 42:1–42:24,
Jun. 2017.

[47] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using SOL,” in Proc. 13th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2016, pp. 223–237.

[48] Y. Hong, “Privacy-preserving collaborative optimization,”
Ph.D. dissertation, Dept. Manage. Sci. Inf. Syst., Rutgers Univ.,
New Brunswick, NJ, USA, 2013.

[49] J. Vaidya, “Privacy-preserving linear programming,” in Proc.
ACM Symp. Appl. Comput. (SAC), New York, NY, USA, 2009,
pp. 2002–2007.

[50] J. Li and M. J. Atallah, “Secure and private collaborative linear pro-
gramming,” in Proc. Collaborative Comput., Netw., Appl. Worksharing,
IEEE CollaborateCom Int. Conf., Nov. 2006, pp. 1–8.

[51] J. Medved et al., A Data Model for Network Topologies, docu-
ment draft-ietf-i2rs-yang-network-topo-20.txt, Internet Engineering Task
Force, Internet-Draft draft-ietf-i2rs-yang-network-topo-11, Feb. 2017.

[52] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software defined networks,” in Proc. 10th USENIX Symp. Netw. Syst.
Design Implement. (NSDI). Lombard, IL, USA: USENIX Association,
2013, pp. 1–13.

[53] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying SDN programming using algorithmic policies,” in Proc.
ACM SIGCOMM Conf. SIGCOMM, New York, NY, USA, 2013,
pp. 87–98.

[54] A. Hanemann et al., “PerfSONAR: A service oriented architecture for
multi-domain network monitoring,” in Proc. Int. Conf. Service-Oriented
Comput. Berlin, Germany: Springer, 2005, pp. 241–254.

[55] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight network
location service without virtual coordinates,” in Proc. Conf. Appl.,
Technol., Archit., Protocols Comput. Commun. (SIGCOMM), New York,
NY, USA, 2005, pp. 85–96.

[56] B. Wong and E. G. Sirer, “ClosestNode.Com: An open access, scalable,
shared geocast service for distributed systems,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, pp. 62–64, Jan. 2006.

[57] S. I. Nikolenko, K. Kogan, and A. F. Anta, “Network simplification pre-
serving bandwidth and routing capabilities,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., May 2017, pp. 1–9.

[58] Q. Xiang et al., “Optimizing in the dark: Learning an optimal solution
through a simple interface,” in Proc. AAAI, Nov. 2018.

[59] Q. Xiang et al., “Fine-grained, multi-domain network resource abstrac-
tion as a fundamental primitive to enable high-performance, collab-
orative data sciences,” in Proc. Int. Conf. High Perform. Comput,
Netw., Storage, Anal. (SC), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 5:1–5:13.

[60] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “NOVA: Towards on-
demand equivalent network view abstraction for network optimization,”
in Proc. IEEE/ACM 25th Int. Symp Qual. Service (IWQoS), Jun. 2017,
pp. 1–10.

[61] K. Gao et al., “ORSAP: Abstracting routing state on demand,” in Proc.
IEEE 24th Int Conf. Netw. Protocols (ICNP), Nov. 2016, pp. 1–2.

Kai Gao received the B.S. and Ph.D. degrees from
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2018.

He is currently an Assistant Research Scientist
with the College of Cybersecurity, Sichuan Uni-
versity. His research interests include program-
ming languages and distributed runtime systems
for newly emerged networking techniques such as
software-define networking and network function
virtualization.

Qiao Xiang received the bachelor’s degree in
information security and the bachelor’s degree in
economics from Nankai University in 2007, and
the master’s and Ph.D. degrees in computer sci-
ence from Wayne State University in 2012 and
2014, respectively. From 2014 to 2015, he was
a Post-Doctoral Fellow with the School of Com-
puter Science, McGill University. He is currently
an Associate Research Scientist with the Depart-
ment of Computer Science, Yale University. His
research interests include software defined network-

ing, resource discovery and orchestration in collaborative data sciences,
interdomain routing, and wireless cyber-physical systems.

Xin Wang received the B.S. degree in com-
puter science from Tongji University, Shanghai,
China, in 2013, where he is currently pursuing
the Ph.D. degree with the Department of Com-
puter Science and Technology. He is also with
the Key Laboratory of Embedded System and Ser-
vice Computing, Ministry of Education, Beijing,
China. His research interests include computer net-
works, software-defined networks, and distributed
computing.

Yang Richard Yang received the B.E. degree in
computer science and technology from Tsinghua
University in 1993, and the M.S. and Ph.D. degrees
in computer science from the University of Texas
at Austin in 1998 and 2001, respectively. He is
currently a Professor of computer science and elec-
trical engineering with Yale University. His work
has been implemented/adopted in products/systems
of major companies (e.g., AT&T, Alcatel-Lucent,
Cisco, Google, Microsoft, and Youku) and featured
in mainstream media, including Economist, Forbes,

Guardian, Information Week, MIT Technology Review, Science Daily, USA
Today, Washington Post, and Wired, among others. His research was sup-
ported by both the U.S. government funding agencies and leading industrial
corporations. His research interests span areas including computer networks,
mobile computing, wireless networking, and network security. His awards
include the CAREER Award from the National Science Foundation and the
Google Faculty Research Award.

Jun Bi (S’98–A’99–M’00–SM’14) received the
B.S., C.S., and Ph.D. degrees from the Department
of Computer Science, Tsinghua University, Beijing,
China. He is currently a Changjiang Scholar Distin-
guished Professor with Tsinghua University, where
he serves as the Director of the Network Architecture
Research Division and the Deputy Dean of the
Institute for Network Sciences and Cyberspace. He
is also the Director of the Future Network Theory
and Application Research Division, Beijing National
Research Center for Information Science and Tech-

nology. He has published over 200 research papers and 20 Internet RFCs
or drafts. He held 30 innovation patents. He has successfully led tens of
research projects. His current research interests include Internet architecture,
SDN/NFV, and network security. He is a Distinguished Member of the China
Computer Federation.

Precedence: Enabling Compact Program Layout By
Table Dependency Resolution

Christopher Leet1, Shenshen Chen12, Kai Gao3, Yang Richard Yang12
1 Yale University, 2 Tongji University, 3 Sichuan University

ABSTRACT
The rise of the programmable switching ASIC has allowed
switches to handle the complexity and diversity of mod-
ern networking programs while meeting the performance
demands of modern networks. Exploitation of the flexibil-
ity of these switches, however, has exploded routing pro-
gram size: recently proposed programs contain more than
100 [11] or even 1000 [10] tables. Realizing these programs
in a programmable switch requires finding layouts with min-
imal depth: if a layout has more match-action stages than
a switch’s pipeline provides, the switch must recirculate,
cutting throughput. Even if a layout fits a switch’s pipeline,
since most commercial pipelines cannot allocate memory
freely to stages, non-compact pipelines can result in un-
derloaded stages and significant memory underutilization.
While inter-table control and data dependencies critically
limit the ability of compilers to lay out tables compactly, no
switch architecture which can fully resolve dependencies has
been proposed. To address this problem, we introduce prece-
dence, an extension of the RMT switching ASIC, which
enables tables linked by dependencies to be executed in par-
allel or even out-of-order. Precedence can resolve nearly 70%
of switch.p4 [11]’s dependencies (a real-world routing pro-
gram), reduce its pipeline depth by 48%, and only modestly
increases silicon area.

CCS CONCEPTS
• Networks→ Routers; • Hardware;

1 INTRODUCTION
The rise of the programmable switching ASIC was a land-
mark development in modern networking. Programmabil-
ity allows switches to handle the complexity and diversity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’19, April 3–4, 2019, San Jose, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00
https://doi.org/10.1145/3314148.3314348

of modern routing applications while achieving the per-
formance required of modern networks. As programmers
have increasingly exploited the flexibility promised by pro-
grammable switches, however, routing program size and
complexity has ballooned. Recent routing programs like
DC.p4 [23] (43 tables), switch.p4 [11] (163 tables) and Hy-
Per4 [10] (1091 tables) have incredible sophistication.
Realizing a modern program on a programmable switch

pipeline, however, requires finding a pipeline layout with
minimal depth. Current pipeline targets, such as RMT [3],
rarely have more than 32 match-action stages; a program
layout which exceeds its switch target’s depth forces the
switch to recirculate packets, dropping throughput. Even
when a program layout can fit into its target pipeline, there
are good reasons for minimizing its depth. Longer pipelines
have higher latency and must power more stages, resulting
in high power consumption. Moreover, since most pipeline
targets either disallow or strictly constrain stages from shar-
ing memory, an unnecessarily long pipeline layout can lead
to underutilization of each stage’s resources, increasing its
effective demand for costly SRAM and TCAM.

A critical limitation on the ability of compilers to generate
compact datapath layouts is the inter-table data and control
hazards, or dependencies, in routing programs. Under cur-
rent pipeline architectures, if a table, T1, has an output read
by a second table, T2, T2 must be placed after T1 in the data-
path layout. Modern routing programs, reliant on complex
systems of small, interconnected tables to perform computa-
tion, are burdened with cumbersome webs of dependencies.
switch.p4 has 244 dependencies connecting its 163 tables!
To achieve compact pipeline layout, a pipeline architec-

ture must allow parallel and even out of order execution of
tables linked by dependencies, eliminating all constraints on
pipeline layout except hardware constraints. Dependency
resolution, however, raises the following challenges:
(1) Correct parallel table execution. Parallel execution

of tables linked by dependencies can introduce race
conditions [21] which must be handled correctly.

(2) Efficient parallel table execution. Switching ASICs
must meet demanding throughput, latency, and power
requirements. Any ASIC which permits parallelism
must not compromise these requirements.

No public switching ASIC architecture resolves routing
program dependencies. While work on speculative execution

1

https://doi.org/10.1145/3314148.3314348

in CPU/GPU based systems [8, 15, 17] has yielded insights
into handling race conditions in parallelism, these insights
cannot be directly applied to switching ASICs.
In this paper, we introduce precedence, an extension of

the RMT architecture which novelly allows tables linked by
both data and control dependencies to be executed in parallel
and even out-of-order by speculative execution. Precedence’s
underlying idea is not new [20], but we are the first to in-
troduce it to the design of switching ASICs. Precendence
can resove nearly 70% of switch.p4’s dependencies, reduces
DC.p4 and switch.p4’s pipeline depths by 40% and 48%, and
only requires a modest increase in silicon area.

2 PROBLEM STATEMENT
To allow better parallelism of logical tables, our objective is
to resolve as many dependencies between logical program-
ming tables as possible. We focus on extending the RMT [4]
pipeline to resolve dependencies between logical tables in
P4 [2] programs, but we emphasize that our approach is
generic and could be applied to other logical pipeline de-
scriptions and hardware layouts.

2.1 Pipeline Dependency Model
Wemodel the graph of dependencies between logical routing
tables with Jose et al.’s [13] notion of a Table Dependency
Graph (TDG). A TDG is a directed, acyclic graph (DAG)
representing a pipeline’s logical tables as vertices and the
dependency between them as directed edges.
The edges in a TDG can be grouped into four classes,

corresponding to the four types of data and control depen-
dency. [13, 20] Each class has different characteristics and
requires a different resolution. These classes are:

• Read-After-Write (RAW) data dependency: Table 1writes
a field read by Table 2.

• Write-After-Write (WAW) data dependency: Table 1writes
a field subsequently written by Table 2.

• Write-After-Read (WAR) data dependency: Table 1 reads
a field subsequently written by Table 2.

• Control dependency: Table 1 determines whether pro-
gram control passes to Table 2 or not.

As an example, Figure 1 gives a TDG for the L2 L3 Simple
MTag benchmark program implemented by Jose et al. Each
table is depicted as a box, each control dependency as dashed
edge, each RAW data dependencies as a red solid edge and
the lone WAW dependency as a blue solid edge. Since there
may be multiple types of dependencies between two tables,
a TDG may be a multigraph.

2.2 Switch Architecture
We present precedence as an extension of the RMT switch ar-
chitecture: - a real, high-performance, programmable switch

Routable
Vrf

Check-IPv6 Check_uCast_IPv4

UrpfV4

UrpfV6

IPv6_Prefix

ACL

Smac_Vlan

Dmac_Vlan

NextHop

Eg_MTag

IPv6_Fwd

IPv6_Xcast Source_check

MTag

Igmp

IPv4_XCast

IPv4_Fwd

Control Dependency
RAW Data Dependency
WAW Data Dependency

Figure 1: The TDG of the L2 L3 Simple MTag bench-
mark program implemented by Jose et al.

ASIC. Like traditional fixed-table ASICs, RMT processes pack-
ets with a linear pipeline of match action stages. Each stage
contains a local SRAM and TCAM memory cluster to store
custom match tables, and an action engine to carry out cus-
tom actions composed of a series of primitives.

3 PRECEDENCE
Precedence is a mechanism for resolving control and data
dependencies between pipeline tables, allowing the tables to
be placed on the same stage. It assigns every match-action
rule a weighting, its precedence, which can either be a con-
stant or the value of a metadata field. If multiple tables in a
stage execute actions which store a value in the same meta-
data field, the conflict is resolved by storing the value of the
action with the highest precedence. A rule’s precedence field
is treated similarly to any other table metadata field, and can
be managed by runtime software.

Example: Consider the tables Source_Check (dark-green)
and MTag (tan) shown in Figure 1. Source_Check always
overwrites MTag if and only if it has an action to execute. In
theory, the two tables could be placed in one stage by merg-
ing them into a single table, but in practice this is undesirable
because the combined table requires a rule for every pair of
rules in Source_Check and MTag; a combinatorial explosion
of rules which consumes memory needlessly. Precedence
allows both tables to share a stage by assigning Source_-
Check’s writes precedence 1 and MTag’s writes precedence 2.
When both tables write, MTag’s write will take priority.

3.1 Architectural Model
Precedence is implemented as an extension of the RMT ar-
chitecture by placing a new hardware component, the action
output selector, between the action units’ output and the
outgoing metadata bus (Figure 2). The action output selec-
tor reads each action unit’s output write and that output’s
precedence, which can either be sourced from a constant
stored in the Very Long Instruction Word (VLIW) Memory,
or a metadata field forwarded by the action input selector,
or the output of another action unit. If multiple action units

2

Ctrl

Packet
Header
Vector

Packet
Header
Vector

Match
Tables

Action
Memory

VLIW Instruction Memory

Match
Results

A
ction Input Selector

A
ction O

utput Selector

A
ction
U

nit
A

ction
U

nit

OP
code

V
ery w

ide
H

eader B
us

Precedence

Figure 2: The RMT architectural model extended by
precedence. New architecture added by the extension
is colored in dark blue.

store their output in the same field the action output selector
forwards the output with the highest precedence.

An action output selector for an n action unit RMT stage
is constructed with a crossbar of n MUXes, each accepting
each action unit’s output as an input and sending their out-
put to the outgoing metadata bus. Each MUX’s SELECT is
wired to a n-way comparator which can read an action unit’s
precedence from the output of another action unit, the action
input selector, or the VLIW Instruction Memory.

3.2 Dependency Resolution
We now show how precedence can resolve the control and
dataflow dependencies described in Section 2.

WAWdata dependency resolution: WAW-dependencies, such
as the IPv4_UCast_LPM example given above, can be re-
solved by giving each rule in the overwritten table a prece-
dence of 1 and each rule in the overwriting table a precedence
of 2. When the two tables are placed on the same stage, the
overwriting table will overwrite the overwritten table.

Space Complexity: Any dependency between two tables
can be naively resolved by merging the tables. In the worst
case, merging two tables generates a rule for every pair of
rules in the tables. If the two tables are denoted T1 and T2,
and their rule number |T1 | and |T2 |, then table merge gen-
erates |T1 | · |T2 | rules. By comparison, precedence resolves
WAW-dependencies with no additional cost beyond the ac-
tion output select, and thus only needs |T1 | + |T2 | rules.

WAR data dependency resolution: Two tables linked by a
WAR data dependency can be executed in a single stage.

RAW data dependency resolution: One might naively think
that RAWdata dependencies are intractable without merging.
If tableT2 reads tableT1’s output, one might reason, thenT1’s

output must be known before executing T2. Consider, how-
ever, the case that T1 performs a computation with a small
number of outputs, like modulus or a conditional. Copies of
T2 for each possible outcome of t1 could be executed spec-
ulatively in parallel, and precedence subsequently used to
read T1’s result and select the execution of T2 to store.

Example: Consider a data center routing protocol on an
end-of-row switch indirectly connected to 3 core switches.
To avoid directing all outgoing flows to a single core switch,
the router computes mod 3 of each inbound packet’s source
IP and uses the result to choose between these three paths.
This protocol could be implemented by two tables below:
t1: rnd_val <- src_IP % 3;
t2: next_hop <- route_tbl[dst_IP, rnd_val];

These tables can be placed in one stage using precedence
by: (a) modifying T1 to set three one bit flags rnd_val_-
is_0, rnd_val_is_1, and rnd_val_is_2 according to rnd_-
val’s value, and (b) dividing T2 into three tables which com-
pute route_tbl[dst_IP, 0], route_tbl[dst_IP, 1] and
route_tbl[dst_IP, 2], where route_tbl[dst_IP, i]’s
output’s precedence is rnd_ele_is_i. At runtime,T2 is spec-
ulatively executed for all three possible values of rnd_val in
parallel, and subsequently the action output selector looks at
which rnd_ele_is_i flag is set to pick the correct version
of T2’s output to store.

Space Complexity: To resolve a RAW-data dependency be-
tween two tables T1 and T2, precedence requires worst case
dom(T1 outputs read by T2) · |T2 | rules, since one copy of
T2 needs to be made for every possible operand vector it
could read from T1. When dom(T1 outputs read by T2) com-
parable to |T2 |, precedence’s rule number is comparable to
table merge (and requires many more action units). When
dom(T1 outputs read by T2) is a small constant, however,
precedence only requires O(|T1 | + |T2 |) rules.
In the previous example, merging the two tables in the

code snippet above produces a single table with |src_IP| ·
|dst_IP| rules, which can be very large if |src_IP| and
|dst_IP| are substantial. Resolving this dependency by prece-
dence, however, only requires |src_IP| + 3|dst_IP| rules.

Control dependency resolution: To understand how prece-
dence can resolve a control dependency, consider the pipeline
shown in Fig 3. This pipeline has no dataflow dependencies,
and each arrow indicates a control flow dependency. For ex-
ample, tables T1, T2 and T3 form a fully generic control flow
dependency: after executing T1, program control is either
passed to T2 or T3. Despite needing to know T1’s output to
determine whether to execute T2 or T3, all three tables can
be placed in the same stage by speculatively executing T2
and T3 and using precedence to select which output to store.

3

t5
t6

t2
t3

t1
t7

t4

Figure 3: A pipeline with only control dependencies.
First, the control flow dependency can be converted into a

data flow dependency by predication, replacing each of T1’s
jump(T2) and jump(T3) actions with writes to the boolean
predicate is_jump_T2 and is_jump_T3. Next, T2 and T3’s
rules’ precedence are set to their respective predicates. Fi-
nally,T2 is instructed to write the special value not_written
to any variable neither it nor T1 originally wrote but T3 did,
and vice versa. At runtime, the action output selector can
choose between T2’s and T3’s outputs because only one of
is_jump_T2 and is_jump_T3 is set.

Space complexity: Precedence requires no additional rules
to resolve control dependencies.

3.3 Combined Dependency Resolution
Not only can precedence resolve WAW, control flow, and
certain RAW dependencies individually, it can also resolve
any combination of these dependencies:

• To resolve a combined WAW and RAW dependency
between two tables, T1 and T2, the precedence of T1’s
rules is set to 0 so that its output will be overwritten
by the selected speculatively executed copy of T2.

• To resolve a combined WAW and control flow depen-
dency between the parent table T1 and the child tables
T2 and T3, the parent table’s rules are assigned prece-
dence 1

2 , so that its output will overwrite its unchosen
speculatively executed child and be overwritten by its
chosen speculatively executed child.

• To resolve a combined RAW and control flow depen-
dency between the parent table T1 and the child tables
T2 and T3, a copy of T2 is made for each output of T1 it
could read, and similarly for T3. Each predicate speci-
fies both a table and an output of T1.

• To resolve all three dependencies, proceed as the RAW
& control flow case, but set T1’s precedence to 1

2 .
No change is required to resolve a WAR dependency in

combination with any other set of dependencies. (To simply
implementation, precedence values are scaled to be integers.)

3.4 Dependency Chain Resolution
Now that we have analyzed single dependencies, we turn to
dependency chains. Consider a chain of WAW data depen-
dencies T1 → T2 → . . .Tn . Every table in such a chain can
be executed in the same stage by assigning the i-th table’s
rules precedence i , so that Ti overwrites all tables before it
in the chain and is overwritten by all tables after it.

Unfortunately, however, precedence cannot resolve chains
of RAW data dependencies or control dependencies. Con-
sider, for example, the pipeline TDG of control-dependencies
shown in Figure 3. One might think that this pipeline could
be executed in a single stage as we showed T1, T2 and T3
could be previously by replacing T2’s jumps with the predi-
cates is_jump_T4 and is_jump_T5, and so forth. However,
the value of is_jump_T4 is not determined until the action
output selector has processed T2 and T3’s outputs; until then
it could either be true, false or not_written. This means
that T4’s precedence will not be known until the action out-
put selector has chosen between the speculative executions
of T2 and T3, so T4 must be left to the next stage. In general,
precedence cannot place tables in a 2 or more link RAW
data/control dependency chain in the same stage.

3.5 Out-of-Order Execution
Thus far, precedence has only been used to place tables linked
by a dependency in the same stage. Precedence can also be
extended to enable out-of-order execution, where a table can
be executed at any stage prior to a table it is dependent on.

If a speculatively executed table is placed in a stage prior
to the table it depends on, its output is written to a set of
temporary variables on the metadata bus. Then, in the stage
containing the table it depends on, a small one rule table is
added which reads each temporary variable and writes it,
with its corresponding precedence, to the appropriate field.
While this out-of-order execution strategy does take up an
extra action unit for each out-of-order speculatively executed
table, its memory overhead is minimal.

4 EVALUATIONS
We now evaluate precedence against a set of benchmark
programs. We give the experimental setup (Section 4.1), and
then measure the percentage of dependencies precedence
resolves in the benchmark programs (Section 4.2). Next, we
analyze its impact on the compiled depth of these programs
(Section 4.3) and finally its hardware cost (Section 4.4).

4.1 Experimental Setup
Benchmark Programs. We benchmark on: (1) two real
world, open source P4 programs, DC.p4 and switch.p4 and
(2) four P4 programs used as benchmarks by Jose et al., L2
L3 Simple, L2 L3 Complex, L2 L3 Simple MTag and L3 DC.
Table 1 gives key program attributes.
Target Switch Architecture. Programs are compiled to a
precedence enabled RMT pipeline. The numeric values for
this pipeline’s attributes are chosen following Bosshart et
al.’s recommendations in [4]. In particular, each match stage
contains 106 SRAM blocks of 1K entries × 112b, 16 TCAM
blocks of 2K entries × 40b, and a separate 640b crossbar for
SRAM and TCAM, capable of querying 8 tables at once.

4

Table Maximum Longest Dep.
Program Number Table Size Chain
switch.p4 163 «1 stage 12
DC.p4 43 «1 stage 10
L2L3Simple 16 10 stages 6
L2L3Complex 25 4 stages 11
L2L3SimpleMTag 19 10 stages 8
L3DC 11 <1 stage 8

Table 1: Benchmark Program Table Number, Maxi-
mum Table Size, and Longest Dependency Chain.

Routable Check-IPv6 IPv6_Prefix Igmp(a)

Routable Check-IPv6 IPv6_Prefix Igmp(b)

Figure 4: A control dependency chain in L2 L3 Simple
MTag (a) without and (b) with precedence.

Compiler. The benchmark programs are compiled to the
precedence enabled RMT pipeline using Jose et al.’s [13] com-
piler, after modifying it for precedence in two ways. First,
all WAW-data dependency constrains are removed from each
program’s TDG. Second, for each chain of control dependen-
cies in a program, each table’s dependency on the next table
in the chain is removed, and new dependencies between it
and every other subsequent table in the chain added. For ex-
ample, Figure 4 shows a chain of control dependencies from
L2L3SimpleMTag without (Figure 4 (a)) and (Figure 4 (b))
with precedence. In (b), the dependency between Routable
and Check_IPv6 (the next table in the chain) is removed and
dependencies between IPv6_Prefix and Igmp (subsequent
tables in the chain) added. All RAW data dependencies are
assumed intractable unless otherwise stated.

4.2 Resolvable Dependency Frequency
First, we examine the percentage of dependencies in real-
world routing programs that precedence can resolve. The
number of RAW, WAW and control dependencies in each
program are shown in Table 2. The programs are dominated
by control and RAW dependencies. Precedence can reliably
resolve every dependency except for RAW data dependen-
cies. Figure 5 lists the number of resolvable dependencies in
each program. Precedence can resolve a substantial minor-
ity of dependencies in all programs, and a majority in half.
The more complex a program’s control structure, the better
precedence performs.

4.3 Pipeline Stage Reduction
Each benchmark program’s pipeline depth with and without
precedence is given in Figure 6. Precedence reduces the depth
of DC.p4, switch.p4 and L3.DC by 40%, 48%, and 42%, while
achieving more modest depth reductions on L2 L3 Simple, L2
L3 Simple MTg, and L2 L3 Complex (5%, 5% and 10%). Note

RAW WAW Control
Program Deps. Deps. Deps.
switch.p4 83 27 134
DC.p4 33 1 12
L2L3Simple 4 0 22
L2L3Complex 25 1 16
L2L3SimpleMTag 6 1 16
L3DC 7 3 1

Table 2: Benchmark Program Dependencies.

Figure 5: Percentages of resolvable dependencies.

Figure 6: Layout depth decrease with precedence.

that switch.p4 requires double the match keys per stage for
full depth reduction.
Precedence’s performance difference between these two

sets of programs is caused by their different structure. Fig-
ure 7 shows the layouts of DC.p4 and L2 L3 Simple without
(left) and with (right) precedence. Each vertical column in
Figure 7 represents a stage’s memory, and each colored place
in a column represent a table whose height represents the
number of entries it contains. Two blocks with the same
color on different stages indicate a table spanning multiple
stages. Uncolored space indicates unused memory.

DC.p4 consists of 43 small tables joined by a complex web
of dependencies. These dependencies limit table placement,
resulting in significant unused space (Figure 7, DC.p4 (left)).
By removing them, precedence recovers the space, achieving
significant depth reduction (Figure 7, DC.p4 (right)). L2 L3
Simple’s layout without precedence (Figure 7, L2 L3 Simple
(left)), however, contains relatively very little unused space.
Its depth is dominated by the size of its tables - in particular,
two 160,000 entry tables (dark blue and grey) dominate 16
out of its 21 initial stages! Precedence’s effects are more
modest here because dependencies are not the main driver

5

DC.p4 L2L3Simple

SRAM

TCAM

Figure 7: DC.p4 and L2L3Simple’s layouts when compiled to a pipeline without (left) and with (right) precedence.

of pipeline depth. Notably, when the size of L2 L3 Simple’s
tables are halved, depth reduction increases from 5% to 20%.
We argue, however, that future routing programs will look
more like DC.p4 than L2 L3 Simple, using large numbers of
(necessarily small) tables rather than a few monolithic tables
to compute. Notably, precedence performs best on DC.p4
and switch.p4, the two real world programs.

DC.p4 also demonstrates the power of RAW dependencies
resolution. DC.p4 contains two critical RAW dependencies:
one on a table with four rules, and one on a table with nine.
Even if no other control or WAW dependencies are removed,
removing these RAW dependencies decreases DC.p4’s layout
to 6 stages. When tables are small, replication provides a
practical way to remove RAW bottlenecks.
4.4 Hardware Cost
Finally, we evaluate the hardware cost of the output selector
to show these benefits can be obtained feasibly. The output
selector was modelled as a 224 × 224 × 19b crossbar, con-
necting each of RMT’s 224 ALU’s outputs to the 224 fields on
its 4Kb bus. The crossbar’s wiring was synthesized with the
ORION 3.0 [14] power and area simulator; its comparator
logic is small and is neglected. ORION 3.0 synthesis gives a
crossbar area of 0.95mm2 using 54 nm process technology.
RMT stage logic (excluding memory) is estimated in [6]

as 1.243mm2 using 16 nm process technology. Scaling the
synthesized area by 16/45 to match, the output selector adds
0.34mm2 to each stage’s logic, a 21% increase. Stage logic,
however, is only a small fraction of RMT’s chip area: the
action engine is 7.4% of its area and its match crossbar is less.
The output selector thus only increases RMT’s area modestly.
5 RELATEDWORK
Physical Layout Design. Many techniques have been pro-
posed to optimize the datapath layout of a routing program.
Jose et al. [13] and Dai et al. [7] give compilers to efficiently
map a logical programming application into pipelined stages.
Alternatively, Hardware Design Languages such as [18] and
[24] allow programs to directly optimize datapath layout.
Unlike these approaches, precedence’s optimizations are pri-
mary hardware based and focus on dataplane architecture.

Switching ASIC Architecture Design. Several variants
on RMT’s switching ASIC architecture have been proposed.
dRMT [6] disaggregates RMT’s memory, placing it in a mem-
ory pool accessible over a centralized crossbar. dRMT re-
moves most dependency constraints on table placement, but
not on access, and requires a monolithic crossbar between
its processors and memory. Banzai [22] equips each stage
with more complex logic, potentially allowing more compact
layout, but does not directly address dependency constrains.
Many commercial switches, such as Cavium XPliant [5], In-
tel FlexPipe [12] and Broadcom Trident 3 [1], also use an
augmented match-action pipeline architecture. While their
precise architectures are not available, their capabilities are.
Broadcom silicon, for example, can address WAW, WAR and
control dependencies by combining the notion of logical
tables with a concept similar to precedence.
Speculative Execution.Outside the scope of programmable
switches, speculative execution [9, 16, 19, 21] is awell-studied
method for achieving different granularities of parallelism.
Further, the rise of general-purpose graph processing units
(GPGPU) has led to the study of speculative parallelism in
GPU-based systems. Diamos et al. [8] adopts thread-level
speculation to automatically convert a sequential program
into parallel execution blocks. Liu et al. [15] explores the
benefits of using GPU to achieve software value prediction.

ACKNOWLEDGMENTS
The authors wish to acknowledge the contributions of Broad-
com, Inc. to this paper in providing a conceptual and practical
basis for precedence-based data-path and control-path exe-
cution in a (non-public) programmable switch ASIC pipeline,
and further demonstrating how dependency resolution can
be defined in a high-level network programming language.
While this paper demonstrates how precedence can substan-
tially augment the processing efficiency of a public switching
architecture such as RMT, the authors acknowledge that com-
mercial, non-public programmable switchASIC architectures
currently available or in development may leverage similar
techniques to provide such advantages over conventional
match-action pipelines.

6

REFERENCES
[1] Broadcom Trident 3. [n. d.]. XPliant Ethernet Switch Product

Family. https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56870-series/. Accessed: 2018-11-15.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95. https://doi.org/10.1145/2656877.2656890

[3] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. In ACM SIGCOMM Computer Communication
Review, Vol. 43. ACM, 99–110.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-action Processing
inHardware for SDN. In Proceedings of the ACM SIGCOMM2013 Confer-
ence on SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 99–110.
https://doi.org/10.1145/2486001.2486011

[5] Cavium. [n. d.]. XPliant Ethernet Switch Product Family. https://www.
cavium.com/xpliant-ethernet-switch-product-family.html. Accessed:
2018-11-15.

[6] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Var-
gaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse
Chuang, Isaac Keslassy, et al. 2017. drmt: Disaggregated programmable
switching. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 1–14.

[7] Jinquan Dai, Bo Huang, Long Li, and Luddy Harrison. 2005. Auto-
matically Partitioning Packet Processing Applications for Pipelined
Architectures. SIGPLAN Not. 40, 6 (June 2005), 237–248. https:
//doi.org/10.1145/1064978.1065039

[8] G. Diamos and S. Yalamanchili. 2010. Speculative execution on multi-
GPU systems. In 2010 IEEE International Symposium on Parallel Dis-
tributed Processing (IPDPS). 1–12. https://doi.org/10.1109/IPDPS.2010.
5470427

[9] Lance Hammond, Mark Willey, and Kunle Olukotun. 1998. Data spec-
ulation support for a chip multiprocessor. ACM SIGOPS Operating
Systems Review 32, 5 (1998), 58–69.

[10] David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using
P4 to Virtualize the Programmable Data Plane. In Proceedings of the
12th International on Conference on Emerging Networking EXperiments
and Technologies (CoNEXT ’16). ACM, New York, NY, USA, 35–49.
https://doi.org/10.1145/2999572.2999607

[11] Barefoot Inc. 2019. switch.p4. https://github.com/p4lang/switch/blob/
master/p4src/switch.p4

[12] Intel. [n. d.]. Intel Ethernet Switch Silicon. https://www.intel.com/
content/www/us/en/products/network-io/ethernet/switches.html. Ac-
cessed: 2018-11-15.

[13] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015.
Compiling Packet Programs to Reconfigurable Switches. In Proceed-
ings of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI’15). USENIX Association, Berkeley, CA, USA,
103–115. http://dl.acm.org/citation.cfm?id=2789770.2789778

[14] Andrew B Kahng, Bill Lin, and Siddhartha Nath. 2012. Explicit model-
ing of control and data for improved NoC router estimation. In Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE. IEEE, 392–
397.

[15] Shaoshan Liu, Christine Eisenbeis, and Jean-Luc Gaudiot. 2011. Value
Prediction and Speculative Execution on GPU. International Journal
of Parallel Programming 39, 5 (Oct. 2011), 533–552. https://doi.org/10.

1007/s10766-010-0155-0
[16] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank,

and Roger A. Bringmann. 1992. Effective Compiler Support for
Predicated Execution Using the Hyperblock. In Proceedings of the
25th Annual International Symposium on Microarchitecture (MICRO
25). IEEE Computer Society Press, Los Alamitos, CA, USA, 45–54.
http://dl.acm.org/citation.cfm?id=144953.144998

[17] J. Menon, M. de Kruijf, and K. Sankaralingam. 2012. iGPU: Excep-
tion support and speculative execution on GPUs. In 2012 39th An-
nual International Symposium on Computer Architecture (ISCA). 72–83.
https://doi.org/10.1109/ISCA.2012.6237007

[18] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL
from high level specifications. In Formal Methods and Models for Co-
Design, 2004. MEMOCODE’04. Proceedings. Second ACM and IEEE Inter-
national Conference on. IEEE, 69–70.

[19] Jeffrey T Oplinger, David L Heine, andMonica S Lam. 1999. In search of
speculative thread-level parallelism. In Parallel Architectures and Com-
pilation Techniques, 1999. Proceedings. 1999 International Conference on.
IEEE, 303–313.

[20] David A. Patterson and John L. Hennessy. 1990. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[21] B Ramakrishna Rau and JosephA Fisher. 1993. Instruction-level parallel
processing: history, overview, and perspective. In Instruction-Level
Parallelism. Springer, 9–50.

[22] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mo-
hammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKe-
own, and Steve Licking. 2016. Packet transactions: High-level program-
ming for line-rate switches. In Proceedings of the 2016 ACM SIGCOMM
Conference. ACM, 15–28.

[23] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy,
Advait Dixit, and Mihai Budiu. 2015. Dc. p4: Programming the for-
warding plane of a data-center switch. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research. ACM,
2.

[24] Donald Thomas and Philip Moorby. 2008. The Verilog® Hardware
Description Language. Springer Science & Business Media.

7

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://doi.org/10.1145/1064978.1065039
https://doi.org/10.1145/1064978.1065039
https://doi.org/10.1109/IPDPS.2010.5470427
https://doi.org/10.1109/IPDPS.2010.5470427
https://doi.org/10.1145/2999572.2999607
https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://www.intel.com/content/www/us/en/products/network-io/ethernet/switches.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/switches.html
http://dl.acm.org/citation.cfm?id=2789770.2789778
https://doi.org/10.1007/s10766-010-0155-0
https://doi.org/10.1007/s10766-010-0155-0
http://dl.acm.org/citation.cfm?id=144953.144998
https://doi.org/10.1109/ISCA.2012.6237007

Trident: Toward a Unified SDN Programming
Framework with Automatic Updates

Kai Gao
Tsinghua

Taishi Nojima
Yale

Y. Richard Yang
Yale/Tongji

ABSTRACT

Software-defined networking (SDN) and network functions
(NF) are two essential technologies that need to work to-
gether to achieve the goal of highly programmable network-
ing. Unified SDN programming, which integrates states of
network functions into SDN control plane programming,
brings these two technologies together. In this paper, we con-
duct the first systematic study of unified SDN programming.
We first show that integrating asynchronous, continuously
changing states of network functions into SDN can introduce
basic complexities.We then present Trident, a novel, unified
SDN programming framework that introduces programming
primitives including stream attributes, route algebra and
live variables to remove these complexities. We demonstrate
the expressiveness of Trident using realistic use cases and
conduct an extensive evaluation of its efficiency.

CCS CONCEPTS

•Networks→Programming interfaces;Networkman-

agement; Middle boxes / network appliances;

KEYWORDS

SDN, Network functions, Network programming, Stream
attributes, Live variables, Route Algebra
ACM Reference Format:

Kai Gao, Taishi Nojima, and Y. Richard Yang. 2018. Trident: Toward
a Unified SDN Programming Framework with Automatic Updates.
In SIGCOMM ’18: ACM SIGCOMM 2018 Conference, August 20–25,
2018, Budapest, Hungary. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3230543.3230562

1 INTRODUCTION

Bringing together software-defined networking (SDN) and
network functions (NF) is an essential step toward highly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230562

programmable networking. In particular, SDN introduces
the ability of logically centralized, global network routing;
network functions (e.g., deep packet inspection, DPI), on the
other hand, introduce the ability of network elements con-
ducting general-purpose, programmable packet processing
beyond the network layer. Only by combining SDN and net-
work functions can one realize programmable, cross-layer
networking. The importance of integrating SDN and network
functions has motivated multiple studies (e.g., [1–7]).

Unified SDN programming, which integrates information
extracted by network functions, such as application layer
HTTP headers, into SDN programming, is an approach to
bringing SDN and network functions together. By exposing
such information, which we refer to as network function
state information or network function state for short, to SDN
programming, unified SDN programming can bring many
benefits such as adaptive, cross-layer SDN control.

Despite the benefits, realizing unified SDN programming,
however, is non-trivial, due to 3 basic programming com-
plexities that are not fully addressed before:
1) How to naturally integrate network function state into SDN

programming. Current SDN programming frameworks
(e.g., [8–12]) make decisions on the headers of each indi-
vidual packet. A network function state, on the other hand,
may not appear in a single packet but span multiple pack-
ets, and hence need to be extracted by a network function
using a finite state machine. For example, a DPI can extract
the HTTP URI field [13] for an SDN program to better
route traffic (e.g., large files are routed differently). The
extraction of the field, however, is a progress: the field can
be unknown for a non-deterministic amount of time due
to TCP three-way handshake and fragmentation. Existing
SDN programming frameworks do not have a model to
expose cross-packet, asynchronous state.

2) How to flexibly construct consistent, correlated routes to uti-
lize network function state. One benefit of SDN is the ability
to realize complex, advanced routing, such as traffic engi-
neering routing and fast rerouting. Integrating network
function states into SDN routing can exacerbate the com-
plexity. For example, a network function may have route
symmetry as a consistency requirement: both forward
and return traffic go through it to update its finite state
machine reliably. Computing advanced routing and at the
same time enforcing consistency for network functions
can then become a substantial programming complexity.

386

https://doi.org/10.1145/3230543.3230562
https://doi.org/10.1145/3230543.3230562
https://doi.org/10.1145/3230543.3230562

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

Figure 1: Complexities and Trident Primitives.

Although there are excellent previous studies in SDN rou-
ting (e.g., [5–7, 14–19]), they are lacking in supporting
efficient, flexible routing for unified SDN programming.

3) How to handle dynamicity of unified SDN programming.
In the general case, the state of a network function can
continuously change: a DPI updates the URI when a per-
sistent HTTP connection requests the next content; a se-
curity network function updates the security level of an
existing connection. When the state changes, the routes
may also need to change. Thus, accurate and efficient
dependency management is crucial in achieving correct,
efficient utilization of network function states. Existing
approaches use either manual identification of data de-
pendencies (e.g., [6, 20, 21]), which can be complex and
error-prone, or simple automatic dependency tracking and
complete recompilation (e.g., [22, 23]), which can lead to
unnecessary recomputation and large latency.
In this paper, we introduceTrident, a novel SDN program-

ming framework that addresses the preceding 3 complexities
with 3 powerful, simple-to-use programming primitives. A
mapping between complexities and solution primitives are
shown in Figure 1. Specifically, the 3 primitives include:
1) stream attribute (§5), a simple abstraction for modeling

cross-packet states extracted by network functions;
2) route algebra (§6), a simple yet powerful abstraction to

flexibly express consistent, advanced routing;
3) live Kleene variable (§4), a unified data model and the

foundation of Trident, which enables built-in support
for unknown and asynchronous data, as well as semantic
dependency tracking and automatic incremental updates.
We implement ((§7) a prototype of Trident and conduct

an extensive evaluation (§8) to demonstrate that Trident
can be realized cleanly and efficiently.

2 MOTIVATION

We start with a simple example to illustrate how an SDN
program may use network function state and the 3 complexi-
ties introduced in §1. The example uses a simplistic network
shown in Figure 2, in which two DPIs are deployed. We use
an algorithmic SDN programming model [10], due to its
flexibility and simplicity. At a high level, the example SDN
program routes traffic on the bypass link if the internal user
accesses an HTTP URI that is not "sensitive"; otherwise, the
traffic should be continuously monitored by a DPI.

DPI 1

DPI 2

External

bypass link

User

link weight: 1

link weight: 2

SW 1 SW 2

Figure 2: Example Network.

C1: Naturally IntegratingNetwork Function State into

SDN. As simple as the objective of the SDN program is, ex-
isting high-level SDN programming frameworks (e.g., [8–
10, 24]) typically do not support routing using layer-7 infor-
mation such as “http_uri”, as such information is unlike
packet header fields, which are contained in every packet.
Instead, such information can be extracted only by a network
function, potentially after reassembling multiple packets.
Despite the reassembling need, one might think that the

issue would be trivial to solve: network functions and SDN
controllers share a common data store, and the network
functions update the data store. This leads to a simple SDN
program as below, where “http_uri” is a variable that
DPIs update for each HTTP flow in the data store:
1 if (pkt.http_uri === "sensitive")) {
2 // This branch can never be reached
3 } else {
4 // Bypass link
5 }

As simple as it is, the program does not achieve the objec-
tive. When the first packet (TCP SYN) of a "sensitive" HTTP
flow enters the network, a DPI cannot decide whether the
packet belongs to an HTTP flow with a "sensitive" URI. Thus,
the result is unknown. Consider two approaches handling
unknown. First, assume an unblocking (i.e., asynchronous)
design in that a DPI assigns an initial value null for such a
case. Using standard logic, the controller will evaluate the
condition of the if statement as false, and hence the packet
should be handled by the else branch, resulting in that the
packet uses the bypass link, which has no DPI at all. With
no DPI to inspect and update, “http_uri” will remain null,
and all packets will use the bypass link. Second, assume a
blocking design, in that the SDN program blocks when read-
ing “http_uri”, if the value is not available. However, with
no route returned, the whole system blocks, with no update
on “http_uri”, leading to a deadlock.
Summary: Cross-packet, unknown and asynchronous net-
work function states can be complex to handle.
C2: ConstructingConsistent, CorrelatedRoutes to Uti-

lize Network Function States. Assume that one can fix
the preceding complexity, so that the initial packets of each
HTTP flow from the user go through a DPI. Below is a po-
tential code segment showing route computation:
1 if (pkt.http_uri === "sensitive")) {
2 // compute shortest path from src to dst, must use a DPI
3 } ...

387

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

A problem of the preceding route computation, however,
is that it does not enforce routing consistency required by
network functions. In particular, a network function may
have symmetry as a consistent requirement, in that the re-
turn packets go through the same network function instance
(e.g., Pico Replication [25]). Assume directed link weights
shown in Figure 2, the shortest path algorithm computes
SW1→DPI1→SW2 for the forward (user to outside) pack-
ets, and SW2→DPI2→SW1 for the return (outside to user)
packets, leading to inconsistency (different DPIs).
One might think that the inconsistency problem would

be easy to fix: when setting SW1→DPI1→SW2 as the route
for the forward packets, setting at the same time an inverse
of it for the return packets. Although this works in a simple
setting, in a practical setting where both a primary route and
a backup route are installed to implement fast rerouting, the
technique may not work: when SW1 switches the route of
the forward packets from primary (SW1→DPI1→SW2) to
backup (SW1→DPI2→SW2) when link SW1→DPI1 is down,
there are no existing mechanisms to specify that the return
packets need to automatically change route as well.
Summary: Although there are previous studies on the con-
struction of correlated routes, for example, Genesis [16] in-
troduces the ability to specify disjoint routes, a mechanism
for systematic construction and enforcement of consistent
routes supporting unified SDN programming is missing.
C3:HandlingDynamicity ofUnifiedProgramming.The
preceding discussions on C1 and C2 already touch on the
complexity of dynamicity: in C1, when a network function
updates its state, the execution path of the SDN programmay
change; in C2, when a link fails, the backup routes will need
to consistently replace the primary routes. In the general
setting, other data can trigger updates as well.
Consider a revision of the SDN program shown below,

where the program uses source IP to determine user, and
each user has a customized white_list:
1 if (user.white_list.contains(http_uri)) {
2 ...
3 }

In this example, network function state (http_uri), con-
figuration state (white_list), and network topology state
can all lead to program outcome changes. Thus, identifying
dependencies and ensuring the consistency between control
plane state and outcomes can become extremely complex
and error-prone (e.g., [20, 21, 26–28]. Even with an event-
driven system [6, 29], specifying the states and transitions
can also be complex, because the number of states grows
exponentially with the number of data.

3 OVERVIEW

With an understanding of the key complexities, we now in-
troduce Trident. We first introduce the programming prim-
itives in Trident that address these complexities. We then
go over Trident programming workflow using an example.

3.1 Trident Programming Primitives

To understand not only how Trident programming prim-
itives address the complexities in §2 but also how they fit
into general SDN programming, consider the “match-action”
paradigm of SDN programming: each SDN program need
to specify (1) the selection of packets (match), (2) the ac-
tion for each selection, and (3) the binding between match
and action. Trident introduces (1) stream attributes to ex-
tend traditional packet selection to support network function
states; (2) route algebra to specify consistent routing actions;
and (3) live variables to achieve consistent binding between
match and action despite dynamicity. The diagram below
illustrates how Trident extends SDN programming:

Live Kleene Variable (§4)

3-Valued Logic, Automatic Dependency Management & Incremental Updates

Packet Selector (§5) Route Specification (§6)

Binding

Stream Attributes &
3-Way/Fallback Branch

Route Sets &
Algebraic Operations

StreamAttribute.Traditional SDNprogramming uses head-
ers in each packet to select packets, but as we identified inC1,
network function states can be cross-packet. Hence, Trident
introduces stream attribute as an abstraction for cross-packet
network function state. Hence, a Trident program can use
both packet headers and stream attributes to select packets.
Specifically, a stream attribute not only exposes a net-

work function state but also specifies the group of packets
that must be sent to the network function to compute the
state. For example, to specify “http_uri” as a stream at-
tribute, one must specify that it takes a complete TCP flow
(TCP5TUPLE); on the other hand, a stream attribute such as
“is_endhost_infected” may need all packets from/to
the same endhost. Hence, a stream attribute exposes not only
the output (state) but also the input of a network function,
allowing Trident to make consistent, efficient decisions.
One key complexity of exposing stream attributes, as we

discussed in C1, is that their values can be unknown and
continuously change. Hence, in Trident, stream attributes
can use only unknown-conforming operations: They can
be either the IS_UNKNOWN operator ? (examples in later
sections), or unknown-enforced control structures including
3-way branch and fallback branch. The examples below illus-
trate the two control structures and the left hand handles the
example in C1: Now all possible values of “http_uri” are
explicitly enumerated, but the program still has an intuitive
synchronous programming structure. Trident will automat-
ically re-execute the program as asynchronous “http_uri”
changes arrive (see below on live Kleene variables).

if (pkt.http_uri === "sensitive") {
// The true branch

} else {
// The false branch

} unknown {
// The unknown branch

} // 3-way branch example

iff (pkt.is_analytics_job) {
// The true branch

} else {
// The false branch
// and the unknown branch

} // fallback branch example

388

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

Route Algebra. Trident route algebra introduces system-
atic route construction primitives to address C2. As we dis-
cussed in C2, a network function can have consistency re-
quirements on howpackets traverse it, but such requirements
are not fully handled in existing systems. Hence, Trident
route algebra introduces a grammar called network function
indicator, which selects routes satisfying traversal require-
ments. Consider the example code below:
1 val X = SimplePath(G, H :-: DPI :-: ISP)
2 ...
3 iff (pkt.http_uri === "sensitive") {
4 val x = any((X where { capacity >= 100 Gbps }) >> X)
5 val y = inv(x)

The expression H :-: DPI :-: ISP is a network func-
tion indicator. It means that among all simple paths (i.e., a
link is used at most once) in graph G, the result X only con-
tains those connecting any host (H) and any external Internet
service provider (ISP), and passing exactly one DPI.
Trident route algebra also introduces generic, algebraic

route constructions for flexible SDN routing. In the example
above, L4 constructs a route x using 3 algebraic operators:
(1) the selection operator (where) selects a subset of X only
those with a capacity greater than or equal to 100 Gbps; (2)
the preference operator (>>), which is key to implement
backup routing, specifies that routes selected in step (1) are
preferred than those only in the general set X; (3) the arbi-
trary selection operator (any) then selects one from routes
given to it. Consider the example network in §2 where all
links are 100 Gbps except SW1→DPI2, which is only 50
Gbps. Then x will record that SW1→DPI1→SW2 is the cho-
sen route, if available, and SW1→DPI2→SW2 is the backup.
L5 uses the inversion operator (inv) to specify that y is
the inverse of x. It is important to note that route algebra
not only computes routes but also records how routes are
computed, to systematically address C2, as discussed next.
Live Kleene Variable. Both stream attribute and route al-
gebra are high-level abstractions, and a reader may already
wonder how they can be realized, in particular due to dy-
namicity. In Trident, it is through live Kleene variables that
stream attributes and route algebra are realized. Further, live
Kleene variables go beyond stream attributes and routes to
provide a generic mechanism handling dynamicity. Hence
live Kleene variables are foundation to address C1 to C3.

The basic function of a live Kleene variable is simple: Tri-
dent keeps track of dependencies for it and automatically
updates it when its dependency changes.

We use an example including both a stream attribute and
a route algebra operation to illustrate the foundational role
of live Kleene variables. Figure 3 shows the example. Assume
that when a packet with source IP 10.0.1.5 arrives, the net-
work function providing is_endhost_infected does
not know whether 10.0.1.5 is infected. From the program-
mer’s point of view, the fallback branch of the program is
executed: a route r_1 + r_2, is constructed using the route

algebra concatenation operator + from route r_1 and route
r_2, and then the Trident built-in function bind specifies
that the packet be forwarded using the constructed route.
Under the hood in Trident, both routes and bindings are
live Kleene variables and hence Trident keeps track of de-
pendencies for them, resulting in a tracking record shown at
Figure 3(a). Now assumer_1 is changed to a new value (i.e., a
different route), Trident will automatically update the com-
putation, generating a new concatenated route to forward
packets for 10.0.1.5, as shown Figure 3(b). Instead of route
changes, consider a stream attribute change: the network
function updates that 10.0.1.5 is infected. Then Trident re-
executes the program, blocking all packets of 10.0.1.5. With
no packets for 10.0.1.5 and if the only input that can trigger
the network function to update is_endhost_infected
is packets, then 10.0.1.5 will be blocked indefinitely. On the
other hand, the network function can have an administrative
interface to reset is_endhost_infected, for example,
after an operator disinfects the endhost. The reset will then
automatically trigger Trident re-execution.

1 iff (pkt.is_endhost_infected) {
2 drop(pkt)
3 } else {
4 bind(pkt, r_1 + r_2)
5 }

Figure 3: Packet Selector and Route as Live Variables.

3.2 Trident Programming Workflow

The preceding Trident programming primitives are generic
abstractions and hence may be realizable in multiple lan-
guages or systems. Below we illustrate Trident program-
ming using a domain-specific language embedded in a Scala-
like language, to utilize its language features to improve code
readability. We also choose an algorithmic SDN program-
ming setting (e.g., Maple [10] or SNAP [30]).
A complete system integrating SDN and network func-

tions can have additional complexities such as placement
and life cycle management of network functions. To focus
on Trident features, we assume that the network functions
are already deployed. Further, complex network functions
can have complex behaviors such as reading the states of (re-
mote) SDN controllers or other network functions. Although
Trident can be extended to handle such additional cases, we
focus on independent, write-only network functions, where
by an independent, write-only network function, we mean
one that does not read the state of either the controller or
another network function.

389

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Figure 4: Trident Programming Workflow.

With the preceding clarification, programming using Tri-
dent is simple, with few steps, as shown in Figure 4.
Step 1: Declare Stream Attributes (Programmer). Inte-
grating stream attributes is a key component for unified SDN
programming, and in Trident, using stream attributes is
simple. As we discussed in §3.1, a stream attribute has both
output (state) and input. Hence, a declaration of http_uri,
as shown below, specifies that the output is a string with
name “http_uri”, and that the responsible network func-
tion needs packets of a complete TCP flow:

// trident.example.DPI - object DPI
val http_uri = StreamAttribute[String]("http_uri", TCP5TUPLE)

Step 2: Implement Stream Attribute in Network Func-

tion (Programmer).Anetwork function providing a stream
attribute needs to be modified to continuously publish the
state to Trident runtime. Trident provides a simple client
library to simplify the publishing process, and as we will
show in §8, this typically takes only a few lines of code.
Step 3:WriteUnified SDNProgram (Programmer).Writ-
ing a unified SDN program using stream attributes is straight-
forward, and below is an example program:
1 // trident.example.DemoProgram
2 object DemoProgram extends SDNProgram {
3 import trident.example.DPI.http_uri
4
5 val capacity = NetworkAttribute[Link, BandwidthUnit]("capacity")
6 val label = NetworkAttribute[Vertex, String]("label")
7
8 val DPI = Waypoint(V where { label === "dpi" }) expose http_uri
9 val H = Waypoint(V where { label === "host" })
10 val ISP = Waypoint(V where { label === "isp" })
11 val X = SimplePath(G, H :-: DPI :-: ISP)
12 val Y = SimplePath(G, H :-: ISP)
13
14 override def onPacket(pkt: Packet) = program {
15 iff (pkt.http_uri === "sensitive") {
16 val x = any((Y where { capacity >= 100 Gbps }) >> Y)
17 bind(pkt, x)
18 bind(inv(pkt), inv(x))
19 } else {
20 bind(pkt, any(X))
21 bind(inv(pkt), any(X))
22 }
23 }
24 }

With an understanding of the primitives and logically cen-
tralized SDN programming, the program is quite straight-
forward: the onPacket function (L4) defines the behavior
for each packet; L15 uses a stream attribute to select pack-
ets; L8-L12 use route algebra to construct static routes; L16
uses route algebra to construct consistent, dynamic routes;
L17-L18 bind constructed routes for both traffic directions.
Step 4: Deploy Program (Trident Runtime). After sub-
mitting the program to Trident, the Trident runtime will
execute the program. The value of the pkt can be either
reactively obtained from packet-missmessages or proac-
tively constructed using symbolic execution. After the execu-
tion, the new bindings are added to the live variable system,
and are further translated into datapath OpenFlow rules. A
key step of the translation is to generate the “match” from the
packet selector, which we will discuss in §5.1. The datapath
deployment can be handled by many systems (e.g., [31–33]).
Step 5: Automatic, Asynchronous Updates (Trident

Runtime). As packet streams enter and traverse the net-
work according to the SDN program, network functions or
switch agents update the values of certain stream attributes
or network attributes, which eventually change the output of
program. These asynchronous updates are sent to Trident
through the client library. Trident runtime automatically
captures the asynchronous data changes and checks whether
the resulted bindings are still consistent with the program.
Invalid routes and bindings are removed automatically, along
with the corresponding datapath configurations. Meanwhile,
the program is re-evaluated to compute new consistent bind-
ings. Invalidation and recovery of the same stream are con-
ducted as a single transaction to avoid inconsistency.

4 LIVE KLEENE VARIABLE

As introduced in §3, live Kleene variables (or simply live
variables) are the foundation of the abstractions in Trident.
Now we formally specify the live Kleene variable in detail.

4.1 Live Variable System

Live Variable. A live variable x is specified as follows:
x : ⟨type, value, deps, operator, operands⟩, (1)

where each property is defined as follows:
• type (Tx): the data type for x ’s value, which defines the
valid operations and the domain (Dx) for x ’s value;
• value (vx): x ’s value, which is either a valid data in the
domain Dx , or unknown, i.e., vx ∈ Dx ∪ {unknown};
• deps (Dx): a set of live variables on which x depends. Let ≺
denote the dependency relationship, i.e., ∀d ∈ Dx , d ≺ x .
• operator (fx) and operands (Yx): a function which defines
how x ’s value is computed, and a sequence of live variables
which are the input of the operator fx . Let yx,i denote the
i-th operand in Yx , then fx has the following signature:
fx : Dyx,1 × . . . ,Dyx, |Yx | 7→ Dx .

390

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

It is important to note that one can attach new properties
to a live variable and enable functionalities such as efficient
change propagation introduced in §7.3.
Consistency Guarantee. Let X denote the set of all live
variables. We define two important consistency properties:
Definition 1 (Synchronized [34]). ∀x ,x ′ ∈ X such that
x ′ ≺ x , x is synchronized with x ′ if and only if: 1) ∀d ∈ Dx ,
if x ′ ≺ d , d is synchronized with x ′; 2) ∀y ∈ Yx , if x ′ ≺ y, y
is synchronized with x ′; and 3) vx = fx (vyx,1 , . . . ,vyx, |Yx |).
Definition 2 (Glitch-free [34]). ∀x ∈ X, x is glitch free if and
only if ∄x ′,y,y ′ ∈ X such that x ′ ≺ y ≺ x and x ′ ≺ y ′ ≺ x ,
where 1) y is synchronized with x ′, 2) y ′ is not synchronized
with x ′, and 3) x is synchronized with both y and y ′.

To achieve the two properties, Trident manages the fol-
lowing procedures of each live variable x ∈ X:
• Dependency tracking: to determine the dependency setDx ,
given an operator fx and operands Yx .
• Change propagation: to determine whether vx should be
updated, and if so, compute the new value of x , given
an operator fx ; operands Yx ; a live variable κ ≺ x whose
value has changed, which we call a root cause; and a subset
of x ’s dependent live variables Dx (κ) ⊆ Dx where ∀y ∈
Dx (κ), vy is synchronized with the new vκ .
The following example illustrates the dependency rela-

tionships and change propagation processes for four live
variables, a,b,x andy, where x depends ony and b, and both
y and b depend on a. In this example, a is a root cause, and x
andy are exposed results. Live variables with different colors
means that they are not synchronized. In this example, x and
y in (a), (b) and (d) are all glitch-free.

(a) (b) (c) (d)

4.2 Basic Live Variable

We now introduce three types of basic live variables, which
are later extended to different programming primitives.
Simple Live Variable. A simple live variable x represents
the result of an idempotent function and depends on all of its
operands. When the value of a live variable κ ≺ x is updated,
x ’s value must be recomputed in a glitch-free way, i.e.,:
• Simple dependency tracking: Given an operator fx and
operands Yx , Dx ← Yx .
• Simple change propagation (SCP): Given an operator fx ,
operands Yx , a root cause κ ≺ x , and a set of dependent
live variables Dx (κ), if and only if Dx (κ) = Dx , vx ←
fx (vyx,1 , . . . ,vyx, |Yx |).

Proposition 1. SCP guarantees glitch-free consistency.

Proof. Sketch This can be proved by checking Defini-
tion 2 for x and its dependencies recursively. □

Remote Live Variable. A remote live variable x represents
the most recent value of a remote data source, such as an in-
ternal state of a network function, and is specified as follows:

x : ⟨type, value, deps ≡ ∅, operator ≡ remote,
operands ≡ ∅, source, uuid⟩, (2)

where type, value, deps, operator and operands are the same
as in (1), and the new properties are specified as follows:
• source: a sequence Sx of values provided by a remote data
source, where new values are continuously appended to
Sx . The domain of each value v in Sx is specified by type,
i.e., v ∈ Dx ∪ {unknown};
• uuid: a universally unique identifier (idx) for x i.e., for
remote live variables x and y, idx = idy ⇔ x = y.
A remote live variable x has a special operator remote,

which does not take any operand; x thus does not depend on
any other live variables and is managed by the rules below:
• Remote dependency tracking: As specified in (2), Dx ← ∅.
• Remote change propagation: The value of x is updated
whenever there is a new value in Sx , and vx ← Sx ↓,
where ↓means fetching the last value of a sequence.
Programmers can avoid working with the source directly

by using predefined extensions of remote live variables, e.g.,
stream attributes (§5.1) and network attributes (§6.1).
Snapshot Live Variable. In Trident, the operator of a live
variable can be a complex routing function. However, such a
function can take a very long execution time, during which
the live variable’s value becomes unknown. To make the
last known value always available, we introduce a snapshot
live variable x̃ , which is used to hold the last known value of
another live variable y until y is synchronized; however, x̃
can have unknown value when the first known value of y is
not yet available. x̃ is specified as follows:

x̃ : ⟨type, value, deps, operator ≡ :=, operands⟩. (3)
A snapshot live variable x̃ has a special operator called

snapshot assignment (denoted as :=), and has exactly one
operand y. x̃ must have the same type as y, i.e., Tx̃ = Ty and
is managed using the following rules:
• Snapshot dependency tracking: Given the operand y, if and
only if y is synchronized, Dx̃ ← {y}; otherwise Dx̃ ← ∅.
• Snapshot change propagation: Given the operand y, if and
only if y is synchronized, vx̃ ← vy ; otherwise, the value
of x̃ does not change.
A snapshot live variable “cuts off” the dependencies con-

ditionally to guarantee that the result is always glitch-free.
In our examples, due to the limitation of Scala, the snapshot
assignment is actually written as a function snapshot.
Example. Figure 5 includes a minimal abstract example,
which involves a source S with the initial value ⟨4⟩; a remote
live variable x with idx = 1; a simple live variable y; and a
snapshot live variable z. The right side of the figure illustrates
how the values change over time. At t4 when S has a new
value, the value of x is also updated, which immediately
triggers the recomputation of y. When y is not synchronized

391

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

S = source<Int>([4])
x = remote(S)
//x : ⟨Int, 4, ∅, remote, ∅, S, 1⟩
y = log2(x)
//y : ⟨Float, 2.0, {x }, log2, {x }⟩
z := y
//z : ⟨Float, 2.0, {y }, :=, {y }⟩
S += [5] // at t4

Figure 5: Example of Basic Live Variable Types.

(during the execution of the log2 function), z keeps the old
value. Once y is synchronized, vz ← vy .

5 PACKET SELECTOR

On top of the live variable system, stream attribute and packet
selector enable fine-grained packet selection utilizing internal
states in network functions. We now provide the details.

5.1 Stream Attribute

Stream. A stream δH,Π represents a sequence of packets
with common header field values. δH,Π is uniquely defined
by a sequence of header fields, H ≜ ⟨h1, . . . ,h |H |⟩, and a
sequence of header field values, Π ≜ ⟨π1, . . . ,π |Π |⟩, where
∀i , πi is a valid value of hi .H is called the stream type and
can contain any standard packet header field, e.g., source
IPv4 address and TCP/UDP destination port number.
For a packet pkt and a header field h, we use pkt.h to

denote the value ofh in pkt, e.g., pkt.sip represents the source
IPv4 address of pkt. A packetpkt is in a stream δH,Π , denoted
as pkt ∈ δ , if and only if ∀i, 1 ≤ i ≤ |H |, pkt .hi = πi .

For example, consider the following two packets:
pkt1 = ⟨sip = 192.168.1.2, dip = 192.168.1.3, . . . ⟩,
pkt2 = ⟨sip = 192.168.1.2, dip = 192.168.1.4, . . . ⟩.

IfH = ⟨sip⟩, pkt1 and pkt2 are in the same stream, specif-
ically, δ ⟨sip⟩, ⟨192.168.1.2⟩ . However, ifH = ⟨sip, dip⟩, the two
packets belong to different streams.
Stream Attribute. A stream attribute xδ represents a spe-
cific internal state about the stream δH,Π in a network func-
tion. Let Tsa and nsa denote the type and the name of this
internal state, xδ is specified as a remote live variable:

xδ : ⟨Tsa, value, ∅, remote, ∅, source, uuid ≡ (nsa,H ,Π)⟩. (4)
For example, consider an intrusion detection systemwhich

exposes a Boolean internal state called “is_src_infected”,
which indicates that the source host is diagnosed as infected.
Assume host 192.168.1.2 is infected, the stream attribute of
δ ⟨sip⟩, ⟨192.168.1.2⟩ has the following format:
xδ : ⟨Boolean, true, . . . , (“is_src_infected”, ⟨sip⟩, ⟨192.168.1.2⟩)⟩.
StreamAttribute Schema.Aswe can see, stream attributes
representing the same internal state have some common
properties. Thus, we use a stream attribute schema ϑ to
uniquely represent these common properties. Specifically, ϑ
is specified as a tuple: ϑ : ⟨Tsa ,nsa ,H⟩, where Tsa , nsa and
H have the same meaning as in (4). The following illustrates
the schema for the stream attribute “is_src_infected”:

ϑ : ⟨Boolean, “is_src_infected”, ⟨sip⟩⟩.

For simplicity, for a packet pkt and a stream attribute
schema ϑ = ⟨Tsa ,nsa ,H⟩, we define pkt.ϑ as follows:

pkt.ϑ ≜ ⟨Tsa , value, ∅, remote, ∅,
source, (nsa ,H , ⟨pkt.h1, . . . , pkt.h |H |⟩)⟩

It is important to note that, by properly specifying the
stream typeH of each schema, the programmer can benefit
from significantly reducedmemory usage on the controller at
runtime. For example, she can specify eitherH1 = ⟨sip, dip⟩
or H2 = ⟨sip⟩ for the schema “is_src_infected”. Although
H1 andH2 both guarantee that packets in the same stream
share the same internal state, if she usesH1, Trident needs
to keep track of up to N distinct streams, where N is the
number of all possible (sip, dip) combinations. However, if
she usesH2, Trident only keepsM distinct streams, where
M ≪ N denotes the number of all possible sip.

5.2 Packet Selector

On top of the preceding data models, we now define the
model of packet selectors, which are used to select packets
into different streams based on their header field values and
stream attribute values. Each packet selector λ : Packet 7→
{0, 1, unknown} selects packets into a stream δ such that
δ = {pkt |λ(pkt) = 1}, and is one of the following two types:
• a header field packet selector, specified as λ : ⟨h, op,x⟩,
whereh is a header field,x is a live variable, op : Dh×Dx 7→

{0, 1, unknown}, and λ(pkt) ≜ op(pkt.h,vx), or
• a stream attribute packet selector specified as λ : ⟨ϑ , op,x⟩,
where ϑ = ⟨Tsa ,nsa ,H⟩ is a stream attribute schema, x
is a live variable, op : DTsa × Dx 7→ {0, 1, unknown}, and
λ(pkt) ≜ op(pkt.ϑ ,vx).
Following are examples of a header field packet selector

and a stream attribute packet selector, respectively.
⟨sip, in, 192.168.1.0/24⟩, ⟨http_uri,=, “www.xyz.com”⟩.

At runtime, Trident translates each packet selector into
proper OpenFlow match conditions, as will be discussed in
§7.2. Note that a programmer can avoid working with packet
selectors directly; as specified in §3.2, she can specify condi-
tions for packet selection algorithmically and let Trident
automatically generate the corresponding packet selectors,
which will also be discussed in §7.2.

6 ROUTE ALGEBRA

Trident introduces route algebra, a simple yet powerful
programming abstraction to flexibly express consistent, ad-
vanced routing. We now formally specify its details, by start-
ingwith defining basic constructs of routing on top of the live
variable system. We then explain network function indicators
and algebraic operators.

6.1 Route Object

We first specify basic constructs of routing strategies on top
of the live variable system.
Network Component. In Trident, a network topology
has three types of network components: a vertex u, a port p

392

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

and a link l . Trident models each network component as a
remote live variable. Live variables for u, p, and l are denoted
as xu , xp and xl respectively and specified as follows:

xu : ⟨Vertex, value ≡ ǔ, ∅, remote, ∅, source, id(u)⟩,
xp : ⟨Port, value ≡ p̌, ∅, remote, ∅, source, id(p)⟩,
xl : ⟨Link, value ≡ ľ , ∅, remote, ∅, source, id(l)⟩.

The values of these remote live variables are assigned
from domain {0, 1}, indicating whether the corresponding
component is physically functioning, e.g., ľ = 1 means link l
is up and configured correctly.
Network Attribute. A network component live variable
x ∈ {xu ,xp ,xl } has multiple attributes, such as node label,
port statistics and link capacity, which is used to help select
routes in route algebra. For simplicity, we call these attributes
network attributes. A network attribute nax for x is a remote
live variable, whose uuid is determined by 1) the uuid of x ,
and 2) the name of this attribute, denoted as nna.
Similar to stream attribute schema, we specify a network

attribute schema θ as a tuple ⟨type, comp_type, name⟩ (de-
noted as ⟨Tθ ,Cθ ,nθ ⟩). With a supporting live variable x and
a schema θ where Tx = Cθ , one can obtain an attribute na =
x .θ where Tna = Tθ , nna = nθ . For example, for a vertex live
variable xv : ⟨Vertex, 1, . . . , “openflow:1”⟩ and a stream
attribute schema θ = ⟨String,Vertex, “label”⟩, xv .θ =
⟨String, value, . . . , uuid = (“openflow:1” , “label”)⟩.
Route. A route r is a path in a network and consists of a se-
quence of links Lr = ⟨lr,1, . . . , lr, |Lr |⟩. It has a source port and
a destination port, denoted as srcr and dstr . Two routes r1 and
r2 are 1) equal, denoted as r1 = r2, if and only if |Lr1 | = |Lr2 |

and ∀1 ≤ i ≤ |Lr1 |, lr1,i = lr2,i , and 2) equivalent, denoted as
r1 ∼ r2, if and only if srcr1 = srcr2 and dstr1 = dstr2 .

We say a route r is valid if and only if 1) ∀l ∈ Lr , ľ = 1,
and 2) ∀1 ≤ i < |Lr |, the destination port of lr,i is the same
as the source port of lr,i+1, and we use ř ∈ {0, 1} to indicate
whether r is valid. Since the validity of a route r depends on
the physical status of network components, Tridentmodels
r as a simple live variable. We call this live variable as a route
object, denoted as xr , which is specified as follows:

xr : ⟨type ≡ Route, value ≡ r , deps, operator, operands⟩, (5)
and can be constructed in multiple ways:
• enumerating links l1, . . . , ln , i.e. vxr = ⟨l1, . . . , ln⟩;
• concatenating two route objects xr1 and xr2 , denoted as
xr1 + xr2 , i.e. vxr = ⟨lr1,1, . . . , lr1, |Lr1 |

, lr2,1, . . . , lr2, |Lr2 |
⟩;

• inverting a route object xr1 , denoted as ≍ r1, i.e. vxr = ⟨≍
lr1, |Lr1 |

, . . . ,≍ lr1,1⟩ where ≍ l means inverting the source
and destination ports of this link.
• selecting from a route set ∆ for a stream δ , denoted as
ψ (∆,δ), whose details are given in §6.2.

6.2 Route Algebra

Network Function Indicator. A network function indica-
tor (or simply an indicator) is a grammar that describes how

a flow traverses different network functions, usingwaypoints
and patterns. A waypoint represents all instances of the same
network function. A pattern is either 1) unidirectional, which
is encoded as *X*where X ∈ {−, >} represents the traversal
rules only in one direction, or 2) bidirectional, which is en-
coded as:X:whereX ∈ {−, >, <,=} represents the traversal
rules for the same flow in both the forward and reversed di-
rection. Consider two consecutive network functions in a
chain, denoted as waypoints a and b. If X ∈ {<,=}, a flow
can use different instances of b in its life cycle. If X ∈ {>,=},
the return flow can use a different instance of a. All patterns
in an indicator are either unidirectional or bidirectional.

An indicator has the following format:
w1 rp1 w2 . . . w |W |−1 rp |W |−1 w |W | ,

which interleaves awaypoint sequenceW = ⟨w1, . . . ,w |W |⟩
and a sequence of |W| − 1 patterns ⟨rp1, . . . , rp |W |−1⟩.
Route Set. A route set x∆ is a live variable, where ∆ is con-
ceptually a set of valid routes, with the extensions below:
• A route r is equivalently in a route set ∆, denoted as r ∈∼ ∆,
if and only if ∃r ′ ∈ ∆, r ∼ r ′ (as defined in §6.1).
• For a stream δ , a route r can be selected from a route set
∆, i.e., r = ψ (∆,δ) only if r ∈ ∆, ř = 1 and srcr = ingressδ .
Formally, a route set x∆ is specified as follows:

x∆ : ⟨type ≡ RouteSet, value ≡ ∆,
deps, operator, operands, expr⟩ (6)

where expr is explained below, while the rest are from (1):
• expr : an expression which describes the computation pro-
cess of this route set live variable.
A route set x∆ can be constructed in multiple ways:
• enumerating route objectsxr1 , . . . ,xrn , i.e.∆ = {r1, . . . , rn};
• computed by a routing function f : Y1×· · · 7→ RouteSet
with operands Y, i.e. ∆ = f (vyx,1 , . . . ,vyx, |Y|);
• using an algebraic operator to construct a route set, where
the result is as specified in Table 1.
Note that some algebraic operators are not independent

and can be equally represented using other operators. How-
ever, their use can improve performance, e.g., arbitrary se-
lection can search for one valid route, which is much faster
than using optimal selection with a constant cost function.

Table 2 illustrates how to express routing requirements for
some network functions and scenarios using route algebra.

7 IMPLEMENTATION

We now give details of how Trident can be efficiently im-
plemented. In particular, we introduce: 1) how live variables
are stored and managed, 2) how to generate OpenFlow rules,
and 3) how routes are computed efficiently in Trident.

7.1 Live Variable Management

As illustrated in Figure 6, Trident organizes live variables
in tables. Different live variable types are handled in slightly
different ways, as we introduce below.

393

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Union (∪)/Intersection (∩)/Difference (\)

Given two route set ∆1 and ∆2, return the
union/intersection/difference of ∆1 and ∆2:

∆1 ∪ ∆2 = {r | r ∈ ∆1 ∨ r ∈ ∆2 },
∆1 ∩ ∆2 = {r | r ∈ ∆1 ∧ r ∈ ∆2 },
∆1 \ ∆2 = {r | r ∈ ∆1 ∧ r < ∆2 }.

Union (∪∼)/Intersection (∩∼)/Difference (\∼)

by Equivalence

Given two route set ∆1 and ∆2, return the
union/intersection/difference of ∆1 and ∆2 using
∈∼ instead of ∈:
∆1 ∪∼ ∆2 = {r ∈ ∆1 ∪ ∆2 | r ∈∼ ∆1 ∨ r ∈∼ ∆2 },
∆1 ∩∼ ∆2 = {r ∈ ∆1 ∪ ∆2 | r ∈∼ ∆1 ∧ r ∈∼ ∆2 },
∆1 \∼ ∆2 = {r ∈ ∆1 ∪ ∆2 | r ∈∼ ∆1 ∧ r <∼ ∆2 }.

Concatenation (+)

Given two route sets ∆1 and ∆2, return a new
route set by concatenating all route pairs (r1, r2)
in ∆1 × ∆2 and removing the invalid ones:
∆1 +∆2 = {r1 + r2 | r1 ∈ ∆1, r2 ∈ ∆2, dstr1 = srcr2 }.

Inversion (≍)

Given a route set ∆, return the inverse of r ∈ ∆:
≍ ∆ = {≍ r | r ∈ ∆}.

Preference (▷)

Given two route sets ∆1 and ∆2, return the pre-
ferred route. (If there is an equivalent route in ∆1,
do not use the ones in ∆2):
∆1 ▷∆2 = {r | r ∈ ∆1∨(r ∈ ∆2∧∄r ′ ∈ ∆1, r ∼ r ′)}.

Selection (σ)
Given a route set ∆ and an evaluation function
f : R∗ 7→ {0, 1}, return all routes in ∆ that are
evaluated as 1:

σf (∆) = {r ∈ ∆ | f (r) = 1}.

Optimal selection (⋄)

Given one route set ∆ and a routing cost func-
tion d : R∗ 7→ R, return any route with the
minimum value:

⋄d (∆) = arg min
r ∈∆

d (r).

Arbitrary selection (∗)

Given one route set ∆, return a route set con-
taining exactly one route r in ∆:

∗∆ = ⋄1(∆).

Table 1: Algebraic Operators.

Description Expression
Bro I :>: DPI :-: H
Bro (in OpenNF) (I :>: DPI :-: H) ▷ (I :=: DPI :-: H)
Shortest QoS Path ⋄QoS-f (X + Y)
Path Preference σbw=100Gbps(X) ▷ σbw=10Gbps(X)
“Make before break” := (X)
“Return to the same NF” x ← ∗(X), y ← ∗(X ∩∼ (≍ x))
“Return to another NF” x ← ∗(X), y ← ∗(X \∼ (≍ x))

I - Internet, H - data center hosts, DPI - deep packet inspection, X , Y -
some route sets,
x , y - temporary variables storing a route.

Table 2: Expressiveness of Route Algebra: Examples.

Managing Remote Live Variable. Remote live variables
are updated by Trident-compatible network functions. Each
remote live variable x is mapped to a specific table cell, where
the key is a tuple of (table_key, cell_key). Table key is the
type name for a remote live variable, while cell key is the
uuid of x . For example, the label of vertex “openflow:1” has
a table key "label" and a cell key "openflow:1", and
the stream attribute “is_infected” for host 10.0.1.5 has a table
key "is_infected" and a cell key "10.0.1.5".
Managing Simple/Snapshot Live Variables. A simple or
snapshot live variable is constructed using an operator. Even
though Figure 6 uses an arrow from one source cell to one
destination cell to represent an operator, it typically involves
multiple source cells and multiple destination cells. These
“internal” variables are managed using the dependency track-
ing and change propagation rules as defined in §4.2.

7.2 Binding Generation and Translation

We now introduce how Trident automatically generates
bindings from a unified SDN program and then translates
the bindings into OpenFlow rules.
Automatic Binding Generation. Trident automatically
creates bindings as follows:
1) Before evaluating a unified SDN program for a given

packet pkt, Trident creates an execution context, which

Network

Attribute

Stream

Attribute

Route

Predicate

Binding

Switch Agent

(on controller)

VNF

Middlebox

Host Agent

Client Table

Read-Write

Transaction

Live Variable

Operator

Figure 6: Tabular View of Live Variable System.

maintains a sequence of packet selectors Λ and a set of
bindings B for this packet, which are both empty at the
beginning.

2) Whenever a stream attribute pkt.ϑ or a packet header field
pkt.h is compared with a live variable x , Trident appends
a packet selector ⟨ϑ , op,x⟩ or ⟨h, op,x⟩ to Λ.

3) Whenever a bind is invoked with a packet pkt and a
route set ∆, Trident adds a binding ⟨Λ,∆⟩ to B.
For an inverted packet (created by inv(pkt)), the match

field in each packet selector must be inverted before the
translation, e.g., pkt.sip ==="10.0.1.5" is converted
to inv(pkt).dip ==="10.0.1.5".
Automatic BindingTranslation.Wefirst discuss howTri-
dent generates a match for a single packet selector and then
explain how it handles the rule translation.
For a given packet pkt, Trident uses predicates to con-

struct a match for a packet selector λ as follows: 1) If λ is a
header field packet selector, i.e., λ = ⟨h op x⟩, the predicate
is h op vx . 2) If λ is a stream attribute packet selector, i.e.,
λ = ⟨ϑ op x⟩ where ϑ = ⟨Tsa ,nsa ,H⟩, it is converted to a se-
quence of predicates: ⟨(h1,=, pkt.h1), . . . , (h |H |,=, pkt.h |H |)⟩.

For example, consider the following three packet selectors:
p1 = pkt.sip in "10.0.1.0/24"
p2 = pkt.http_uri === "www.xyz.com"

394

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

p3 = pkt.is_infected === true

If a packet with tuple ⟨10.0.1.5, 10.0.2.6, 31415, 80, tcp⟩ sat-
isfies all three predicates, the corresponding matches are:

Name sip dip sport dport ipproto
p1 10.0.1.0/24 * * * *
p2 10.0.1.5/32 10.0.2.6/32 31415 80 tcp
p3 10.0.1.5/32 * * * *

The match of a stream attribute can be decomposed as the
intersection of multiple header field matches. For example,
p3 is translated into pkt.sip==="10.0.1.5".
Trident generates OpenFlow rules using this property:

it creates packet traces with only header fields by replacing
each stream attribute packet selector with multiple header
field packet selectors. Then, it uses Maple’s trace tree [10] to
generate flow rules.

7.3 Efficient Change Propagation

Simple change propagation (§4.2) is inefficient for route com-
putation, since a route set can be the result of a complex rou-
ting function, such as a shortest path algorithm and traffic
engineering. During such computation, the result becomes
unknown with no valid routes available. To reduce the la-
tency without compromising consistency guarantees in §4.1,
we introduce efficient change propagation.

Efficient change propagation works as follows. We split
a route set ∆ into two subsets: a known subset K and an
unknown subsetU1. We process the two subsets separately
when evaluating a route algebra expression, as shown in
Table 3. If the unknown subset of an expression becomes
empty, usually after an arbitrary selection or a snapshot, we
use the known subset as the value of this expression.

Now we prove that efficient change propagation still guar-
antees glitch-free consistency, by showing that the result is
the same as simple change propagation.

Definition 3 (Equivalent Propagation). Let x be the result
of a route algebra expression f which depends on N route
sets, denoted as ∆1, . . . ,∆N , i.e., x = f (∆1, . . . ,∆N). For a
given root cause κ ≺ x , two propagation processesψ1(x ,κ)
andψ2(x ,κ) are equivalent, if and only if their synchronized
values vxψ1

∼ vxψ2
.

Proposition 2. Efficient change propagation guarantees
glitch-free consistency.

Proof. Sketch: We prove it by showing that efficient
change propagation and simple change propagation are equiv-
alent. If the unknown subset is empty, it means the result
does not depend on the unknown subsets so when they be-
come known, the value does not change. □

1If a route set itself is unknown, its known subset is ∅.

Expr Known Subset Unknown Subset
∆1 ∪ ∆2 K1 ∪ K2 U1 ∪ U2
∆1 ∩ ∆2 K1 ∩ K2 (K1 ∩ U2) ∪ (U1 ∩ K2) ∪ (U1 ∩ U2)
∆1 \ ∆2 TU2=∅(K1 − K2) (T¬(U2=∅)(K1) ∪ U1) − (K2 ∪ U2)
∆1 + ∆2 K1 + K2 (K1 + U2) ∪ (U1 + K2) ∪ (U1 + U2)
≍ ∆ ≍ K ≍ U

σf (∆) σf (K) σf (U)
⋄d (∆) TU=∅(⋄d (K)) ⋄d (T¬(U=∅)(⋄d (K)) ∪ ⋄d (U))
∆1 ▷ ∆2 K1 ∪TU1=∅(K2 − K1) U1 ∪ ((T¬(U1=∅)(K2) ∪ U2) \ (K1 ∪ U1))
∗∆ ∗K TK=∅(∗U)

Tε (S) - the value is S ∪ {ε } if ε = true, and {ε } otherwise.

Table 3: Known/Unknown Subsets of Route Algebra.

Figure 7: Results of the example in different stages. x
- the value of primary path, frr - the value of backup

path, y - the result using efficient change propagation,

z - the result using simple change propagation.

Example.We use an example to demonstrate how the effi-
cient change propagation can reduce latency. Consider the
following program: use the primary path (x) if it is available,
and use the backup path (frr) during re-computation:
1 val x = ShortestPath(G, s, t)
2 val xs = snapshot(x)
3 val y = any(xs >> frr(xs))

where ShortestPath and frr are two routing functions.
Figure 7 demonstrates how the efficient change propagation

helps reduce the delay. As we can see, after the first execution
of ShortestPath, there is one path x0 between s and t ,
but the value of the backup route (frr) is still unknown (U).
However, since only one valid path is demanded, the result
of frr makes no difference as long as x0 is available. Thus,
the efficient change propagation is consistent and reduces
the latency as it need not wait for frr to finish.

8 EVALUATION

In this section, we conduct extensive evaluation to answer
the following key questions:
• Howuseful and expressive isTrident programming frame-
work in real network management scenarios? (§8.1)
• How robust and efficient is the Trident runtime system,
and what are the key factors of its performance? (§8.2)

8.1 Programming with Trident

We first demonstrate the feasibility of integrating network
functions into Trident. We then show the expressiveness
of Trident through real world use cases.

395

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Name Attribute Language LoC (f) LoC (a) Loc (c)
DPI HTTP URL Bro 40 2 2
FreeRadius Auth status DSL 0 12 0

LoC - Additional lines of code, f - LoC to implement the library in the
given framework/language, a - LoC in a given NF, c - LoC for configuration.

Table 4: Integration of Different NF(V) with Trident.

Ease of Integration. We measure the complexity of inte-
grating network functions using additional lines of code. Ta-
ble 4 shows the results for two concrete examples.

The first row is the integration of a DPI based on Bro [35]
to extract HTTP URI. Our extension requires three phases:
1) implementing a new Bro module using the ActiveHttp
library to send inspected results toTrident (40 lines), 2)mod-
ifying a default Bro script that exposes HTTP headers (2
lines), 3) updating the configuration (2 lines).
The second row is the integration of FreeRadius [36], an

open source RADIUS server, to extract authentication status
of a host. Our extension requires 12 additional lines of its
domain-specific configuration language in its rest module
and in the site configuration file.
Expressiveness of Trident. We demonstrate the expres-
siveness of Trident with two real-world programs.
The first program implements a layer-3 routing, which

delivers a packet even when the topological location of its
destination host is unknown. Thus, a programmer utilizes
the stream attribute dhost (L5), which is shared by packets
with the same destination IP. If the location of a packet’s
destination host is already known, the packet is directly
forwarded to the host using the shortest path (L13); other-
wise, the packet is broadcast through a spanning tree (L10).
Without Trident, the programmer must manually handle
complexities such as host migration or topology failures.
1 class L3Routing extends SDNProgram {
2 val flood: RouteSet = SpanningTree(G) // G is network topology
3 val normal: RouteSet = ShortestPath(G)
4
5 val dhost = StreamAttribute[Vertex]("dhost", DST_IPADDR)
6
7 override def onPacket(pkt: Packet) = program {
8 if (pkt.dhost?) {
9 // pkt's destination host is unknown
10 bind(pkt, flood)
11 } else {
12 val x = any(normal where { dst == pkt.dhost })
13 bind(pkt, x)
14 }
15 }
16 }

The second program implements a SDMZ [2], which is
a network access control system for high-speed scientific
data traffic. The program logic is as follows: if a packet does
not belong to a scientific data set, it must go through an
intrusion detection system (IDS); otherwise, the packet skips
the IDS and uses high-speed scientific links as long as its
destination site is allowed to accept the packet’s scientific
data set. To achieve this goal, the programmer utilizes two
stream attributes: 1) dataset_id (L7), shared by packets
with the same TCP 5-tuple, and 2) dst_site (L8), shared

by packets with the same source IP address, as data transfers
are initiated by the receiver. The program groups waypoints
by label (L10-12) and constructs three route sets (L13-16):
route_ids for non-scientific traffic going through the IDS;
sdmz and backup for high-speed scientific traffic bypass-
ing the IDS, where sdmz uses only links with more than
40 Gbps. If a packet’s dataset ID is unknown, the program
forwards the packet using route_ids (L20); otherwise, the
program extracts the packet’s destination site (L22-28). If the
destination site can accept the packet’s data set, the program
forwards the packet using sdmz, or if that is not feasible,
using backup; otherwise, the program drops the packet.
Again, without Trident, the programmer must explic-

itly handle changes of dataset_id, dst_site, acl to
correctly forward a packet, and also topology changes to
properly install the backup route.
1 case class ACL(val prefix: String, val allow: Boolean)
2
3 class SDMZ(val site: String) extends SDNProgram {
4 import trident.example.Net.{capacity, label} // See Section 3.2
5 val acl = SetTable[String, ACL]("acl")
6
7 val dst_site = StreamAttribute[String]("dst_site", SRC_IPADDR)
8 val dataset_id = StreamAttribute[String]("dataset_id", TCP5TUPLE)
9
10 val H = Waypoint(V where { label === "host" })
11 val IDS = Waypoint(V where { label === "ids" })
12 val GW = Waypoint(V where { label === "gateway" })
13 val route_ids = SimplePath(G, H :-: IDS :-: GW)
14 where (capacity <= 10 Gbps)
15 val sdmz = SimplePath(G, H :-: GW) where (capacity >= 40 Gbps)
16 val backup = SimplePath(G, H :-: GW)
17
18 override def onPacket(pkt: Packet) = program {
19 if (pkt.dataset_id?) {
20 bind(pkt, any(route_ids))
21 } else {
22 val dst_site = iff (pkt.dst_site === site) {
23 // Incoming traffic, reverse the packet
24 inv(pkt).dst_site
25 } else {
26 // Outgoing traffic or unknown, use normal destination site
27 pkt.dst_site
28 }
29 iff (dst_site.acl.first(r => pkt.dataset_id == r.prefix).allow) {
30 bind(pkt, any(sdmz >> backup))
31 } else {
32 drop(pkt)
33 }
34 }
35 }
36 }

8.2 Trident Runtime Performance

We evaluate Trident’s performance by each of our main
components: live variable, stream attribute and route algebra.
Setting. We evaluate our prototype implementation on a
Fedora 26 machine with an Intel Xeon CPU E5-2650 2.30GHz
processor and 64G of memory, and the network is simulated
with Mininet 2.3.0d1.

8.2.1 Live Variable. We conduct a microbenchmark test
to evaluate how efficiently Trident can handle dependency
tracking, when it is scaled with the number of live variables
and the number of directly dependent live variables.
Setup. We first generate up to 10 million live variables of
integer type and assign a randomly generated arithmetic ex-
pression to each live variable as its dependency. We vary the

396

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Complexity of Expressions

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

U
pd

at
e

L
at

en
cy

 (m
s)

100K LVs
1M LVs

(a) Update Latency

1 2 3 4 5 6 7 8 9 10
Number of Live Variables (millions)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ep

en
de

nc
y

G
ra

ph
 S

iz
e

(G
B

)

complexity=1
complexity=5

(b) Dependency Graph Size

Figure 8: Live Variable Microbenchmark

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Classification Ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

U
pd

at
e

L
at

en
cy

 (s
)

C1
C2
C3
C4
C5

(a) Update Latency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Classification Ratio

50

100

150

200

250

300

350

400

D
ep

en
de

nc
y

G
ra

ph
 S

iz
e

(K
B

)

C1
C2
C3

C4
C5

(b) Dependency Graph Size

Figure 9: Stream Attribute Benchmark

complexity of the expressions for each experiment, so that
an expression of complexity n directly depends on n other
live variables. Finally, We update the value of a randomly
chosen live variable every 0.01 second.
Results. Figure 8(a) shows the update latency for expres-
sions of complexity 1 to 5, when there are 100,000 and 1,000,000
live variables. We mean the update latency by the time Tri-
dent spends to correctly update all dependent variables
when the value of a live variable was updated. As shown
in the graph, the latency is linearly correlated with the ex-
pression complexity, while it has little relationship with the
number of live variables. Figure 8(b) shows the total size
of compiled dependency graphs for one to ten million live
variables. Unlike the update latency, the dependency graph
size is linearly correlated with the number of live variables,
whereas it is relatively independent of the expression com-
plexity. From the results, we infer that a programmer can
achieve faster updates by reducing expression complexity
and reduce memory usage by using fewer live variables.
8.2.2 Stream Attribute. As noted in §5.1, a programmer

can enjoy reduced memory usage on the controller at run-
time by specifying the proper stream type when she defines a
stream attribute schema. To demonstrate this effect, we eval-
uate the performance of packet selection when a different
fraction of packets are classified into each stream.
Setup.We first declare 100 random stream attribute schemas,
all of which have source IP address as the stream type, so
that we can easily control the fraction of packets classified
into each stream. Based on the schemas, we randomly gen-
erate 250 packet selectors. For each experiment, we vary
the complexity of packet selectors so that for complexity n,

Init
SCP

Init
ECP

FR
SCP

FR
ECP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L
at

en
cy

 (m
s)

4.07 ms

3.59 ms

0.56 ms

0.06 ms

(a) Sprint (11 nodes)

Init
SCP

Init
ECP

FR
SCP

FR
ECP

0

2

4

6

8

10

12

14

16

18

L
at

en
cy

 (m
s)

17.86 ms

10.73 ms

3.92 ms

0.26 ms

(b) Noel (19 nodes)

Init
SCP

Init
ECP

FR
SCP

FR
ECP

0

10

20

30

40

50

L
at

en
cy

 (m
s)

47.35 ms

30.48 ms

23.89 ms

0.86 ms

(c) Agis (25 nodes)

Init
SCP

Init
ECP

FR
SCP

FR
ECP

0

50

100

150

200

250

300

350

L
at

en
cy

 (m
s)

166.1 ms

115.3 ms

311.8 ms

1.46 ms

(d) Geant (40 nodes)

Figure 10: Route Algebra Benchmark

each packet selector depends on n distinct schemas. We then
send 10,000 packets to the network simultaneously, where
for each experiment, we vary the fraction η of all packets
that share the same source IP address. We call this fraction
classification ratio. Finally, we update a randomly chosen
stream attribute every 1 ms and measure the performance of
automatic recomputation of packet selector.
Results. Figure 9(a) and Figure 9(b) illustrate the update
latency and the total dependency graph size respectively,
over different classification ratios from 0.1 to 1.0. As shown
in Figure 9(b), the dependency graph size decreases with
a higher classification ratio, regardless of the expression
complexity. This result indicates that a proper specification
of the stream type for a schema can significantly reduce the
memory usage on the controller at runtime. However, as
shown in Figure 9(a), the update latency increases with a
higher classification ratio, especially when more complex
packet selectors are used. This behavior is reasonable as
more number of packet selectors will need to be recomputed
upon an attribute update; however, it is important for an
programmer to be aware of this compromise, especially when
she uses a more complex packet selector.
8.2.3 Route Algebra. The key benefit of route algebra is

the efficient change propagation (§7.3). We show this benefit
by comparing the performance of efficient change propagation
(ECP) and simple change propagation (SCP) during the initial
computation (Init) and failure recovery (FR) stages.
Setup. We use the following code segment (also listed in
§7.3) to compute route sets on four network topologies from
Topology zoo [37]: Sprint, Noel, Agis, and Geant.
1 val x = ShortestPath(G, s, t)
2 val xs := x
3 val y = any(xs >> frr(xs))

397

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Specifically, we first evaluate the total time Trident spends
to compute route set y for all node pairs in each topology
(initial computation). Then, we create link failure on an arbi-
trary link and measure the total time to recover valid y for
all node pairs (failure recovery). We repeat this experiment
100 times for each topology to take the average.
Results. Figure 10 shows the results. For the initial compu-
tation, Trident achieves consistently lower latency with
the ECP (second bar) than with the SCP (first bar) across
all topologies. For Agis (Figure 10(d)) as an example, Tri-
dent uses 30.5 ms with the ECP, while it spends 47.4 ms
with the SCP, i.e. 36% more efficient with the ECP. This is
because, with the efficient change propagation, Trident can
proceed to execute the any operation as long as xs has been
computed, even if frr(xs) is unknown.

Trident can also recover from link failure extremely effi-
ciently with the ECP (fourth bar), compared with the SCP
(third bar), across all topologies. In particular, for Geant (Fig-
ure 10(d)), Trident spends only 1.5 ms to recover with the
ECP, which is more than 200 times faster than 311.8 ms with
the SCP. This is because, with the efficient change propaga-
tion, Trident can instantly update y as long as the already
computed backup route set (frr(xs)) is still valid, even if
xs became unknown due to link failure.

9 RELATEDWORK

Integrating SDN and NFV. Some previous studies [7, 25,
38–42] also target the integration of SDN and NFV. However,
they are leveraging the SDN technology to improve elasticity
and fault tolerance of NFV systems, while Trident targets
the opposite scenario.
E2 [7] and FlowTags [4] encode “stream attribute” in the

data plane, and support local decisions with the attributes.
However, the routing capabilities in these systems are quite
limited. Trident can potentially leverage these techniques
to improve the performance with a “backend” that translates
bindings to FlowTags rules on FlowTag-compatible devices.
An alternative design is to use an event-driven system,

such as Kinetic [6]. Trident chooses a functional reactive
programming approach for the sake of simplicity.
TraceableData and IncrementalComputation.The idea
of live variables comes from traceable data [43, 44], incremen-
tal computation [45–47] and reactive programming [34, 48–
50]. We are the first to find novel uses of the traceable data
in the field of SDN programming.

DREAM [34] and REScala [50] target fast glitch-free con-
sistency in general reactive programming.Trident improves
the performance mostly by leveraging domain knowledge.
CoVisor [51] and Wen et. al [52] aim to support incre-

mental update as an add-on of SDN systems. However, they
work at the level of flow rules, but cannot handle incremental
update that generates these rules.

Automatic Dependency Tracking in SDN Systems. Sev-
eral SDN systems [20, 53, 54] store network-related informa-
tion in a distributed data store, where dependencies are man-
aged by programmers manually. The Intent framework [22,
23] is adopted but the dependency tracking is not as flexible
and efficient as Trident.
NVP [28] also uses a table-based storage system and the

nlog language provides built-in support to identify the de-
pendencies among different tables. However, the language
is optimized for special purposes and is only used internally,
it is not clear how they work in the scenario that we target.
Statesman [24] and FAST [55] encapsulate the underly-

ing data store to track dependencies but do no leverage the
domain-specific semantics in networking. Statesman also
has some pre-defined semantic dependencies but they are
limited to the scope of network topology.
Route Specification in Networking. The use of waypoint-
based route specification is motivated by previous studies [7,
14–19]. Trident goes beyond basic network function chain-
ing specifications in NFV systems such as E2 [7], and natu-
rally supports QoS-based routing [56, 57]. Resource reserva-
tion (Merlin [15]) or traffic isolation (Genesis [16]) are not
covered in this paper. They can be extended using customized
properties in §4 and are left as future work.

With prior work such as Propane [14, 58] and DEFO [59],
it is also an interesting open question that whether Trident
can be used to integrate network functions with BGP.

Many route algebra operators can be overwritten by rela-
tional algebra [60], e.g., concatenation is a special join. How-
ever, they do have domain specific meanings. Sobrinho [56]
introduces basic operators (concatenation, distance function)
but we extend them to a set of routes.

10 CONCLUSION AND FUTUREWORK

In this paper, we introduce Trident, a novel unified program-
ming framework to accommodate network functions in SDN
programming. Specifically, Trident introduces live Kleene
variable, stream attribute and route algebra to achieve unified
automatic dependency tracking and incremental computa-
tion, functionally complete fine-grained packet selection, and
flexible route construction. We demonstrate that Trident
is both expressive enough to work in various real world
scenarios, and can efficiently handle changes.
Acknowledgment The authors thank Haitao Yu, Shiwei Chen, Xin
Wang, Shenshen Chen (Tongji University), Alan Liu, Isabelle Carson, Yuki de
Pourbaix, Lee Danilek, and Qiao Xiang (Yale University) for their help dur-
ing the preparation of the paper. The authors also thank Ratul Mahajan (our
shepherd) and the anonymous reviewers for their valuable comments. Kai
thanks his PhD supervisor Jun Bi (Tsinghua University) for his strong sup-
port. The research was supported in part by NSFC grants NSFC #61672385
and #61472213, NSF grant CC-IIE #1440745, Google Research Award, the
U.S. Army Research Laboratory and the U.K. Ministry of Defence under
Agreement Number W911NF-16-3-0001, and National Key Research and
Development Plan of China (2017YFB0801701).

398

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

REFERENCES

[1] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue. Con-
textual, flow-based access control with scalable host-based SDN tech-
niques. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, INFOCOM, pages 1–9, April
2016.

[2] Vasudevan Nagendra, Vinod Yegneswaran, and Phillip Porras. Secur-
ing Ultra-High-Bandwidth Science DMZ Networks with Coordinated
Situational Awareness. In Proceedings of the 16th ACM Workshop on
Hot Topics in Networks, HotNets-XVI, pages 22–28, New York, NY, USA,
2017. ACM.

[3] Sungmin Hong, Robert Baykov, Lei Xu, Srinath Nadimpalli, and Guofei
Gu. Towards SDN-Defined Programmable BYOD (Bring Your Own
Device) Security. NDSS’16. Internet Society, 2016.

[4] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and
Jeffrey C. Mogul. Enforcing Network-wide Policies in the Presence
of Dynamic Middlebox Actions Using Flowtags. In Proceedings of the
11th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI’14, pages 533–546, Berkeley, CA, USA, 2014. USENIX
Association.

[5] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C. Mitchell,
and Scott Shenker. Practical Declarative Network Management. In Pro-
ceedings of the 1st ACMWorkshop on Research on Enterprise Networking,
WREN ’09, pages 1–10, New York, NY, USA, 2009. ACM.

[6] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick
Feamster, and Russ Clark. Kinetic: Verifiable Dynamic Network Con-
trol. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 59–72, Oakland, CA, 2015. USENIX
Association. 00053.

[7] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: A Framework for
NFV Applications. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, pages 121–136, New York, NY, USA, 2015.
ACM.

[8] Nate Foster, RobHarrison,Michael J. Freedman, ChristopherMonsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A Network
Programming Language. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages
279–291, New York, NY, USA, 2011. ACM. 00547.

[9] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. Composing Software Defined Networks. In 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 1–13, Lombard, IL, 2013. USENIX Association.

[10] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and
Paul Hudak. Maple: Simplifying SDN Programming Using Algorithmic
Policies. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 87–98, New York, NY, USA, 2013.
ACM. 00143.

[11] Ryan Beckett, Michael Greenberg, and David Walker. Temporal
NetKAT. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, pages
386–401, New York, NY, USA, 2016. ACM.

[12] Chaithan Prakash, Ying Zhang, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma,
and Puneet Sharma. PGA: Using Graphs to Express and Automatically
Reconcile Network Policies. SIGCOMM’15, pages 29–42. ACM Press,
2015. 00032.

[13] R Fielding, J Gettys, J Mogul, H Frystyk, L Masinter, P Leach, and
T Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[14] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. Don’T Mind the Gap: Bridging Network-wide Objec-
tives and Device-level Configurations. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, pages 328–341, New York, NY,

USA, 2016. ACM.
[15] Robert SoulÃľ, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,

Robert Kleinberg, Emin Gun Sirer, and Nate Foster. Merlin: A Language
for Provisioning Network Resources. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, pages 213–226, New York, NY, USA, 2014.
ACM.

[16] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Genesis: Syn-
thesizing Forwarding Tables in Multi-tenant Networks. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pages 572–585, New York, NY, USA, 2017. ACM.

[17] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT:
Semantic Foundations for Networks. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, pages 113–126, New York, NY, USA, 2014. ACM. 00163.

[18] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. FatTire:
Declarative Fault Tolerance for Software-defined Networks. In Proceed-
ings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 109–114, New York, NY, USA,
2013. ACM.

[19] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David
Walker. Compiling Path Queries. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 207–
222, Santa Clara, CA, 2016. USENIX Association. 00029.

[20] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight:
Towards a model-driven SDN controller architecture. In Proceeding
of IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2014. 00092.

[21] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, MartÃŋn
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an Op-
erating System for Networks. SIGCOMM Comput. Commun. Rev.,
38(3):105–110, July 2008. 01452.

[22] ONOS. Intent Framework, 2017.
https://wiki.onosproject.org/display/ONOS/Intent+Framework.

[23] OpenDaylight. Network Intent Composition, 2017.
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main.

[24] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang,
and Ahsan Arefin. A Network-state Management Service. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages
563–574, New York, NY, USA, 2014. ACM. 00039.

[25] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. Pico Replica-
tion: A High Availability Framework for Middleboxes. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages
1:1–1:15, New York, NY, USA, 2013. ACM.

[26] Wenxuan Zhou, Dong Jin, Jason Croft, MatthewCaesar, and P. Brighten
Godfrey. Enforcing Customizable Consistency Properties in Software-
Defined Networks. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 73–85, Oakland, CA, 2015.
USENIX Association.

[27] Lei Xu, Jeff Huang, Sungmin Hong, Jialong Zhang, and Guofei Gu.
Attacking the Brain: Races in the SDN Control Plane. In 26th USENIX
Security Symposium (USENIX Security 17), pages 451–468, Vancouver,
BC, 2017. USENIX Association.

[28] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul In-
gram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li,
Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott
Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wend-
landt, Alexander Yip, and Ronghua Zhang. Network Virtualization in
Multi-tenant Datacenters. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages 203–216, Seattle,
WA, 2014. USENIX Association. 00191.

399

Trident: Unified SDN Programming with Automatic Updates SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[29] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A Lan-
guage for High-level Reactive Network Control. In Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, HotSDN
’12, pages 43–48, New York, NY, USA, 2012. ACM.

[30] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer
Rexford, and David Walker. SNAP: Stateful Network-Wide Abstrac-
tions for Packet Processing. pages 29–43. ACM Press, 2016. 00007.

[31] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A
distributed and robust sdn control plane for transactional network up-
dates. In 2015 IEEE conference on computer communications (INFOCOM),
pages 190–198. IEEE, 2015. 00043.

[32] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for Network Update. In Proceedings
of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM
’12, pages 323–334, New York, NY, USA, 2012. ACM. 00433.

[33] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Con-
sistent updates for software-defined networks: Change you can believe
in! page 7. ACM, 2011. 00138.

[34] Alessandro Margara and Guido Salvaneschi. We Have a DREAM:
Distributed Reactive Programming with Consistency Guarantees. In
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, pages 142–153, New York, NY, USA,
2014. ACM.

[35] Vern Paxson. Bro: A System for Detecting Network Intruders in
Real-time. In Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, SSYM’98, pages 3–3, Berkeley, CA, USA, 1998.
USENIX Association.

[36] freeradius.org. FreeRADIUS - the open source implementation of
RADIUS, 2018.

[37] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Bowden, and
Matthew Roughan. The Internet Topology Zoo. IEEE Journal on
Selected Areas in Communications, 29(9):1765–1775, 2011. 00249.

[38] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. OpenNF:
Enabling Innovation in Network Function Control. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 163–174,
New York, NY, USA, 2014. ACM. 00225.

[39] Jeongseok Son, Yongqiang Xiong, Kun Tan, Paul Wang, Ze Gan, and
Sue Moon. Protego: Cloud-Scale Multitenant IPsec Gateway. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 473–485,
Santa Clara, CA, 2017. USENIX Association.

[40] Rohan Gandhi, Y. Charlie Hu, and Ming Zhang. Yoda: A Highly Avail-
able Layer-7 Load Balancer. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, pages 21:1–21:16, New
York, NY, USA, 2016. ACM.

[41] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. SIMPLE-fying Middlebox Policy Enforcement Using
SDN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, pages 27–38, New York, NY, USA, 2013. ACM.
00433.

[42] Anat Bremler-Barr, Yotam Harchol, and David Hay. OpenBox: A
Software-Defined Framework for Developing, Deploying, and Man-
aging Network Functions. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 511–524, New York, NY, USA, 2016.
ACM.

[43] Umut A. Acar, Guy Blelloch, Ruy Ley-Wild, Kanat Tangwongsan, and
Duru Turkoglu. Traceable Data Types for Self-adjusting Computation.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, pages 483–496, New
York, NY, USA, 2010. ACM. 00028.

[44] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative Self-
adjusting Computation. In Proceedings of the 35th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’08, pages 309–322, New York, NY, USA, 2008. ACM.

[45] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich,
Jeffrey S. Foster, Michael Hicks, and David Van Horn. Incremental
Computation with Names. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 748–766, New York,
NY, USA, 2015. ACM.

[46] MatthewA.Hammer, Khoo Yit Phang,Michael Hicks, and Jeffrey S. Fos-
ter. Adapton: Composable, Demand-driven Incremental Computation.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 156–166, New
York, NY, USA, 2014. ACM.

[47] Pramod Bhatotia, Alexander Wieder, \.Istemi Ekin AkkuÅ§, Rodrigo
Rodrigues, and Umut A. Acar. Large-scale Incremental Data Processing
with Change Propagation. In Proceedings of the 3rd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’11, pages 18–18, Berkeley,
CA, USA, 2011. USENIX Association.

[48] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging
Between Object-oriented and Functional Style in Reactive Applica-
tions. In Proceedings of the 13th International Conference on Modularity,
MODULARITY ’14, pages 25–36, New York, NY, USA, 2014. ACM.

[49] Conal Elliott and Paul Hudak. Functional Reactive Animation. In
Proceedings of the Second ACM SIGPLAN International Conference on
Functional Programming, ICFP ’97, pages 263–273, New York, NY, USA,
1997. ACM.

[50] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.
Distributed REScala: An Update Algorithm for Distributed Reactive
Programming. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 361–376, New York, NY, USA, 2014. ACM.

[51] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. CoVisor:
A Compositional Hypervisor for Software-Defined Networks. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015. 00037.

[52] Xitao Wen, Chunxiao Diao, Xun Zhao, Yan Chen, Li Erran Li, Bo Yang,
and Kai Bu. Compiling Minimum Incremental Update for Modular
SDN Languages. In Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, HotSDN ’14, pages 193–198, New York,
NY, USA, 2014. ACM.

[53] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and others. Onix: A Distributed Control Platform
for Large-scale Production Networks. In OSDI, volume 10, pages 1–6,
2010.

[54] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Ra-
doslavov, William Snow, and Guru Parulkar. ONOS: Towards an Open,
Distributed SDNOS. In Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, HotSDN ’14, pages 1–6, New York,
NY, USA, 2014. ACM. 00215.

[55] Kai Gao, Chen Gu, Qiao Xiang, Y Richard Yang, and Jun Bi. FAST: A
Simple Programming Abstraction for Complex State-Dependent SDN
Programming. In Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference, pages 579–580. ACM, 2016. 00000.

[56] JoÃčo LuÃŋs Sobrinho. Algebra and algorithms for QoS path compu-
tation and hop-by-hop routing in the Internet. IEEE/ACM Transactions
on Networking (TON), 10(4):541–550, 2002. 00328.

[57] Haijun Geng, Xingang Shi, Xia Yin, Zhiliang Wang, and Han Zhang.
Algebra and algorithms for efficient and correct multipath QoS routing
in link state networks. In Quality of Service (IWQoS), 2015 IEEE 23rd
International Symposium on, pages 261–266. IEEE, 2015. 00000.

400

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Gao et. al

[58] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
DavidWalker. Network Configuration Synthesis with Abstract Topolo-
gies. In Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2017, pages 437–451,
New York, NY, USA, 2017. ACM.

[59] RenaudHartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure,
Clarence Filsfils, Thomas Telkamp, and Pierre Francois. A Declarative
and Expressive Approach to Control Forwarding Paths in Carrier-
Grade Networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 15–28. ACM, 2015. 00026.

[60] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM, 13(6):377–387, June 1970.

401

Toward the First SDN Programming Capacity
Theorem on Realizing High-Level Programs on

Low-Level Datapaths
Christopher Leet˚, Xin Wang:˚;, Y. Richard Yang˚:, James Aspnes˚

˚ Department of Computer Science, Yale University
: Department of Computer Science, Tongji University

; Key Laboratory of Embedded System and Service Computing, Ministry of Education, China

Abstract—High-level programming and programmable data
paths are two key capabilities of software-defined networking
(SDN). A fundamental problem linking these two capabilities is
whether a given high-level SDN program can be realized onto
a given low-level SDN datapath structure. Considering all high-
level programs that can be realized onto a given datapath as
the programming capacity of the datapath, we refer to this
problem as the SDN datapath programming capacity problem.
In this paper, we conduct the first study on the SDN datapath
programming capacity problem, in the general setting of high-
level, datapath oblivious, algorithmic SDN programs and state-of-
art multi-table SDN datapath pipelines. In particular, considering
datapath-oblivious SDN programs as computations and datapath
pipelines as computation capabilities, we introduce a novel
framework called SDN characterization functions, to map both
SDN programs and datapaths into a unifying space, deriving the
first rigorous result on SDN datapath programming capacity. We
not only prove our results but also conduct realistic evaluations
to demonstrate the tightness of our analysis.

I. INTRODUCTION

A major research direction of SDN is programmable, effi-
cient datapaths (e.g., OF1.3 [1], OF-DPA [2], P4 [3]). Only
by being programmable can a given SDN datapath support
diverse, ever evolving application scenarios. At the same time,
it is crucial that datapaths be efficient, to be able to satisfy
demanding requirements such as achieving high throughput
and being cost effective. In the last few years, multi-table
pipelines have emerged as a key structure of SDN datapaths
(e.g., Domino [4], Forwarding Metamorphosis [5]).

One problem of efficient datapaths, however, is that they
must often be programmed at an inefficiently low level.
For example, TCAM, which is essential to achieve high-
throughput, does not support logical negation. Hence, a second
major research direction of SDN is high-level, datapath path-
oblivious programming, to provide abstractions to hide low-
level datapath programming. To this end, in the last few years
multiple high-level SDN programming models have emerged
(e.g., Frenetic [6], Maple [7]).

As both directions progress, a basic problem emerges:
whether a given high-level program can be realized on a given

Christopher Leet and Xin Wang are co-first authors

low-level datapath. A good understanding of this problem can
benefit both the design of high-level SDN programming and
the design of datapaths. Given a fixed datapath (e.g., a fixed
pipeline architecture such as OF-DPA), the vendor of the
datapath can provide guidelines on the high-level programs
that can be realized. Given a set of high-level programs to
be supported, one could use this understanding to design the
most compact datapath supporting these programs. Even for
reconfigurable datapaths (e.g., P4), as reconfiguration can be
expensive and time consuming, one can use this understanding
to guide the design of a more robust datapath. Considering
all high-level programs that can be realized onto a given
programmable datapath as the capacity of the datapath, we
define the basic problem as the SDN datapath programming
capacity problem.

Solving the datapath capacity problem, however, is not
trivial. Consider a simple datapath, named Simple-DP, shown
in Fig. 1. It is among the simplest datapaths, consisting of three
tables forming a pipeline, where the first table (t1) matches
on source IP and may jump to one of the two following tables,
which both match on destination IP.

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2Fig. 1. A simple example datapath: Simple-DP.

Consider two simple high-level SDN programs below, both
specified in the algorithmic, event-driven programming style
to handle packet misses; see Sec. II for more details on the
programming model. An interested reader can try to verify
that the first program can be realized by Simple-DP, but the
second cannot.

// Routing Function: secureL3Route
L0: secureL3Route(Addr srcIP, Addr dstIP):
L1: if srcIP == 10.0.0.1:
L2: return Forward(port=shortestPath(dstIP))

1

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 711

L3: else:
L4: return Drop();

// Program: twoHostL3Route
L0: def twoHostL3Route(Addr srcIP, Addr dstIP):
L1: if srcIP == 10.0.0.1:
L2: return Forward(port=shortestPath(dstIP))
L3: elif srcIP == 10.0.0.2:
L4: return Forward(port=securePath(dstIP))
L5: else:
L6: return Drop();

Although the preceding datapath and high-level programs
are among the simplest, they may already appear to be non-
trivial for a reader to analyze. General datapath and high-level
programs can be much more complex as multiple services
need to be implemented and hence they can pose severe
challenges in analysis. The goal of this paper is to develop
the first systematic methodology to solve the SDN datapath
programming capacity problem.

The contributions of this paper can be summarized as
follows. First, we propose a unifying characteristic functional
space to unify and extract the essence of programs and
pipelines, removing complexities such as program structures
and pipeline layouts. Second, we define a comparator in this
functional space, which can be used to check whether a high-
level program can be realized on a given pipeline.

The rest of the paper is organized as follows. We define
our model precisely in Sec. II. The main results are given in
Sec. III. Sec. IV shows our evaluation results. Finally, related
work is provided in Sec. V.

II. MODELS

We start by specifying the high-level SDN programs and
low-level datapath models. Since the main focus of SDN is
routing, we refer to a high-level SDN program as a routing
function. Since multi-table pipelines are the state-of-art for
SDN datapaths, we focus on pipelines as datapaths.

A. Routing Function Model

Routing function: We denote a routing function as f , and
assume that it is a logically centralized, deterministic function
written in a high level language logically executed by an
SDN controller on every packet [7] entering that controller’s
network to determine network-wide routing for that packet.

Each execution of f on a packet reads a set of the packet’s
attributes (called match fields) M “ xm1, ...,mny (e.g.,
<srcIP, dstIP, ...>). We use M to denote a subset
of packet match fields included in M. Moreover, we denote
dompMq as the domain of a set of match fields M . The
execution of f returns a routing action from a set of valid
actions R (e.g., Drop, Forward(port=2)):

f : dompMq Ñ R.

The space of such functions is denoted F .

Example: We use the routing function onPkt below to
illustrate key features of our routing function model.

\\ Routing function: onPkt
Map hostTbl[key: dstIP, value: switch]
Map condTbl[key: (dstIP, port), value: cond]
Map routeTbl[key: (switch, cond), value: outPort]

L0: onPkt(Type ethType, Addr srcIP, Port srcPort, \
Addr dstIP, Port dstPort):

L1: if (ethType != IPv4):
L2: return Drop()
L3: if (verify(srcPort, srcIP)):
L4: dstCond = condTbl[dstIP, dstPort]
L5: dstSw = hostTbl[dstIP]
L6: return Forward(port = routeTbl[dstCond, dstSw])
L7: return Drop()

Specifically, onPkt reads the match fields
M “ xethType,srcIP,srcPort,dstIP,dstPorty
and maps each value in the domain of M to a routing action
in R “ tDrop(),Forward(port=x)u. While we write
onPkt as an imperative function, we emphasize that our
model is fully generic and does not specify a programming
paradigm.

Elaborating, onPkt’s first three lines declare key-value
tables. Specifically, hostTable and condTable associate
each IP address with an attachment switch and host condition
(e.g., authentication status) respectively, while routeTable
maps a switch, condition pair to its forwarding port. Moving
on to onPkt’s body, L1 and L2 detect and drop non-IPv4
traffic, while L7 drops traffic from unverified endpoints. For
verified packets, L4 to L6 further set dstCond and dstSw
variables, and then return a routing action from routeTbl
based on the two variables.

Routing function DFG: Since a generic routing function
can have arbitrary, complex control structure, we transform
a routing function into a dataflow graph (DFG) to better
represent its structure. We denote an f ’s DFG as Gf .

Specifically, to compute Gf for f , we must remove all of f
control follow dependencies. These dependencies are removed
by the following transformations:
‚ We remove assignment statement order dependencies by

converting f to single static assignment form (SSA).
‚ We remove branches by assigning their conditionals’

values to guards, and appending dependencies on these
guards to all statements in their if and else blocks.

‚ We remove program loops by converting them to black
box functions which read all variables read by the loop
and write all variables written by them.

For example, our example routing function onPkt is trans-
formed as follows:

L0: onPkt(...):
L1: g0 = (ethType != IPv4)
L2: if g0: return Drop()
L3: g1 = verify(srcPort, srcIP)):
L4: if g1: dstCond = condTbl[dstIP, dstPort]
L5: if g1: dstSw = hostTbl[dstIP]
L6: if g1: return Forward(port = routeTbl[...])
L7: if !g1: return Drop()

Note that onPkt’s if statement at L1’s has been replaced
by an assignment from its conditional to the guard g0. This

2

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

712

guard is appended to L2, which was formally in the if
statement’s if block.

Given this transformation, we define Gf for f :

Definition 1. A routing function f ’s’ dataflow graph DFG
Gf “ pVf , Ef q is a vertex weighted dag generated from a
transformed f such that:
‚ Each vertex vf in Vf is a variable in f .
‚ A vf ’s weight is its domain size.
‚ There is a directed edge in Ef between two variables

if the source variable appears in the target variable’s
assignment.

As an example, we give onPkt’s DFG below:

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

Fig. 2. The routing function onPkt’s DFG GonPkt.

Observe that the vertex dstSw is descended from the two
variables in its assignment, g1 and dstIP. The vertex’s
weight, 10, indicates dstSw’s domain.

B. Pipeline Model

We focus on state-of-the-art datapaths: multi-table pipelines.
We first model a table t in a pipeline p and then we give a
clear definition for the pipeline.
Pipeline table: Each pipeline table t P p is a exact match
match-action table. Each of t’s actions is a routing action
output, or a write to t’s output register rptq followed by a
hop to a subsequent table in p, or a simple jump action to a
subsequent table in p. Not all t output routing actions, and we
denote the t that do as an egress table.

Each t matches on a set of inputs Iptq that contains packet
match fields mi P M and preceding tables’ output registers
rptq. Key limitations on a t are the maximum number of
rules it can contain and rptq’s bit length, which we denote
maxrulesptq and bitsprptqq respectively.
Pipeline: A pipeline p is a singly rooted dag (directed acyclic
graph) of tables ttiu. An edge pti, tjq in a p indicates that a
packet arriving at ti can jump to tj .

Each packet passing through p starts at p’s root and proceeds
through p to an egress table. Therefore, each packet passing
through p can map to a path in the p, along with a routing
action for that packet from R.

A packet’s path through p and the action its egress table
outputs are determined by the set of packet match fields M
each ti P p matches on. Given this, p may also be summarized
as a mapping from dompMq to R, which depends on p’s
contents.

We denote the space of all pipelines p as P .

Symbol Definition
Routing function symbols
f Routing function
F Routing function space
mi Packet match field
M Set of @ mi

dompMq Domain of valid values of M
R Set of @ valid routing actions
Pipeline symbols
p Pipeline
P Pipeline function space
ti Pipeline table
rptiq ti’s output register
bitsprptiqq ti’s output register bit length
Iptiq ti’s table inputs
maxrulesptiq Maximum # of rules ti can contain

TABLE I
SYMBOL TABLE LISTING NOTATION IN OUR MAIN RESULTS.

Example: We now give an example pipeline ExampleDP,
shown in Fig 3, to illustrate our pipeline model. Note that in
the example, a table matches on fields on its left-hand side,
writes to a register on its right-hand side, and the field output
of a table indicates the table contains output routing actions.

Narrowing our focus, consider t2 P ExampleDP. t2 is
an exact match table whose inputs Ipt2q are srcIP and
srcPort, and whose output register is r(t2).

Significant computation limits on t2 are its maximum
number of rules maxrulespt2qq and the size of its output
register bitspr(t2)q.

III. MAIN RESULTS

Given the function and pipeline models, we now present
our main results, on whether a function f can be realized by
a pipeline p.

To simplify the reading of our results, we put only the
definitions and main results in the main text. The proofs of
the results are in the appendix. To make it easier to follow the
symbols, we collect key symbols in Table I for reference.

A. Overview

A main challenge in developing a systemic method to
verify whether a routing function f can be realized by a
pipeline p, which we denote as f Ù p, is that routing
functions and pipelines are represented differently and both
types of representations can have substantial complexities and
variations. Consider each routing function f as a point in a
functional space F , and each pipeline p as a point in functional
space P .

Our main contribution is the introduction of a novel, unify-
ing, normalization functional space C called the characteristic
functions space. Each routing function f is mapped by the
mapping τ to a characteristic function τpfq P C, character-
izing the computational load of f . Each pipeline p, on the

3

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

713

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

Fig. 3. Example datapath, ExampleDP

other hand, is mapped to a set κppq Ă C of characteristic
functions, representing the set of computational capabilities
of the pipeline. Fig 4 illustrates the mapping structure.

C
fi

pi
κ

τ

τ(fi)

PF

κ(pi)

Fig. 4. The spaces F , P and C and the mappings between them.

Since τpfq and κppq are defined in the the same space
C, as a point and as a set of points respectively, one can
compare τpfq with each element in κppq, to see if the load can
be ”covered” by a capability, resulting in our basic capacity
theorem: that if D c P κppq ě τpfq, f Ù p.

B. Characteristic Functions

We begin by defining a generic characteristic function c.

Definition 2. A characteristic function c is a mapping from
each subset M of a packet’s match fields to a vector consisting
of two components:

cpMq
∆
“ă scopepMq, ecpMq ą .

We refer to the two components of cpMq’s vector as
cpMqrscopes and cpMqrecs respectively.

Given two characteristic functions, one can compare them.

Definition 3. We define ci dominates cj , denoted as ci ě cj
as follows:

ci ě cj
∆
“ @ n P tscope, ecu,

@ M P 2M, cipMqrns ě cjpMqrns.

To verify our capacity theorem, we need to compare a set of
characteristic functions with a single characteristic function.

Definition 4. A set of characteristic functions Ci dominates
a characteristic function cj , denoted as Ci İ cj , if a ci P Ci
dominates cj:

Ci İ cj
∆
“ D ci P Ci : ci ě cj .

C. Characterization of a Routing Function

Given the concept of characteristic functions, we now derive
the characteristic function, denoted as τpfq, of a routing
function f .

Definition 5. The scope of the characteristic function of a
routing function for a subset of packet match fields M is the
size of the domain of valid values of M :

τpfqpMqrscopes
∆
“ dompMq

τpfqpMqrecs is a property that we build from the concept
of f-equivalence:

Definition 6. We define f-equivalence, denoted as „f , as a
relationship between two values of M , which we write as
vipMq and vjpMq, which denotes that these values cannot
be distinguished by f :

vipMq „f vjpMq
∆
“ @ vkpM´Mq P dompM´Mq,

fpvipMq, vkpM´Mqq “ fpvjpMq, vkpM´Mqq.

Our definition of f-equivalence leads naturally to our defi-
nition of an f-equivalence class.

Definition 7. An f-equivalence class, denoted as rvipMqsf , is
the set of all values f-equivalent to a given M ’s value vipMq:

rvipMqsf
∆
“ tvjpMq P dompMq : vipMq „f vjpMqu.

Counting equivalence classes gives us the concept of f-
equivalence class number.

Definition 8. The f-equivalence class number of M , denoted
as |dompMq{ „f |, is the cardinality of M ’s set of f-
equivalence classes.

We now arrive at our definition of τpfqpMqrecs.

Definition 9. The ec of a routing function’s characteristic
function for an M is the cardinality of M ’s set of f-equivalence
classes:

τpfqpMqrecs
∆
“ |dompMq{ „f |

Definition 10. The characteristic function τpfq of a routing
function characterizes f ’s computational load:

τpfqpMq
∆
“ pdompMq, |dompMq{ „f |q.

While τpfq is powerful it is impractical because f-
equivalence class number is costly to directly calculate. We
therefore bound a τpfq by defining the bounding characteristic
function of a routing function τGpfq which is easily derivable
from f ’s DFG. This function characterizes an upper bound on
f ’s computation load: τGpfq dominates τpfq.

We find τGpfqrscopes as before. Instead of calculating
τGpfqrecs, however, we determine an upper bound for with

4

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

714

the value of specific vertex cut in Gf , f ’s DFG. We now
construct this cut.

Definition 11. Let Vf pMq be the vertices of mi PM in Gf ,
and Df pMq be the vertices in Gf descended from Vf pMq.

The vertex-min-cut of M , Gf .vertexMinCutpMq, is the
product of the weights of the vertices in the minimum weight
vertex cut severing Vf pMq from Df pM´Mq.

Given this cut, we define τGpfq follows:

Definition 12. The characteristic function τGpfq of a routing
function characterizes an upper bound on f ’s computational
load; τGpfq dominates τpfq:

τGpfqpMq
∆
“ pdompMq, Gf .vertexMinCutpMqq.

Example: We illustrate these concepts with our example
routing function onPkt.

Consider onPkt’s match fields srcIP and srcPort.
Each are only read once: on L3, by the boolean function
isVerified. Thus, while srcIP and srcPort may have
many f-equivalence classes individually, (srcIP, srcPort)
only has two: values that isVerified evaluates to 0, and
values it evaluates as 1.

Suppose onPkt is a routing function for a small commer-
cial network fronted by a NAT with 50 hosts each running
a limited set of applications that only use 200 standard
ports. Given this, dompsrcIP,srcPortq “ 10000, and thus
τponPktqpsrcIP,srcPortq “ p10000, 2q.

While the equivalence class number of (srcIP, srcPort)
was straightforwards, the equivalence class number of most
other subsets of onPkt’s inputs is not so obvious. We there-
fore bound τponPktq with τGponPktq, which we calculate
using onPkt’s DFG GonPkt, shown in Fig. 5.

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

Fig. 5. The routing function onPkt’s DFG GonPkt and the cut
psrcIP,srcPort,dstPortq.

To bound, for example, the equivalence class number of
onPkt’s inputs (srcIP, srcPort, dstIP) we take the
vertex-min-cut in GonPkt between their vertices and every
vertex descended from onPkt’s other inputs: (ethType,
dstPort,g0, dstCond, return). This vertex-min-cut is
indicated in Fig. 5 by a dotted line.

The vertices in this cut, (g1, dstIP) have weight 50 and
2, and thus τGpsrcIP,srcPort,dstIPq “ p50000, 100q.

D. Characterization of a Pipeline
We now define κppq, the set of characteristic functions of a

pipeline p. We start by defining a path ρ through a pipeline p.

Definition 13. A path, ρ, in a p is a path through p’s dag
xt1, ..., tny such that t1 is a root table and tn an egress table
in the p.

As an example, ExampleDP contains two paths:
xt1,t2,t3,t4,t5y, and xt1,t6y, which we denote as ρL2

and ρL3 respectively.
We define, @ ρ P p, κρppq as the characteristic function of

the a path through a pipeline.

Definition 14. The characteristic function set κppq of a p is
the union of @ ρ P p’s characteristic functions:

κppqpMq
∆
“ tc P C : c “ κρpρq @ ρ P pu.

We now construct the characteristic function of a path ρ by
introducing the following definitions:

Definition 15. The input closure M̄ρptiq of a table ti P ρ is
the set of inputs that ti can obtain information about:

M̄ρptiq
∆
“ tmi PM : mi P Iptiq _

mi P M̄ρptjq s.t. rptjq P Iptiqu.

Definition 16. The closure set, ¯̄MρpMq of a ρ’s M is the set
of ti P ρ with input closure M .

¯̄MρpMq
∆
“ tti P ρ : M̄ρptiq “Mu.

Using these definitions, we define the characteristic function
of a ρ as:

Definition 17. The characteristic function κρpρq of a ρ char-
acterizes the computational capacity of a ρ.
κρpρqrscopes is the maximum number of values of M that ρ

can read and κρpρqrecs is the maximum number of equivalence
classes of M that ρ can distinguish.

κρpρqpMq
∆
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¯̄MρpMq ‰ H pminrmaxrulesptiq : ti P
¯̄MρpMqs,

minr2bitsprptiqq : ti P
¯̄MρpMqsq

¯̄MρpMq “ H^ D mi PM :

mi R
Ť

tiPρ
M̄pti, ρq p1, 1q

otherwise, pᵀ,ᵀq.

Example: As before, we provide intuition into the char-
acteristic functions of pipelines using our example pipeline
ExampleDP.

Recall from our model that ExampleDP contains two
ρ: ρL2 and ρL3. Consider the table t4, only contained by
ρL3. The input closure M̄ρL3pt4q is (srcIP, srcPort,
dstIP) since t4 reads dstIP and r(t2), and t2
in turn reads srcIP and srcPort. The closure set,
¯̄MρL3psrcIP,srcPort,dstIPq, of t4’s inputs in ρL3 is
tt4u: t4’s input closure is unique.

Thus, κρL3pM̄ρL3q “ κρL3psrcIP,srcPort,dstIPq “
pmaxRulespt4q, 2bitsprpt4qqq. In the case that t4 has 220

rules and a 16 bit output register, κρL3pM̄ρL3q “ p2
20, 216q.

5

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

715

Further, consider the subset of ExampleDP’s match
fields psrcMac, dstMacq. ρL3 does not contain the inputs
srcMac or dstMac and thus it can only realize functions
that contain them in the unlikely event that all are constants.
Constants have domain 1 and 1 equivalence class. Thus the
value of κρL3 for any set of outputs containing srcMac is
p1, 1q.

Finally, consider the subset of ExampleDP’s match fields
psrcIP, srcPortq. srcIP and srcPort are both read
by ρL3, but psrcIP, srcPortq is not an input closure
of any ti P ρL3. In this case, it is not necessary to con-
sider psrcIP, srcPortq to verify realizability, and thus
κρL3psrcIP, srcPortq “ pᵀ,ᵀq, indicating that we can skip
this field during comparison with a routing funciton’s τ .

E. Datapath Programming Capacity Theorems

Combining the preceding definitions to characterize both
routing functions and pipelines, we finally arrive at our central
result: a sufficient condition for whether a given f can be
realized in a given p.

Theorem 1 (Pipeline Realization Theorem). A routing func-
tion f can be realized by a pipeline p if κppq, the set of
characteristic functions of p dominates τpfq, the characteristic
function of f . Formally, we have:

κppq İ τpfq ñ f Ù p.

As a corollary, because τGpfq ą τpfq, the Pipeline Real-
ization Theorem extends to τGpfq.

Example: We illustrate our Pipeline Realization Theorem us-
ing onPkt and ExampleDP. Specifically, our Pipeline Real-
ization Theorem states that κpExampleDPq İ τponPktq ñ
ExampleDP Ù onPkt.

Further, κpExampleDPq İ τponPktq is true if κρpρL2q ą
τGponPktq or κρpρL3q ą τGponPktq We verify each
conditional by comparing each component of each vector
given by each pair of characteristic functions. For example,
τponPktqpsrcIP, srcPort, dstIP) “ p50000, 100q,
κρpρL3qpsrcIP, srcPort, dstIP) “ p220, 216q, and thus
the input set (srcIP, srcPort, dstIP) does not prevent
onPkt from being realized in ρL3.

Tightness: Though the theorem provides only a sufficient
condition, tighter results, in particular sufficient and necessary
conditions, can be established in multiple settings. In particu-
lar, we have the following result:

Definition 18. A branchless pipeline p is a p whose dag is a
path from its root to its output node.

Theorem 2. If p is a branchless pipeline, p’s table size is
large, and each match field mi P M appears in exactly one
of p’s tables, κppq İ τGpfq ô f Ù p.

In Sec. IV-A, we evaluate our realization theorem’s tightness
on more general pipelines through experiments.

IV. EVALUATION

We now evaluate the tightness, time complexity and output
size of routing function and pipeline characterization numeri-
cally. All experiments are conducted on a 1.6 GHz Intel Core
i5 with 4 GB RAM.

A. Routing Function Characterization Tightness

We demonstrate the tightness of our characterization of
a routing function by comparing the number of equivalence
classes of a M for both τ and τG for the following set of
simple routing functions:

\\ Routing function: simpleRoute
L0: def simpleRoute(Addr srcIP, Addr dstIP):
L1: srcSw = hostTbl[srcIP]
L2: dstSw = hostTbl[dstIP]
L3: route = routeTbl[srcSw, dstSw]
L4: return route

Our first function, simpleRoute maps a packet’s srcIP
and dstIP to their host packet switches dstSw and srcSw
and then looks up the route between them.

// Routing Function: condRoute
L0: condRoute(srcIP, dstIP):
L1: srcSw = hostTbl[srcIP]
L2: dstSw = hostTbl[dstIP]
L3: routeCond = condTbl[srcIP, dstIP]
L4: route = routeTbl[srcSw, dstSw, routeCond]
L5: return route

Our second function condRoute extends simpleRoute
by introducing a route condition variable which modulates the
function’s route look up.

// Routing Function: secureRoute
L0: secureRoute(Addr srcIP, Addr dstIP):
L1: if (isFiltered(srcIP)):
L2: return Drop()
L3: else:
L4: route = fwdTbl[dstIP]
L5: return route

Our final function secureRoute drops all traffic from
srcIPs on a filter list and forwards remaining traffic.

Results: We present our results in Table II. Specifically, in
Table II, column 2 defines the domain of srcIP, dstIP,
columns 3-6 give the output ranges Optblsq of each table,
and columns 7-10 give the values of selected fields in each
function’s τpfq and τGpfq.

Note that the row b1(scR) and b2(scR) represent the two
branches of secureRoute. We record N/A when a value is
not applicable to a given function, and null for values of τpfq
where computation failed to halt.

In our evaluation of simpleRoute and condRoute, the
results of τ and τG are almost identical in every case barring
an extreme one where OpcondTblq = 1. Notably, our values
of τpfq and τGpfq are not influenced by the range of routeTbl
OprouteTblq. This implies there is no pattern between the
allocation of routes to (srcIP, dstIP) pairs τpfq can exploit
to reduce its number of equivalence classes.

6

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

716

Further notice that our functions with control statements:
secureRoute and onPkt have a large gap between τ
and τG, suggesting τG’s bound is loose on heavily branching
programs. However, as rows b1(scR) and b2(scR) show, we
can ameliorate this problem by calculating each route through
a program characteristic function separately.

B. Routing Function Characterization Time Complexity

We now compare the time required to compute τ
and τG for given routing functions. We run our tests
using simpleRoute where OphostTblq = 100 and
OprouteTblq = 30.

Results: Fig. 6 shows the scalability of τG as input length
grows. As srcIP and dstIP) bit length increase, τG’s
computation time remains constant while τ ’s computation time
grows rapidly.

C
om

pu
te

tio
n

tim
e

(m
s)

0

150

300

450

600

#Bits of input

6 8 10

597

166

32 9109

Tg T

TA B L E 1

T Te

6 9 32

8 10 166

10 9 597

Fig. 6. Computation time required to generate τpsimpleRouteq and
τGpsimpleRouteq as input bit length varies.

C. Characterization of a Pipeline

We now examine the memory utilization and computation
time of pipeline characterization. We evaluate the following
pipelines:

1) The OF-DPA Abstract Switch 2.0: The OpenFlow
Data Plane Abstraction Abstract Switch 2.0 (OF-DPA)
is an abstract switch model based on the Open Flow
1.3.4 protocol designed to allow the programming of
Broadcom-based switches under the OpenFlow protocol.
We examine two OF-DPA flow table configurations:
bridging and routing (BR), and data center overlay
tunnel (OT), which contain 7, and 3 tables in 5, 3 stages
respectively. [2]

2) PicOS: PicOS is a network operating system for white
box switches that provides OF programmability across
HP, Edgecore and Pica switches. We examine two
fixed pipelines offered by PicOS as table type patterns:
PicOS’s IP routing pipeline (IPR) and Policy routing
pipeline (PR), which contain 4 and 5 tables in 4 and 5
stages respectively. [8]

Results: Table III our characterization results for our evaluated
pipelines. The results show that despite the theoretically large

number of subsets of M across evaluated pipelines, memory
utilization and computation time are small.

V. RELATED WORK

High level SDN Program Compilers: Multiple systems that
allow programmers to write SDN programs in high level
languages and then compile such programs to flow table
pipelines have been proposed over the last several years. Such
systems are related to our work in that they examine the
transformation of policy programs into switch flow tables. We
group these systems into two categories: tier-less and split-
level.

Tier-less systems (e.g. SNAP [9], FML [10], FlowLog [11],
Maple [7]), require programmers to specify forwarding behav-
iors as packet handling functions which are then used by the
SDN controller to configure and update network state. Such
systems pioneer our pipeline capacity theorem’s notion of a
program function and are able to compile such functions to
single pipelines. These systems, however, are unable to verify
that submitted functions can be written to a given pipeline
without physically carrying out the time consuming process
of compilation, and cannot write programs to multi-pipeline
networks.

Split-level systems such as the Frentic family (e.g. Fre-
netic [6], Pyretic [12]) provide a two tiered programming
model in which controller programs specify events of interest
and then respond to these events when they occur by calculat-
ing new network policies. Again, such systems cannot verify
that a given controller program’s output can be written to the
controller’s switches’ pipelines, although this paradigm falls
outside of our pipeline capacity theorem’s model as well.

Pipeline specification languages: There are some superfi-
cial similarities between pipeline specification languages (e.g.
P4 [3], PISCES [13], Concurrent NetCore [14]) and our
pipeline capacity theorem, such as the analysis and guarantees
that such languages provide about pipeline behavior. For ex-
ample, Concurrent NetCore’s type system ensures that any pro-
gram used to populate a pipeline has certain properties, such
as determinism, whilst PISCES’s switch specification allows
compilers to analyze pipelines and optimize their performance.
We contend, however, that our capacity theorem attacks an
entirely different space in pipeline analysis - guaranteeing
pipeline properties or improving performance is qualitatively
different to verifying whether compilation is possible.

Pipeline design: Pipeline design schemes such as Jose
et al.’s “Compiling Packet Programs to Reconfigurable
Switches” [15], Sun et al.’s “Software-Defined Flow Table
Pipeline” [16], FlowAdapter [17], and Domino [4] are clearly
related to our pipeline capacity theorem in that they examine
pipeline layout design under hardware constraints. Jose et al.,
Sun et al., and FlowAdapter however, focus on mapping logi-
cal lookup tables/flow table pipelines to physical tables whilst
our pipeline capacity theorem focuses on generic programs,
while Domino considers weaker hardware constraints (e.g.
limits on stateful operations at line-rate) than our work does.

7

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

717

f bitspIP q OphostTblq OprouteTblq OpcondTblq OpfwdTblq τ (f)(srcIP) τ (f)(dstIP) τG(f)(srcIP) τG(f)(dstIP)
smplR 10 100 2 N/A N/A 100 100 100 100
smplR 10 100 30 N/A N/A 100 100 100 100
smplR 10 100 5000 N/A N/A 100 100 100 100
smplR 12 100 30 N/A N/A 100 100 100 100
smplR 10 200 30 N/A N/A 200 200 200 200
condR 10 100 30 50 N/A 1024 1024 1024 1024
condR 10 100 30 5 N/A 1024 1024 1024 1024
condR 10 100 30 1 N/A 100 100 1024 1024
scR 10 N/A N/A N/A 100 2 100 2 1024
b1(scR) 10 N/A N/A N/A N/A 1 N/A 1 N/A
b2(scR) 10 N/A N/A N/A 100 1 100 1 100
onPkt 32 100 30 50 N/A null null 232 232

TABLE II
CHARACTERIZATION RESULTS OF ROUTING FUNCTIONS WITH DIFFERENT STATISTICS.

Pipeline #Paths Time (ms) #Valid M #M
ExampleDP 3 8 6 22
Broadcom BR 4 13 19 3 ˚ p224q ` 27

Broadcom OT 2 7 5 224 ` 16
PicOS IPR 1 7 4 27

PicOd PR 3 9 14 2 ˚ p224q ` 27

TABLE III
CHARACTERIZATION RESULTS OF PIPELINES.

VI. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. Shenshen Chen helped with ini-
tial discussions. The research was supported in part by NSFC
grants NSFC #61672385, NSFC #61702373; Shanghai Key
Project Grant #16511100900; NSF grants CC-IIE 1440745,
CCF-1637385 and CCF-1650596; Google Research Award;
and the U.S. Army Research Laboratory and the U.K. Ministry
of Defence under Agreement Number W911NF-16-3-0001.

REFERENCES

[1] “OpenFlow Switch Specification Version 1.3.0,” https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.0.pdf, ONF.

[2] (2014) OpenFlow Data Plane Abstraction (OF-DPA): Abstract Switch
Specification Version 2.0. Broadcom. [Online]. Available: www.
broadcom.com

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[4] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference. ACM, 2016,
pp. 15–28.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 99–110.

[6] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming
language,” in Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’11. New
York, NY, USA: ACM, 2011, pp. 279–291. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034812

[7] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak,
“Maple: Simplifying SDN programming using algorithmic policies,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. ACM, 2013, pp. 87–98. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486030

[8] (2015) Scaling up SDNs using TTPs (Table Type Patterns). Pica 8.
[Online]. Available: www.pica8.com

[9] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,”
in Proceedings of the 2016 Conference on ACM SIGCOMM 2016
Conference, ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016,
pp. 29–43. [Online]. Available: http://doi.acm.org/10.1145/2934872.
2934892

[10] T. Hinrichs, J. Mitchell, N. Gude, S. Shenker, and M. Casado, “Practical
declarative network management,” in in ACM Workshop: Research on
Enterprise Networking, 2009.

[11] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi,
“Tierless programming and reasoning for software-defined networks,”
in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 519–531. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616496

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation,
ser. nsdi’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 1–14.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482629

[13] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “Pisces: A programmable, protocol-independent software
switch,” in Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference. ACM, 2016, pp. 525–538.

[14] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent netcore:
From policies to pipelines,” in Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’14.
New York, NY, USA: ACM, 2014, pp. 11–24. [Online]. Available:
http://doi.acm.org/10.1145/2628136.2628157

[15] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15).
Oakland, CA: USENIX Association, May 2015, pp. 103–115. [Online].
Available: https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/jose

[16] X. Sun, T. E. Ng, and G. Wang, “Software-Defined Flow Table Pipeline,”
in Cloud Engineering (IC2E), 2015 IEEE International Conference on.
IEEE, 2015, pp. 335–340.

[17] H. Pan, H. Guan, J. Liu, W. Ding, C. Lin, and G. Xie, “The FlowAdapter:
Enable flexible multi-table processing on legacy hardware,” in Proceed-
ings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM, 2013, pp. 85–90.

APPENDIX

We now present proofs to verify our main results. The
structure of these proofs will be as follows. First, we define
a mechanism to encode sufficient information about a given

8

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

718

M P M to fully execute a given f . Second, we show that a
pipeline transmitting information internally using our encoding
can realize an f in p given that κppq İ τGpfq. Finally,
we show that τGpfq ą τpfq, proving by extension that if
κppq İ τpfq, f Ù p. We omit a proof of Theorem 2 and
the proofs of certain corollaries and lemmas due to space
constraints. We will give these proofs in an extended report in
an upcoming technical journal.

We base our summary on the vertices in the
Gf .vertexMinCutpMq of a f ’s Gf .

Definition 19. The min cut vertices µf pMq are the vertices
in an f ’s Gf cut by Gf .vertexMinCutpMq.

Let a given value of µf pMq be vipµf pMqq and the domain
of values of µf pMq be dompµf pMqq.

Lemma 1. Given a Gf .vertexMinCutpMq, we can calcu-
late f without knowing vipMq given vipµf pMqq.

While µf pMq acts as an effective representation of values
of M vipMq, we can compress it by introducing the concept
of codewords, allowing us to maximize transmission through
a pipeline.

Definition 20. The codewords χf pMq of inputs M of a f are
a set of integers that correspond to the f-equivalence classes
of M .

Receiving a codeword P χf pMq is equivalent to receiving
a value for M vipMq, since the codeword can be determin-
istically mapped back into a value from vipMq’s equivalence
class. We now define the shorthand ‘compute the codewords
of M ’ which we will use in our proofs:

Definition 21. If we can compute the codewords χf pMq of M ,
@ vipMq P dompMq we can compute the codeword associated
with the equivalence class of vipMq.

Our codewords give us a bound on the transmission require-
ments of an M , given in Lemma 2.

Lemma 2. A table ti only requires log2pr|dompµf pMqq|´1sq

bits of information about M to execute f correctly.

Proof. We can encode the value of any vipMq P dompMq as
a codeword in χf pMq and still convey sufficient information
to compute f . If µf pMq can take |dompµf pMqq| distinct
values, we can assign each value a unique codeword from
the set [0, ..., |dompµf pMqq| ´ 1], which take at most
log2pr|dompµf pMqq| ´ 1sq bits to represent.

Proving the realization theorem: Given our characterization
of function transmission requirements, we can now embark on
our proof of our realization theorem. First, we will give our
key underlying lemma, lemma 3, from which our realization
theorem follows naturally.

Lemma 3. If @ ti P ρ “ xt1, ..., tny have maxRulesptiq ą
τGpfqpM̄ρptiqqrdoms, and 2rptiq ą τGpfqpM̄ρptiqqrecs, then
@ti P ρ “ xt1, ..., tny can output χf pM̄ρptiqq to rptiq.

Given Lemma 3, we are now equipped to prove the realiza-
tion theorem.

Proof. Given an f and p, we will prove that if κppq İ taupfq,
f Ù p. Consider a κρpρq P κppq.
@ M PM : mi P M Ñ mi R

Ť

tiPρ
M̄ρptiq, κρpρqpMq “

p1, 1q. Therefore, if κρpρq ą τGpfq ñ all mi not read by ρ
are treated as constants or not read at all by f , and thus f is
effectively a mapping from

Ť

tiPρ
M̄ρptiq Ñ R.

Further, given κρpρq ą τGpfq @ ti P ρ, maxRulesptiq ą
τGpfqpM̄ρptiqqrdoms, and 2rptiq ą τGpfqpM̄ρptiqqrecs, and
thus by Lemma 3 tn can calculate χf pM̄ρptnqq.

Finally, consider that if a ti can calculate χf pMiq, and an
f is a mapping dompMiq Ñ R, ti can compute f ’s output
@ vjpMiq P dompMiq by mapping each codeword in χf pMiq

to the output of f it corresponds to.
Since tn is ρ’s only output, M̄ρptnq “

Ť

tiPρ
M̄ρptiq. Thus,

tn can compute f ’s output. Further, since tn is an egress table
it can always pass this output back to the switch.

Therefore, if κρpρq ą τGpfq, f Ù ρ. Since κρpρq P kppq
and ρ P p, we have proved that if κppq İ τGpfq, f Ù p.

The last step required to prove our realization theorem is to
show that τGpfq ą τpfq and thus that κppq İ τpfq ñ f Ù p.
The crux of this step is given in Lemma 4, below.

Lemma 4. The number of equivalence classes of M is
bounded by dompµf pMqq.

Proof. Suppose, by way of contradiction, D pf, Mq :
|dompMq{ „f | ą dompµf pMq. Each vipMq in one of
M ’s equivalence classes must generate a vipµf pMqq. By the
pigeonhole principle, if M has more equivalence classes than
µf pMq, two values of M from different equivalence classes
must generate the same value of µf pMq. However, by Lemma
1, µf pMq contains sufficient information about M to fix f ’s
outputs value, and thus these two bindings of M must be in
the same equivalence class, which is a contradiction.

Corrollary 1. The number of f-equivalence classes of any M
is bounded by Gf .vertexMinCutpMq.

Corrollary 2. The characteristic function τGpfq dominates
the characteristic function τpfq.

We have therefore proven our realization theorem: that
κppq İ τGpfq ñ f Ù p.

9

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

719

Prophet: Fast Accurate Model-based Throughput
Prediction for Reactive Flow in DC Networks

Kai Gao∗§, Jingxuan Zhang†‡, Y. Richard Yang†‡1, Jun Bi∗§1

∗ Institute of Network Science and Cyberspace, Tsinghua University
† Department of Computer Science, Yale University
‡ Department of Computer Science, Tongji University

§ Tsinghua National Laboratory for Information Science and Technology

Abstract—As modern network applications (e.g., large data
analytics) become more distributed and can conduct application-
layer traffic adaptation, they demand better network visibility to
better orchestrate their data flows. As a result, the ability to pre-
dict the available bandwidth for a set of flows has become a fun-
damental requirement of today’s networking systems. While there
are previous studies addressing the case of non-reactive flows,
the prediction for reactive flows, e.g., flows managed by TCP
congestion control algorithms, still remains an open problem. In
this paper, we identify three challenges in providing throughput
prediction for reactive flows: throughput dynamics, heterogeneous
reactive control mechanisms, and source-constrained flows. Based
on a previous theoretical model, we introduce a novel learning-
based prediction system with a key component named fast factor
learning (FFL) model. We adopt novel techniques to overcome
practical concerns such as scalability, convergence and unknown
system parameters. A system, Prophet, is proposed leveraging
the emerging technologies of Software Defined Networking (SDN)
to realize the model. Evaluations demonstrate that our solution
achieves significant accuracy in a wide range of settings.

I. INTRODUCTION

The last decade has witnessed the rapid development of in-
frastructures for distributed applications such as public Cloud
platforms [1]–[3]. For many of these distributed applications,
such as Content Delivery Networks (CDN) [4] and large-scale
data analytics systems [5], [6], knowing the network perfor-
mance in advance helps them to make scheduling decisions for
better performance. Hence, predicting network performance
has become a fundamental functionality for today’s high
performance distributed applications.

While many existing studies [7]–[11] work on predicting
network performance, they tend to focus on reserved resources
and not consider the case of best-effort, reactive flows (e.g.,
flows that are managed by TCP congestion control). Best-
effort, reactive flows can have multiple benefits, including
full resource utilization with fairness guarantees, and hence
contribute a large portion of total traffic in many networks [12].
As a result, predicting network performance involving such
flows is an important problem but remains open.

Despite the importance, the problem is difficult due to
several challenges.

1Prof. Yang (yry@cs.yale.edu) and Prof. Bi (junbi@tsinghua.edu.cn) are
the corresponding authors of this paper.

• First, the prediction system must handle the dynamics of
reactive flows. A fundamental difference between predicting
the throughput of flows with bandwidth reservations and
reactive flows is that reactive flows are adaptive. In a system
with reactive flows, throughput of existing flows will change
when flows arrive and die. Thus, the available resources
cannot be computed by simply observing current state.

• Second, the prediction system must handle heterogeneous
reactive mechanisms. In particular, the widely used reactive
flow control mechanism, TCP, is host-based congestion
control, which allows different hosts to use different im-
plementations. For example, Linux kernel has a kernel
option tcp_congestion_control and a socket option
TCP_CONGESTION to set congestion algorithms system-
wide and for each flow [13]. Such heterogeneity complicates
the throughput prediction of TCP flows [14], [15].

• Third, the prediction system must handle source constraints.
Throughput of a reactive flow is constrained by not only
network resources but also application-level factors such
as flow preferences or data availability. Thus, bandwidth
estimation methods operating at the transport layer, as
proposed in many previous TCP designs [16]–[18], does
not suffice the need.
To handle both dynamics and heterogeneous reactive mech-

anisms, we take advantage of a previously proposed uni-
fying theoretical model for heterogeneous reactive mecha-
nisms [19]–[21].

Although the model provides a solid starting point, it leaves
two key issues unaddressed. First, the theoretical model has
a key parameter which is unknown in advance. We call this
parameter a scaling factor as discussed in Section III-A and
refer to the issue of computing the scaling factor as the scaling-
factor computation challenge. Second, the theoretical model
does not include source constraints which are important in real
settings but introduce substantial complexity, as the constraints
of background flows are not even known.

In this paper, we solve the scaling-factor computation chal-
lenge by deriving a novel method called Fast Factor Learning
(FFL). While a naive approach which requires a unique
variable for each individual flow can introduce scalability and
convergence issues in practice, FFL uses 1) a novel technique
based on equivalence classes, to substantially reduce the num-

1

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 720

ber of variables, improving scalability, and 2) a novel method
based on gradient descent using sampling guidance, to achieve
accelerated convergence. To address the source constraint
challenge, we use learning to infer source constraints and
extend our design to compute accurate throughput prediction.

Our main contributions in this paper are three-fold:
• We formally define the problem of predicting throughput for

reactive flows with source constraints. A simple solution is
first proposed for the most basic setting and we introduce
two novel approaches to extend the solution to more general
settings. In particular, we have adopted a novel learning
component based on historical traffic samples to provide
accurate (relative errors less than 10%), fast (responses in
less than 0.05s) throughput prediction.

• We propose Prophet, a novel system to provide the service
of throughput predictions for reactive flows, based on our
theoretical findings.

• We implement a prototype and evaluate it extensively. It is
demonstrated that Prophet can provide accurate estimation
results even in multiple scenarios.
The rest of the paper is organized as follows. In Section II

we formally define the problem of throughput prediction
for reactive flows. Theoretical analysis is conducted and we
design novel approaches to solve the prediction problem in
Section III. In Section IV, we propose Prophet, a system
to provide the flow query service based on the theoretical
results and advanced monitoring. The evaluation results are
presented in Section V. Finally, we compare with related work
in Section VI and summarize our paper in Section VII.

II. PROBLEM STATEMENT

A. Motivation
Unlike predicting throughput for non-reactive flows which

can be achieved by checking the available reservation, pre-
dicting throughput for reactive flows is much more difficult.
Consider the example in Fig. 1, there are two flows in the
original network, denoted as background flows f1 and f2. The
two flows are fully utilized, meaning they do not have any
source constraints and consume all available bandwidth.

Consider the prediction for a new flow q1 arriving at the
network. If the flow is not source-constrained, it can get 1/3
of the total bandwidth, i.e. 200 Mbps as in Fig. 1(b). In the
general case, the new flow can be source-constrained, and the
preceding result is only an upper bound. Assume the source
limit is 50 Mbps, q1 will only consume 50 Mbps as in Fig. 1(c).

The ability to predict the throughput is more important for
a set of flows. Specifically, consider two simultaneous flows
q1 and q2. If the two new flows are not source-constrained,
they will both achieve 150 Mbps. However, if one flow, say
q1, is source-constrained, the result becomes more complex.
As shown in Fig. 1(d), assume that q1 is source-limited to
60 Mbps, one may compute that q2 will achieve 180 Mbps
(=(600-60)/3). If q1 is limited to 180 Mbps, on the other hand,
both q1 and q2 will receive 150 Mbps. In general settings with
complex networks and complex flow source constraints, the
prediction service must be able to respect source constraints.

600 Mbps

600 MbpsExisting flows

(a) {}, no constraints

600 Mbps

400 MbpsExisting flows

200 MbpsNew flows

(b) {q1}, no constraints

600 Mbps

550 MbpsExisting flows

50 MbpsNew flows

(c) {q1}, q1 ≤ 50Mbps

600 Mbps

360 (300) MbpsExisting flows

240 (300) MbpsNew flows

(d) {q1, q2}, q1 ≤ 60(180)Mbps

Fig. 1: Throughput for Different Flows and Source Constraints.

B. Problem Definition

Network: We consider a data center network with N full du-
plex edge connections where network congestion only happens
at these edge connections [22]. The network core can be seen
as a non-blocking switch and each connection can be seen as
two separate links. The links are numbered from 1 to 2N and
the set of links is denoted by L. The k-th link is represented as
lk, and we use ck to represent its capacity. The capacity vector
c is defined as a column vector that c = 〈c1, . . . , c(2N)〉T .
Background flows: There are K running reactive flows in
the network. We number these “background” flows from 1
to K where the i-th flow is denoted by fi whose source is
denoted by si and destination by di. F is a set consisting of
all the background flows. The throughput of the i-th flow is
denoted as xi and the throughput vector x = 〈x1, . . . , xK〉T .
The i-th flow fi may have a source rate limit of τi, where
τ = 〈τ1, . . . , τK〉. We also abuse the symbols F and fi
in the general case when there is no need to distinguish
between background flows and queried flows.
Flow query: We consider a flow query Q which consists of
M reactive flows numbered from 1 to M . We refer to the i-th
flow as qi, and denote its throughput by yi. The throughput
vector y is a column vector defined as y = 〈y1, . . . , yM 〉T .
The i-th flow qi may have a source rate limit of πi, where
π = 〈π1, . . . , πM 〉.
Routing: We consider the case that routing is already known.
The routing matrices A and B are binary matrices of size
2N × K and 2N × M respectively, which represents how
flow fi and qi traverses the network. In particular, aki = 1
if and only if fi traverses lk and bki = 1 if and only if qi
traverses lk.

Based on the network system model, we define the problem
of predicting throughput for reactive flows.

Problem 1 (Throughput Prediction for Reactive Flows). Given
a network with reactive flows and a flow query Q with source
constraints π, return the predicted throughput ŷ.

One can prove that when there are non-reactive flows in the
network, i.e. a set of flows S where any flow f ∈ S has a fixed

2

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

721

TABLE I: Symbols

Scope Symbol Meaning

Network N # of access ports/links
L Set of links where |L| = 2N
lk The k-th link
ck Link capacity of lk

Background K # of running flows in a network
Flows F Set of running flows where |F | = K

fi The i-th running flow
si/di Source/destination host of fi
xi Throughput of flow fi
τi Source constraint for fi

Flow Query M # of flows in a flow query
Q Set of flows in a query where |Q| = M
qi The i-th flow
yi Throughput of flow qi
πi Source constraint for qi

Routing aki aki = 1 indicates fi traverses lk
bki bki = 1 indicates qi traverses lk

Monitoring ρi Utility scaling factor for fi or qi
& pi Equivalent class index for fi or qi
Learning† ρ̄j ρi = ρ̄pi

αi Utility parameter for fi or qi
x∗i Equilibrium throughput for fi or qi
ˆsym Estimated result of sym (xi, yi, . . .)
˜sym sym (xi, yi, . . .) for the sampled flows

† Unless explicitly stated in the context of flow queries, ρi, pi, . . . and x∗i
are associated with fi.

bandwidth guarantee, throughput estimation for the reactive
flows can be converted to the problem of throughput prediction
for reactive flows by subtracting the reserved bandwidth from
ck. Thus, we only consider reactive flows in this paper.

III. DESIGN FOUNDATION

In this section, we start with the most basic setting (i.e.,
homogeneous reactive mechanism and no source constraints)
to form a fundamental understanding of how to predict
throughput for reactive flows. We then increase the com-
plexities by considering heterogeneous TCP implementations
in Section III-B and handling source-constrained flows in
Section III-C, as demonstrated in Fig. 2.

A. Starting Point

Our throughput prediction solution is based on the Network
Utility Maximization (NUM) [20] which is the theoretical
foundation for many TCP designs. Let Ui(xi) denote the utility
when the throughput of fi is xi, the allocation for each flow
is a solution to the following optimization problem:

System max
∑
fi∈F

Ui(xi) (1)

Subject to Ax ≤ c.

The problem of throughput prediction for reactive flows can
then be solved by finding the optimal solution of the following
optimization problem:

Staring Point
(Section III-A)

Scaling Factor Computation
(Section III-B)

Prediction with Source
Constraints (Section III-C)

Fig. 2: Design Road Map.

System

ŷ = arg max
y

∑
fi∈F

Ui(xi) +
∑
qi∈Q

Ūi(yi)

 (2)

Subject to (
A B

)(x
y

)
≤ c.

To solve this optimization problem, it is essential to know
the utility function. In particular, our method is based on
the unifying model introduced by Srikant [19] where utility
function of a TCP flow is modeled as:

U(x) = ρ · x
1−α

1− α
. (3)

The parameter α is determined by the TCP congestion
control algorithm. For example, the values of α for TCP Vegas
and Reno [19] are 1 and 2 respectively. Existing works [23]–
[25] have proposed sophisticated solutions on how to identify
the TCP implementations, which means that we can assume
that the α of each flow is already known. Thus, given x,
the value of a utility function is proportional to the unknown
parameter ρ, which we refer to as the scaling factor.

B. Scalable, Fast Scaling Factor Computation

In this section, we describe how to reduce the scale of the
estimation problem and propose the theoretical foundation of
estimation the scaling factors ρ = 〈ρ1, . . . , ρK〉 where ρi is
the scaling factor for flow fi.

For a given ρ, the optimization problem (1) has a unique
optimal solution since the utility functions are concave. Thus,
we consider x as a function of ρ, as in Lemma 1.

Lemma 1 (Optimality of Equilibrium Bandwidth). Consider
a network system where each running TCP flow fi has its
scaling factor ρi. If the equilibrium bandwidth of all running
flows x∗ fits the condition Ax∗ = c, it should be the maximal
point of the following Lagrange function:

L(A, c,ρ;x,λ) =
∑
i

ρi
x1−αii

1− αi
− λT(Ax− c).

Proof. This lemma can be trivially proved by substituting
Ui(xi) with ρi

x
1−αi
i

1−αi in the Lagrangian of the optimization
problem (1).

The best estimation of ρ maximizes the likelihood between
the actual bandwidth allocation (x) and the one (x̂) estimated

3

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

722

from ρ. In particular, we use the least square to measure the
error of x̂(ρ), i.e.,

E(ρ) = ‖x̂− x‖2. (4)

In this paper, we make a mild assumption that a host uses
the same TCP implementation throughout our prediction. This
is a rational assumption since hosts typically do not change
the TCP algorithms very frequently.

1) Improving scalability with equivalent classes: A first
issue to be resolved is to reduce the number of variables to be
estimated. In an arbitrary network, each flow potentially has a
unique link price (dual variables in the NUM problem) so that
its scaling factor ρ is also unique. For a network with K flows,
a brute-force approach has to solve a K-variable estimation
problem, which can be large in real world cases.

A key observation is that many flows have similar scaling
factors. In a classic Clos topology [26], any connection can
only have 1 out of 3 different hop count values, and respec-
tively 3 different propagation delays. Since scaling factors
usually depend only on TCP implementation and round trip
time, scaling factors of flows with the same source can be
approximately classified into three different groups.

For a network where there are P different scaling factors,
the scaling factor of each flow belongs to one of the P
equivalent classes. Let pi denote the equivalent class index
of flow fi, which is uniquely determined by the source host
and the routing matrix. Let ρ̄i denote the scaling factor value
of the i-th equivalent class, we have ρi = ρ̄pi . The problem of
estimating ρ is now reduced to estimating the scaling factors
of all equivalent classes ρ̄.

By grouping flows with similar scaling factors, we substan-
tially reduce the number of variables from N(N − 1) to 3N .
In a Clos topology where k = 4, our reduced model only has
48 variables while the brute-force method has 240.

2) Achieving fast convergence with gradient descent
method: The second issue is convergence. We derive the
gradient of ρ̄ to speed up the computation.

Proposition 1. Given a routing matrix A, a capacity vector c
and the equilibrium flow rates x, there is no neighbourhood
U(ρ̄0, δ) of the scaling factor ρ̄ which makes the following
formula always true:

∀ρ̄ ∈ U(ρ̄0, δ), det(AΛ−1AT) ≡ 0,

where Λ = diag(ρpiαix
−αi−1
i).

Proof. Since det(AΛ−1AT) is a polynomial of ρ̄, if it is
always zero in the neighbourhood U(ρ̄0), it must be zero in
<P . But we can always find a diagonal matrix Λ which makes
det(AΛ−1AT) non-zero. So the assumption is not valid.

Now we show that the gradient of the error estimation
function E(ρ̄) can be computed very efficiently.

Substituting ρ with ρ̄ in Lemma 1, we have

L(A, c, ρ̄;x,λ) =
∑
i

ρ̄pi
x1−αii

1− αi
− λT(Ax− c),

where x and λ subject to the following equations:

∇xL = 0 ⇒ ∀j,
∑
k

akjλk = ρ̄pjx
−αj
j , (5)

∇λL = 0 ⇒ ∀k,
∑
j

akjxj = ck. (6)

The solution of the bandwidth allocation problem for a given
ρ̄ is a function of ρ̄. We denote it as x̂ and use the following
symbols for simplicity:

δxji =
∂x̂j
∂ρ̄i

, δλki =
∂λ̂k
∂ρ̄i

.

Now consider the partial derivatives for (5) and (6) at ρ,
we have

ρ̄pjαjx
−αj−1
j δxji +

∑
k

akjδλki = 0 ∀i,∀j s.t. pj 6= i,

ρ̄iαjx
−αj−1
j δxji +

∑
k

akjδλki = x
−αj
j ∀i,∀j s.t. pj = i,∑

j

akjδxji = ck ∀i,∀k.

It is equivalent to the following linear equation:(
Λ AT

A O

)(
Jx(ρ̄)
Jλ(ρ̄)

)
=

(
Γ

cJ1,P

)
, (7)

where
Jx(ρ̄) = (δxji),Jλ(ρ̄) = (δλki),

Γj,i =

{
x
−αj
j if pj = i,

0 if pj 6= i.

If the coefficient matrix of (7) is reversible, Jx(ρ̄) can be
computed very efficiently. From Proposition 1, we know there
is no continous ρ̄ making the determinant of this coefficient
matrix det(O − AΛ−1AT) always zero, which means we
can always generate the next ρ̄ iteratively or make a small
disturbance to get a reversible coefficient matrix.

Now we can use the gradient descent method to minimize
the error. To eliminate the drawback of using a fixed step with
Cartesian coordinates, we choose spherical coordinates and the
gradient is calculated as follows.

Let x̂(ρ̄) denote the estimated value of x by ρ̄ and (r,φ)
be the spherical coordinate transform of ρ̄, x̂(ρ̄) = x̂(φ). Let
e be the unit vector of ρ̄, i.e. e = ρ̄

‖ρ̄‖ . e is also a function of
φ. Let Jρ̄(φ) be the Jacobian matrix of e(φ). We can get:

∇φE = 2(x̂− x)TJx(ρ̄)Jρ̄(φ)T. (8)

C. Prediction with Source-Constrained Background Flows

We now consider the more general problem of throughput
prediction for source-constrained flows. Two major challenges
are raised: 1) how to compute the scaling factors with source
constraints, and 2) how to obtain the source constraints for
background flows.

For the first challenge where τ is already given, we extend
the optimization problem in (2) to include source constraints in

4

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

723

our prediction framework. The throughput prediction problem
is equivalent to solving the following optimization problem:

System
max

∑
fi∈F

Ui(xi) +
∑
qi∈Q

Ui(yi)

 (9)

Subject to
A B
I O
O I

(x
y

)
≤

cτ
π

 .

Thus, the throughput estimation in the FFL model is tran-
formed to a new format using the augmented routing matrix
and constraint vector.

For the second challenge where τ is also unknown, the
problem is further complicated. Instead of taking the naive
approach by augmenting the original FFL model with τ as
variables, we use a much simpler method. Our solution is
based on the following observation.

A fundamental difference between source-constrained flows
and non-reactive flows, even though they may appear similar
because flows of both types may have a fixed transmission rate,
is that source-constrained flows only transmit at a fixed rate
when its throughput is less than the equilibrium throughput.

Proposition 2 (Hard Constraint). Let 〈x′,y′〉T be the optimal
solution of (2) and 〈x′′,y′′〉T be the optimal solution of (9).
We have the following conclusion:

x′′i = τi, ∀i, x′i > τi

y′′j = πj , ∀j, y′j > πj .

Proof. Consider the Lagrangian of optimization problems (2)
and (9) (denoted as L(2)(x,α,β;λ) and L(9)(x,α,β;λ,µ)
respectively). Without loss of generality, we consider a specific
i such that x′i > τi. First, consider the derivatives of xi, we
have

∇xiL(2) =
∂Ui
∂xi

(·)−
∑
k

akiλk (10)

∇xiL(9) =
∂Ui
∂xi

(·)−
∑
k

akiλk − µi. (11)

Since x′′ also satisfies the constraints of (2), consider the
gradient of xi at x′′ and the corresponding λ′′. Since x′i >
τi ≥ x′′i , ∇xiL(2)(x

′′,λ′′) > 0 but ∇xiL(9)(x
′′,λ′′) = 0.

Thus, µi > 0 and according to the Karush-Kuhn-Tucker
conditions, x′′i = τi.

Similarly we can prove ∀j, y′j > πj , y′′j = πj .

Our identification method on τ is based on Proposition 2
but uses it in a reversed way. If the estimated equilibrium rate
x̂i is “significantly larger”1 than the actual throughput xi, we
consider this flow being source-constrained with a rate limit of
xi and use it in future computations. In a series of samples, the
source constraint of a given flow fi cannot be “significantly
smaller” than the average actual throughput, x̄i.

1We allow a 10% relative error, i.e., if x > (1 + 10%)y, we say x is
significantly larger than y.

Prophet Server

Hosts

Fast Factor Learning

Flow Query Engine

Flow Monitor (Agent)

Flow Monitor (Server)

Flow Monitor (Agent)

Flow Sample Collection

Parameter Estimator
()

Flow Information
Extractor

Throughput Predictor ()

Parameter Updater
()

Fig. 3: The Prophet System Overview

IV. THE PROPHET SYSTEM

From the observations and analysis in Section III, we have
derived what kind of information is necessary to solve the
problem of throughput prediction for reactive flows. In this
section, we introduce the details of the Prophet system based
on the results.

A. System Overview

As demonstrated in the figure, Prophet consists of the
following components:
• Flow query engine: A flow query engine receives flow

queries from users. It uses the estimated parameters learned
by the FFL component and calculates the estimated through-
put prediction for flow queries based on (9).

• Fast factor learning: The fast factor learning (FFL) com-
ponent uses flow samples collected by flow monitors to
train a TCP utility function estimation model and learn
the parameters for each flow continuously. The component
iteratively updates the parameters once the information of
new flows is reported. Using the estimated parameters, the
FFL component can construct utility functions.

• Flow monitor: A flow monitor monitors the traffic for a
set of given hosts, extracts the header information which is
further processed by TCP classifiers. It is also responsible
for monitoring real-time traffic at the access switch.

B. Throughput Prediction for Reactive Flow Queries

For a flow query Q, consider the throughput prediction
problem in (9). Background flows F and the routing matrix
A are provided by the network controller, the routing matrix
of queried flows B is computed from Q, source constraints
of queried flows π are (optionally) provided along with
Q, and finally source constraints for background flows τ ,
parameters of utility functions α and ρ̄ are provided by the
FFL component.

Thus, we can conduct throughput prediction for Q by
solving the problem of (9), as in Algorithm 1. The algorithm
constructs utility functions for background flows (Line 2-3)

5

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

724

Alg. 1: Throughput Prediction for Reactive Flows
Input: F,A, c, τ ,ρ;Q,π
Output: ŷ - estimated equilibrium bandwidth

1 Function PREDICTTHROUGHPUT(F,A, c, τ ,ρ;Q,π)
2 α,p← IDENTIFYTCP(F)
3 foreach fi ∈ F do
4 Ui(x)← ρ̄pi

x1−αi
1−αi

5 α′,p′ ← IDENTIFYTCP(Q)
6 foreach qi ∈ Q do
7 Ūi(x)← ρ̄p′i

x1−α
′
i

1−α′i

8 B ← GETROUTINGMATRIX(Q)

9 U(x,y)←
(∑

fi∈F Ui(xi) +
∑
qi∈Q Ūi(yi)

)
10 A′ ←

A B
I O
O I

, c′ ←

cτ
π

11 ŷ ← arg maxU(x,y) subject to A′

(
x
y

)
≤ c′

12 return y

Alg. 2: Parameter Updates based on Flow Samples
1 Function ModelLearningDaemon

2 α← ∅, τ ← ∅, ρ̄← 1, S ← ∅
3 for k = 1, . . . ,+∞ do
4 for i = 1, . . . , |F̃ (k)| do
5 if f̃i /∈ F then
6 τi ← +∞,

7 α,p← IDENTIFYTCP(F̃ (k)), c← c0 −∆x(k)

8 F ← F̃ (k), A← GETROUTINGMATRIX(F)
9 S ← 〈A, c, F 〉

10 ρ̄← ESTIMATEPARAMETERS(τ , ρ̄, S)
11 x̂← PREDICTTHROUGHPUT(F,A, c, τ , ρ̄; ∅, ∅)
12 τ ← UPDATE(x̂, x̃)

and queried flows (Line 4-6) respectively. It then builds the
routing matrix for the queried flows in Line 7 and constructs
the optimization problem in (9). The estimated throughput is
calculated by solving the optimization problem.

C. Computing Scaling Factors and Source Constraints

In this section, we describe how the information required
by throughput prediction are learned from flow samples.

Let F̃ denote the sampled flows and ∆x as the aggre-
gated throughput of source-constrained small flows that are
considered as non-reactive flows as in Proposition 2. Given the
sampled flows F̃ and ∆x, we need to update five parameters
that are essential to predict throughput: active background
flow set F , its routing matrix A, source constraints τ , link
capacities c, and utility function parameters ρ̄.

We number the flow samples received from 1 incrementally.
Let F̃ (k) and ∆x(k) denote the k-th samples. Algorithm 2
describes how we process the samples.

For the i-th flow f̃i ∈ F̃ (k), α̃i is determined by the TCP
algorithm used by its source s̃i. We use mechanisms from

Alg. 3: TCP Parameter Estimation
Input: τ , ρ̄, S
Output: ˆ̄ρ - updated estimated parameters

1 Function ESTIMATEPARAMETERS(τ , ρ̄, S)
2 φ← CARTESIANTOSPHERICAL(ρ̄)
3 ε← ε0
4 while ε > tolerance do
5 E ← 0,∇φE ← 0
6 foreach < A, c, F >∈ S do
7 ρ̄← SPHERICALTOCARTESIAN(φ)
8 x̂← PREDICTTHROUGHPUT(F,A, c, τ , ρ̄; ∅, ∅)
9 E ← E + ‖x̂− x‖2

10 Jx(ρ̄)← SOLVE(Equation 7)
11 ∇φE ← ∇φE + 2(x̂− x)TJx(ρ̄)Jρ̄(φ)

12 φ← SGD(φ, E,∇φE)
13 ε← E∑

x dimx

14 ˆ̄ρ← SPHERICALTOCARTESIAN(φ)
15 return ˆ̄ρ

previous studies [23]–[25] to identify TCP implementations
and set the α for f̃i. The equivalence class index pi is identified
as a combination of s̃i (TCP implementation) and the distance
between s̃i and d̃i (link price). These steps are represented
using a function called IDENTIFYTCP.

Source constraint τ̃i is set to +∞ at the beginning (Line 6)
and is continuously updated throughout the life cycle of fi in
our prediction model. We use τ (k)i to denote the values after
k samples. Further processing on τ (k) is discussed later.

The link capacities are calculated by subtracting the total
throughput of source-constrained flows ∆x from the physical
link capacity c0 (Line 7). The active background flow set F (k)

is set to F̃ (k) directly (Line 8). We get the routing matrix A
from the network controller (Line 8).

The values of τ (k)i is updated using the methods introduced
in Section III-C. The steps are denoted as function UPDATE
(Line 11-12). In particular, we use the sampled throughput x̃i
as an estimation of actual xi.

The input of Algorithm 3 is a set of flow samples. Each flow
sample is formulated as a 3-tuple < A, c, F > where A and
c are as defined in Table I and F is a set of hash code. Each
hash code in F indexes a record of flow fi, which contains the
TCP identification result αi and pi, the measured equilibrium
bandwidth xi and the estimated source constraint τi.

Algorithm 3 first transforms initial scaling factor ρ̄ to
spherical coordinates φ. It then updates φ by the sample set
S iteratively and estimates the error ε until ε is less than a
given threshold. In each loop, the algorithm passes the current
ρ̄ to Algorithm 1 to get a bandwidth estimation for each
sample in S. Then it calculates the value of E and ∇φE
which are defined in (4) and (8). With this information, the
algorithm applies Stochastic Gradient Descent to update φ.
After the result is converged, the algorithm transforms φ back
to the Cartesian coordinates ˆ̄ρ, which minimizes the error of
bandwidth estimation E, and return it.

6

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

725

D. Extracting Flow Information

In this section, we describe how flow samples are collected
at flow monitors.

From the analysis in Section III, Prophet requires the actual
flow throughput to be collected. However, in a real world
scenario, some adjustment must be taken into consideration.

We use sampling to gather the information on the access
switches. Each flow is mapped to the TCP 5-tuple. The
throughput of a flow is estimated as the total bytes in a
sampling period divided by the sampling time. We construct
F̃ by selecting the flows with throughput larger than 5%
of the total bandwidth as sampled flows and the rest are
considered source-constrained with a small rate limit, whose
total throughput of the source-constrained flows ∆xk on link
lk is measured.

V. EVALUATION

We have developed a prototype of the Prophet system. In
this section, we conduct extensive experiments and evaluate
the accuracy of throughput prediction for reactive flows.

A. Settings

System configuration: We use Mininet 2.2.1 and Network
Simulator ns-2.35 to simulate the network. The prototype is
implemented in Python and evaluations are conducted on a
64-bit Ubuntu 14.04 LTS server with 4-core Intel(R) Xeon(R)
E5-2609 v2 (@ 2.50GHz) CPU, 32G memory.

Network setting: The network used in our evaluations is a
Clos topology with k = 4, i.e. 16 hosts. The link capacities
between core and aggregation, and between aggregation and
edge are set to 1 Gbps to ensure no congestion in the network
core. The link capacity between an edge switch and a host is
1 Mbps. All links have the same propagation delay of 2us.

Methodology: For each evaluation, we initiate some random
background flows and capture their real time throughput.
Then a random flow query is made for which we predict
the throughput. The flows in the query are then added to the
network. We capture their equilibrium throughput and compare
the results with our estimations.

Metrics: We measure the following metrics: 1) throughput
error between an estimation x̂ and the actual throughput x,
which represents the accuracy of a prediction and is calculated
as ‖x̂ − x‖ (absolute error) and ‖x̂−x‖

‖x‖ (relative error), 2)
scaling factor error, which indicates the convergence speed
of the training process, and 3) execution time of both the
training and the prediction stages.

B. Throughput Prediction for A Single TCP Implementation

We evaluate the performance of Prophet in the setting with
only one TCP implementation. In particular, we use TCP
Vegas in a Clos topology with K = 4, with the number of
flows in a query randomly picked in [10, 20]. We conduct
10 simulations on NS2. For each execution, an initial set of
flows is launched first and 50 queries are made consecutively.
For each query, we record the predicted throughput and add

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Relative Errors

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

After training 10 samples
After training 20 samples
After training 30 samples
After training 40 samples

(a) CDF of Relative Errors

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Errors (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

After training 10 samples
After training 20 samples
After training 30 samples
After training 40 samples

(b) CDF of Absolute Errors

Fig. 4: Errors for Throughput Prediction.

the flows to the network. After the network has reached the
equilibrium, we record the throughput for the queried flows
and compare with the prediction.

Fig. 4a demonstrates the cumulative distribution of relative
errors of the queried reactive flows. As we can see, more
than 80% of the flow queries have a relative error of less
than 30% and more than 40% flows are less than 10%,
which demonstrates that our throughput prediction system can
achieve high accuracy from 70% up to 90%.

The curve in Fig. 5(a) demonstrates the relative errors
between estimated scaling factors ρ̄ after training with k
samples and the final scaling factors. As we can see, the
scaling factors converge very quickly with a relative error of
approximately 5% after around 20 samples.

The training time is presented in Fig. 5(b). Not surprisingly,
the training time increases as the number of samples increase.
However, the relatively large standard deviations and the
jitters indicate that the execution time depends heavily on the
actual flow distribution. From the previous analysis on the
convergence of scaling factors, a reasonable cut-off value is
20, where the training time is mostly less than 4 seconds.

The prediction time is demonstrated in Fig. 5(c). Since the
prediction is independent of sampling numbers, we are more
interested in their distributions. As we can see from Fig. 5(c),
the prediction for 10-20 flows is pretty fast. All queries are
responded in less than 0.15s and about 90% of the queries only
takes less than 0.05s. We conclude that Prophet can efficiently
predict throughput for reactive flows.

C. Throughput Prediction for Multiple TCP Implementations

We use the same methodologies as in the single TCP setting,
with the exception that now multiple TCP implementations are

7

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

726

0 10 20 30 40 50
Number of Samples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la

tiv
e

Er
ro

r

(a) Relative Errors of ρ̄

0 10 20 30 40 50
Number of Samples

0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 T
im

e
(s

)

(b) Training Time

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Prediction Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) Query Response Time

Fig. 5: Performance of a Clos Topology with K = 4, 50 Queries with 10− 20 Flows.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Relative Errors

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vegas
Reno

(a) CDF of Relative Errors

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Errors (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vegas
Reno

(b) CDF of Absolute Errors

Fig. 6: Errors for Multiple TCP Implementations.

used in the experiments. We randomly select TCP implemen-
tation algorithms for all the hosts in the network and make all
flows from the same source use the same TCP implementation.

Again we demonstrate the throughput prediction results in
Fig. 6. As we can see, the prediction results are similar to the
single TCP implementation case that for 80% of the flows,
the relative errors are less than 30%. We can also see that for
different TCP implementations, Reno and Vegas in this case,
the prediction accuracy may vary slightly.

D. Summary

In our evaluations, we have demonstrated that Prophet
achieves accurate throughput predictions for reactive flows for
networks of either single or multiple TCP implementations.
We also demonstrate that the training model can converge with
a small number of samples (10-20), and provide fast responses
(90% responses in less than 0.05s).

VI. RELATED WORK

TCP throughput estimation. Throughput estimation, or
bandwidth estimation, is a widely-studied topic and is the
foundation of many TCP implementations. TCP Vegas [27]
estimates the throughput as the expected rate, defined by
cwnd/propagation delay. TCP Westwood [17] takes a series
of throughput samples and uses different low-pass filters for
throughput estimation. BBR [28] estimates the throughput by
finding the optimal operating point where throughput stops in-
creasing alongside RTT. These throughput estimation methods
are usually deployed on end hosts and can only provide the
estimation after a flow is instantiated. More importantly, they
cannot predict throughput for a set of flows. Instead, Prophet
predicts throughput both before flows are launched and for a
set of reactive flows.

Network performance prediction. Centralized network man-
agement systems, such as SDN, have enabled the ability to
provide network views to applications, which makes it possible
to predict network performance [7]–[11], [29]. However, exist-
ing solutions provide either a deterministic allocation or sim-
ple and static predictions for reserved bandwidth allocation.
Prophet is the first approach to predict the dynamic network
performance for reactive flows to the best of our knowledge,
especially with source constraint considerations.

The general bandwidth allocation framework for TCP has
been introduced in prior studies (e.g., [19]–[21]). While they
have laid down the theoretical foundation of our work, Prophet
takes one more step on designing an approximate but practical
prediction system with the advanced monitoring capabilities.

Modeling coexisting TCP flows. Many researchers have
studied the equilibrium of TCP flows when multiple different
congestion avoidance algorithms coexist. Vojnovic et al. [30]
have studied the fairness of TCP implementations based on
additive-increase and multiplicative-decrease. Tang et al. [15]
have proved that the equilibrium of mixed TCP flows still
exists. They also give the sufficient conditions for global
uniqueness of network equilibrium. Instead of developing an
accurate model for coexisted TCP flows, Prophet estimates
equilibrium rates for heterogeneous TCP flows based on model
learning and real-time monitoring.

8

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

727

VII. CONCLUSION

In this paper, we systematically study the problem of
predicting throughput for reactive flows. We propose a novel
learning-based method to accurately predict the throughput for
reactive flow queries, based on both theoretical models and
advanced monitoring capabilities provided by SDN and NFV.
A system, namely Prophet, is proposed to provide reactive flow
query service for applications hosted in a data center network.
Evaluations have demonstrated that our prediction method
yields accurate throughput prediction for well-known TCP
implementations with fast convergence and quick responses.

VIII. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. We have made some changes
accordingly and include further discussions in an extended
technical report [31] due to the limited space.

This research is sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

This work is also supported by the National Science
Foundation (CC-IIE 1440745), Google Research Award,
National Key Research and Development Plan of China
(2017YFB0801701), and the National Natural Science Foun-
dation of China (No. 61672385, No. 61472213 and No.
61502267).

REFERENCES

[1] Amazon, “Amazon elastic compute cloud (Amazon EC2),” Amazon
Elastic Compute Cloud (Amazon EC2), 2010.

[2] Google, “Google Cloud Computing, Hosting Services & APIs,” 2017,
https://cloud.google.com/.

[3] Microsoft, “Microsoft Azure Cloud Computing Platform & Services,”
2017, https://azure.microsoft.com/en-us/.

[4] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-performance Internet Applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[6] I. Bird, K. Bos, N. Brook, D. Duellmann, C. Eck, I. Fisk, D. Foster,
B. Gibbard, M. Girone, C. Grandi, and others, “LHC Computing Grid,”
Technical design report, p. 8, 2005.

[7] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O. Guedes,
“Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Data-
center Networks.” in WIOV, 2011.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards Pre-
dictable Datacenter Networks,” in Proceedings of the ACM SIGCOMM
2011 Conference, ser. SIGCOMM ’11. New York, NY, USA: ACM,
2011, pp. 242–253.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center.” in NSDI, vol. 11, 2011, pp. 22–22.

[10] R. Alimi, Y. Yang, and R. Penno, “RFC 7285, Application-layer traffic
optimization (ALTO) protocol,” 2014.

[11] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “NOVA: Towards on-
demand equivalent network view abstraction for network optimization,”
in 2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS), Jun. 2017, pp. 1–10.

[12] CAIDA, “Analyzing UDP usage in Internet traffic,” http://www.caida.
org/research/traffic-analysis/tcpudpratio/index.xml.

[13] Linux, “Manual tcp (7),” 2017, http://man7.org/linux/man-pages/man7/
tcp.7.html.

[14] . Budzisz, R. Stanojevic, A. Schlote, F. Baker, and R. Shorten, “On
the Fair Coexistence of Loss- and Delay-Based TCP,” IEEE/ACM
Transactions on Networking, vol. 19, no. 6, pp. 1811–1824, Dec. 2011.

[15] A. Tang, J. Wang, S. H. Low, and M. Chiang, “Equilibrium of Hetero-
geneous Congestion Control: Existence and Uniqueness,” IEEE/ACM
Transactions on Networking, vol. 15, no. 4, pp. 824–837, Aug. 2007.

[16] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla, “Adaptive bandwidth
share estimation in TCP Westwood,” in Global Telecommunications
Conference, 2002. GLOBECOM ’02. IEEE, vol. 3, Nov. 2002, pp. 2604–
2608 vol.3.

[17] S. Mascolo, C. Casetti, M. Gerla, S. Lee, and M. Sanadidi, “TCP
Westwood: congestion control with faster recovery,” Univ. California,
Los Angeles, Tech. Rep. CSD TR, vol. 200017, 2000.

[18] A. Capone, L. Fratta, and F. Martignon, “Bandwidth estimation schemes
for TCP over wireless networks,” IEEE Transactions on Mobile Com-
puting, vol. 3, no. 2, pp. 129–143, Apr. 2004.

[19] R. Srikant, The Mathematics of Internet Congestion Control. Springer
Science & Business Media, 2012.

[20] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, pp. 237–252, 1998.

[21] S. H. Low, L. L. Peterson, and L. Wang, “Understanding TCP Vegas:
A Duality Model,” J. ACM, vol. 49, no. 2, pp. 207–235, 2002.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, ser. SIGCOMM ’09. New York,
NY, USA: ACM, 2009, pp. 51–62.

[23] J. Oshio, S. Ata, and I. Oka, “Real-Time Identification of Different
TCP Versions,” in Managing Next Generation Networks and Services:
10th Asia-Pacific Network Operations and Management Symposium,
APNOMS 2007, Sapporo, Japan, October 10-12, 2007. Proceedings,
S. Ata and C. S. Hong, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 215–224.

[24] ——, “Identification of Different TCP Versions Based on Cluster
Analysis,” in 2009 Proceedings of 18th International Conference on
Computer Communications and Networks, Aug. 2009, pp. 1–6.

[25] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP Conges-
tion Avoidance Algorithm Identification,” IEEE/ACM Transactions on
Networking, vol. 22, no. 4, pp. 1311–1324, Aug. 2014.

[26] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication, ser. SIGCOMM ’08.
New York, NY, USA: ACM, 2008, pp. 63–74.

[27] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion
avoidance on a global Internet,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 8, pp. 1465–1480, Oct. 1995.

[28] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” Queue, vol. 14, no. 5,
p. 50, 2016.

[29] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet Another Resource Negotiator,” in Proceedings of the 4th
Annual Symposium on Cloud Computing, ser. SOCC ’13. New York,
NY, USA: ACM, 2013, pp. 5:1–5:16.

[30] M. Vojnovic, J.-Y. Le Boudec, and C. Boutremans, “Global fairness of
additive-increase and multiplicative-decrease with heterogeneous round-
trip times,” in INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 3. IEEE, 2000, pp. 1303–1312.

[31] K. Gao, J. Zhang, Y. R. Yang, and J. Bi, “Prophet Technical Report,”
2017, https://www.dropbox.com/s/tvgqx4v830c2nb0/prophet-tr.pdf?dl=
0.

9

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

728

NOVA: Towards On-Demand Equivalent Network
View Abstraction for Network Optimization

Kai Gao†‡, Qiao Xiang§‡, Xin Wang§‡, Yang Richard Yang§‡ and Jun Bi†∗
§ Department of Computer Science, Tongji University

† Institute for Network Sciences and Cyberspace, Tsinghua University
‡ Department of Computer Science, Yale University

Abstract—As many applications today migrate to distributed
computing and cloud platforms, their user experience depends
heavily on network performance. Software Defined Network-
ing (SDN) makes it possible to obtain a global view of the
network, introducing the new paradigm of developing adaptive
applications with network views. A naive approach of realizing
the paradigm, such as distributing the whole network view
to applications, is not practical due to scalability and privacy
concerns. Existing approaches providing network abstractions
are limited to special cases, such as bottlenecks exist only at
networks edges, resulting in potentially suboptimal or infeasible
decisions. In this paper, we introduce a novel, on-demand network
abstraction service that provides an abstract network view sup-
porting not only accurate end-to-end QoS metrics, which satisfy
the requirements of many peer-to-peer applications, but also
multi-flow correlation, which is essential for bandwidth-sensitive
applications containing many flows to conduct global network
optimization. We prove that our abstract view is equivalent to
the original network view, in the sense that applications can make
the same optimal decision as with the complete information.
Our evaluations demonstrate that the abstraction guarantees
feasibility and optimality for network optimizations and protects
the network service providers’ privacy. Our evaluations also show
that the service can be implemented efficiently; for example,
for an extreme large network with 30,000 links and abstraction
requests containing 3,000 flows, an abstract network view can be
computed in less than one second.

I. INTRODUCTION

Software Defined Networking (SDN) is a new emerging
technique. It enables a network to collect information from
all the devices and construct a global view. This global view
makes it possible to share with applications essential quality
of service (QoS) metrics such as available bandwidth, loss rate
and routing cost values, which are critical to performance of
network-based services.

While northbound APIs for “apps” (management programs)
to access the global view have been provided by many
SDN controllers (e.g., [1]–[4]), they are not open to non-
administrative parties such as content providers, neighbor
domains and VPN tenants, because of privacy, security and
consistency concerns. Therefore, a new network abstraction
providing global network view for non-administrative parties
is needed.

A naive design is to only return a slice of the network
to these non-administrative parties, or as we refer to as
network consumers. Specifically, the slice can be calculated

∗ The corresponding author is Prof. Jun Bi. junbi@tsinghua.edu.cn

by an SDN controller which receives a query containing the
flows of interest from a consumer, calculates the forwarding
paths for the flows, and returns only links on the paths with
associated attributes. However, this simple approach can have
drawbacks. First, a slice can reveal sensitive information like
network topology, leading to privacy leaks. Second, a slice
may contain redundant information and introduce unnecessary
communication overhead.

Thus, a problem arises on how to provide an abstract
network view which can both eliminate these drawbacks and
still provide high-quality information. It is non-trivial because
of the following challenges:

• Feasibility: A decision made with the abstract view should
also be feasible in the original network. Infeasible solutions
such as flow rate scheduling can lead to congestion and
significantly affect the total throughput and also the user
experience.

• Generality: The abstraction should be general enough to
provide fine-grained information and suffice the demands
of applications with heterogeneous objectives.

• Optimality: A decision made with the abstract view should
be as optimal as with the original network information. A
suboptimal solution will affect the quality of service and
cannot fully utilize the network resources.

• Privacy: The abstraction must be able to protect the privacy
of the network service provider, making it difficult for
malicious consumers to infer the original information.

• Efficiency: The abstraction should not introduce too much
computation/communication overhead, even with moder-
ately large networks and workloads.

Existing abstractions [5]–[14] usually target at a certain type
of scenario and cannot support applications which require fine-
grained QoS metrics. For example, many of these abstractions
do not have the ability to accurately represent bottlenecks
shared by multiple correlated flows in an arbitrary network,
which is critical in emerging use cases such as geo-distributed
data centers [15]–[17] and scientific computing platforms [18].

In this paper, we formally define the problem of providing
high-quality on-demand abstract network views and make
the first step by introducing the equivalent network view
which guarantees feasibility, generality and optimality. The
equivalent network view is based on the observation that
these network information are eventually used by network

1
978-1-5386-2704-4/17/$31.00 ©2017 IEEE

(a) The Sliced Network View. (b) One-big-switch Abstraction. (c) End-to-end Abstraction.

(d) Incorrect Topology Aggregation. (e) Simple Equivalent Aggregation. (f) Advanced Equivalent Transformation.

There are 6 flows: 2 red, 2 blue and 2 brown. The flows are labeled as b1, r1, y1, b2, r2 and y2 from top to bottom.

Fig. 1: Comparison between Different Network View Abstractions.

consumers to conduct network optimizations.

Based on the concept of equivalent network view, we
propose NOVA, the Network Optimization View Abstraction,
which can effectively find such equivalent network views.
Demonstrated by analysis and evaluations, NOVA can also
achieve good privacy preservation and efficiency.

Our main contributions in this paper can be summarized as
follows:

• We systematically investigate the problem of providing
on-demand view abstraction for arbitrary application-layer
network optimization, which is a missing functionality
from current SDN northbound API design. We discuss the
potential benefits for such a new functionality and identify
its challenges.

• We propose NOVA to address the challenges, the Network
Optimization View Abstraction, which is based on the con-
cept of equivalent network view. We prove our equivalent
transformation algorithms can effectively generate equiva-
lent network views which can achieve feasibility, generality
and optimality, while protecting the network privacy.

• We implement a prototype of NOVA and evaluate its
performance using real topologies. Evaluations show that
NOVA guarantees both feasibility and optimality, improves
privacy by reducing information leak, and reduces the
communication overhead by a factor of 1.25 to 5 even for
large networks, for example, real ISP network topologies
with up 10000 nodes and 30000 links, and large workloads
(more than 3000 flow requests).

The rest of the paper is organized as follows. We summarize
the demands for fine-grained network views, existing abstrac-
tions and their limitations in Section II. A formal description
of the abstraction problem and the equivalent network view
are then given in Section III, followed up by the algorithms in
Section IV. We evaluate the prototype and analyze the results
in Section V. Finally, we discuss the related work and give
conclusions in Section VI and Section VII respectively.

II. MOTIVATION

In this section we discuss the motivations that drive our
research. See the network in Figure 1a, assume on the left-
hand side, a web service provider has three services colored in
red, blue and brown respectively while on the right-hand side
there are six clients using different services. Assume the red
service is live streaming, blue is video subscribing and brown
is large file downloading. All three services require bandwidth
so it’s important to know about the bottlenecks in the network
and the content provider sends a request on the bandwidth
correlation of the six flows to the network. Meanwhile, the
content provider does not want the network to know about
how it would manage the services so it does not provide any
further information.

The naive approach returns the slice containing all the links
on the flow paths with the associated bandwidth information
and how the links are shared by the flows, denoted by
Figure 1a in this case. However, this can lead to information
leaks so that malicious network consumers may leverage this
service to infer the network information, which jeopardizes
the privacy of the network provider. Also as the network size
increases, the topology cannot be effectively represented.

The hose model, also known as the one-big-switch abstrac-
tion, returns the network as a single big switch as demonstrated
in Figure 1b. However, the content provider would only know
about the available bandwidth on the ingress/egress “port”. If
the bottleneck is the upper middle link, it is not propagated
to the content provider. Thus, the content provider may incor-
rectly increase the traffic for the blue flows without knowing
that they are correlated with r1, which leads to congestion.
Because of the TCP congestion control mechanism, congestion
would not only affect the r1, jeopardizing the overall objective
to maximize the weighted quality of service, but also the
throughput of the other flows sharing the same link, leading
to an overall performance degradation.

The end-to-end abstraction as demonstrated in Figure 1c is
barely useless in this case. It has the same problem as the one-

2

big-switch abstraction that information about the bottleneck
within the network cannot be accurately provided to the
consumer.

Topology aggregation [13] is a common technique in re-
ducing the topology size. However, it also suffers from the
incapability of providing accurate information about the flow
correlations. What is worse, if not aggregated correctly as in
Figure 1d, it may introduce unnecessary bottlenecks that lead
to suboptimal decisions right in the beginning.

A simple observation is that the lower middle link and the
lower right link are both shared by r2 and y2 only. Thus,
we can aggregate them together as a new virtual link, as
demonstrated in Figure 1e. One may think we can just delete
one of them. However, if the content provider asks about the
end-to-end routing metrics such as hop count at the same time,
deletion would return incorrect values for the two flows.

At the same time, if we already know that the upper middle
link would not be the bottleneck, the network view can be
further reduced as demonstrated in Figure 1f. It is worth
noticing that just like the case with the simple equivalent
aggregation, we cannot just delete it if end-to-end metrics are
also requested.

Thus, the question arises on how we can determine what
kind of links can be reduced and how to reduce them correctly.
In order to answer this question, we introduce the concept
of equivalent network view and propose NOVA, the Network
Optimization View Abstraction, with efficient algorithms to
compute equivalent network view.

III. EQUIVALENT NETWORK VIEW

In this section, we formally define equivalent network view
after introducing its theoretical foundations – the variant rou-
ting metric algebra, and the unified network element. We prove
its properties and demonstrate that it guarantees generality,
feasibility and optimality.

A. The variant routing metric algebra

The routing metric algebra is introduced by Sobrinho to
compute QoS-based routing [19]. The routing metric algebra
is based on path concatenation. The routing metric algebra
consists of the following operations: the weight function w, the
concatenation operator ◦, the “plus” operator ⊕ and a binary
relation �.

The original routing metric algebra system can be repre-
sented as (P, S,w, ◦,⊕,�). P is the set of paths and S is
a closed set of metrics. The weight function w maps a path
from P to a given metric in S. The concatenation operator ◦
is a binary operator on P , which takes two paths and returns
a new one. Operator ⊕ is a binary operator on S and � is a
binary relation on S.

In this paper, we introduce a variant of the routing metric
algebra. First, to better formulate the constraints on flow-
independent metrics, we introduce a new ⊗ : R × S 7→ S
operator to linearize the metric calculation. Second, we relax
the constraint on path concatenation in [19], by extending the
meaning of P from the set of paths to the set of unified network

elements as defined in Section III-B. The new metric algebra
can be described as (P, S,w, ◦,⊕,�,⊗). Concrete examples
of some common routing metrics are demonstrated in Table I.
(S,⊕) is a semigroup so that ⊕ is commutative and as-

sociative. We also require that the ⊗ operator is distributive
over ⊕. It can be easily proved that all the examples listed in
Table I satisfy these requirements.

B. Unified network elements

Traditional graph representations of a network would treat
links and nodes differently because the routing capability
is only provided on nodes (switches/routers/middleboxes).
However, since routing is not a mandatory functionality in our
network view definition, we can generalize the nodes and links
as unified network elements to simplify the representation.

For example, a deep packet inspection (DPI) middlebox
may have a maximum processing speed, which yields the
constraint on the total throughput passing through this DPI
node. From the consumers’ perspective, it has no difference
as a shared bottleneck link. To guarantee that these unified
network elements would not affect the results of routing metric
algebra, we must alter the weight function w as:

w∗(p) =

w(p) if w(p) exists

e otherwise

where e is the identity of w and some concrete examples are
given in Table I.

Unified network elements have several benefits. First, this
unified representation of links/nodes greatly simplifies our
analysis. Second, it provides a high-level abstraction which
focuses on the routing metric semantics and allows consumers
to ignore how the metrics are computed/constrained.

C. Network view abstraction

We identify two kinds of routing metrics that are essential
for network optimization:
• Flow-independent metrics represent those metrics whose

value is independent of the flow correlations, in the sense
that the existence of a flow would not affect the value of
another flow’s flow-independent metric sharing the same
network element. Common flow-independent metrics used
in QoS routing [20] include hop count, local link preference,
delay, jitters and loss rate1.

• The flow-correlated metrics represents the network re-
sources that are shared among flows. Bandwidth is the most
common and also the most important flow-correlated metric.
Other shared resources such as flow entries or middlebox-
related metrics may also exist in certain scenarios.
Flow-independent metrics are formulated as equations ac-

cording to the routing metric algebra introduced in Sec-
tion III-A. For example, the hop count between two end hosts
is equal to the sum of the all hop count on each link in the

1Delay, jitters and loss rate are sensitive to traffic volumes so their real
time values are not flow independent. However, they are considered flow
independent when measured statistically.

3

TABLE I: The Variant Routing Metric Algebra.

S Weight function (w) w(p1) w(p2) w(p1 ◦ p2) = w(p1)⊕ w(p2) N ⊗ w(p1) Identity (e) Zero (0)
N+ Hopcount h1 h2 h1 + h2 N · h1 0 +∞
R+ Bandwidth b1 b2 min(b1, b2) b1 +∞ 0
R+ Delay d1 d2 d1 + d2 N · d1 0 +∞
[0, 1] Loss rate r1 r2 1− (1− r1)(1− r2) 1− (1− r1)

N 0 1

TABLE II: Symbols for Network View Abstraction.

Symbol Meaning
V Network view represented by 4-tuple

Vi(ui) The i-the component (and its key matrix) of V
rij Indicator of whether element j appears in flow i’s path

pkj (p̂
k
i) k-th flow-independent metric of element j (flow i)

ak
ji Proportion of fi’s correlated metric k on element j

qkj (q̂
k
i) k-th flow-correlated metric of element j (flow i)
E Objective function of the consumer
A Abstraction function
V ′ Abstract view computed by A(V)

path. Let pj represent the metrics on element j, p̂i represent
the metrics for flow i, and rij(rij ∈ {0, 1}) represent whether
element j appears in the path of flow i, we have:

p̂i =

⊕
j

rij ⊗ p1j , . . . ,
⊕
j

rij ⊗ psj

 = Ri × P

If the k-th flow-correlated metric (resource) flow i consumes
on element j is proportional to the total amount of resources
consumed by this flow and the proportion is independent of
flow correlations, the flow-correlated metrics are formulated
as linear constraints. The sum of the resource consumption
of all the flows on a single element must not exceed the
available amount. Let qj represent the available resources on
element j, q̂i represent the resource consumed by flow i, and
akji(≥ 0) represent the proportion of the k-the kind of resource
consumed by flow i on element j, we have:∑

i

akjiq̂
k
i ≤ qkj ⇔ Akq̂k ≤ qk

Thus, the network view can be formulated as a tuple with
four elements: V = (R,P ,A,Q). Based on this network view
model, an abstraction can be defined as below:

Definition 1 (Network View Abstraction). The network view
abstraction is a transform function A which takes the original
network view V and returns the abstract view V ′, i.e.,

V ′(R′, P ′,A′,Q′) = A (V (R,P,A,Q))

D. Equivalent network view

A key insight of the network view abstraction is that the
returned information is usually the input parameters of a
specific algorithm, whose result can help applications make
decisions. If the applications can make the same optimized

decision with the abstract network view, we can say the
abstract network view is equivalent.

Consider a consumer of the network view whose opti-
mization problem consists of a set of flows {f1, . . . , fn}. For
flow i, the consumer queries its flow-independent metrics p̂i =
(p̂1i , . . . , p̂

s
i), and its flow-correlated metrics q̂i = (q1i , . . . , q

t
i).

The optimization problem can be formulated as

min E ({p̂i} , {q̂i})

s.t.
P̂ = R× P
Akq̂k ≤ qk

R ≥ 0,Ak ≥ 0, qk ≥ 0, q̂k ≥ 0

We use the symbols in Table II and define the equivalent
network view as the following:

Definition 2 (Network View Equivalence). Two network
views V1 and V2, V1 is equivalent to V2 if and only if
for any consumer with flows {fi}, its objective function
min E ({p̂i}, {q̂i}) achieves the same optimal objective.

We use the symbol “∼” to represent the network view
equivalence. It can be easily proved that the network view
equivalence is an equivalence relation. We also propose the
criterion in Theorem 1 to simplify the verification.

Theorem 1 (Network View Equivalence Criterion). Two net-
work views V1 and V2, V1 is equivalent to V2 if and only if
for any consumer with flows {fi} and metrics {p̂i}, {q̂i}:

R1 × P1 = R2 × P2 (1a)

F k
1 =

{
x | Ak

1x ≤ qk
1

}
=
{
x | Ak

2x ≤ qk
2

}
= F k

2 (1b)

Proof. Sketch: For two network views V1 and V2, we use
V1 ∼∗ V2 and V1 ∼ V2 to represent that V1 and V2 are
equivalent by the criterion and are equivalent by definition
respectively. It can be easily proved that if V1 ∼∗ V2, V1 ∼ V2.
For the other direction, we prove it by contradiction.

We first assume that there exists V1 ∼ V2 but V1 �∗ V2,
i.e., either Equation 1a or Equation 1b does not hold.

Assume Equation 1a does not hold. For any P̂1 = R1 ×
P1 6= R2 × P2 = P̂2, we find one entry that is not equal
in P̂1 and P̂2, say p̂1

k
i 6= p̂2

k
i and construct an objective

function which use the p̂ki as the objective value. Thus, for
the objective function the two network views yield different
optimal objectives and they are not equivalent by definition,
which contradicts with our assumption.

Assume Equation 1b does not hold, ∃x0 ∈ (F1 \ F2) ∪
(F2 \ F1). Without loss of generality, let x0 ∈ F1 \F2. Since
x0 /∈ F2, there exist j, k such that A2

k
jx0 = y0 > qkj . Now

4

we construct a linear objective function in the standard form
min−A2

k
jx, and assume the optimal objective is y1 and y2

respectively. We have y1 ≥ y0 > qkj = y2 which means the
objective function yields different optimal objective values for
the two network views. Again, we get a contradiction.

Thus, we can conclude that if V1 ∼ V2, V1 ∼∗ V2 and the
criterion is both sufficient and necessary.

We have proved that the network views satisfying this cri-
terion also satisfy Definition 2 and can provide the equivalent
network view for consumers with arbitrary objective functions
and arbitrary fine-grained routing metrics as long as they fit
in the variant routing metric algebra.

IV. NETWORK OPTIMIZATION VIEW ABSTRACTION

In this section, we introduce NOVA, the Network Opti-
mization View Abstraction which conducts equivalent transfor-
mations to obtain the equivalent network view. NOVA consists
of two algorithms, namely the equivalent element aggregation
and the equivalent element decomposition. We prove both
algorithms guarantee the equivalence condition, and analyze
how they can improve efficiency and privacy as well.

To help simplify the analysis, we assume the request con-
tains n flows with s flow-independent metrics and t flow-
correlated metrics, while the corresponding original network
view contains m elements.

A. Equivalent element aggregation

In this section, we introduce the equivalence aggregation.
The intuition is that, as demonstrated with Figure 1e, the
elements shared by the same set of flows and with the same
coefficients in the network constraints can be combined into
a single element. The algorithm is given in Algorithm 1 and
we analyze its efficiency and prove its correctness.

Algorithm 1: NOVA Equivalent Element Aggregation
Input: V (R,P ,A,S)
Output: V ′(R′,P ′,A′,S′)

1 Function EQUIVAGGREGATION(V)
2 V ←

{
Vi | Vi ←

(
RT

i,Pi, {Ak
i }, {Qk

i }
)
, 1 ≤ i ≤ m

}
3 G ← GROUPBY(V, Vi ⇒

(
ki ← (RT

i, {Ak
i }), Vi

)
)

4 for Gi ∈ G do
5 V ′i ← AGGREGATE(ki, {Vai

j
∈ Gi})

6 V ′ ←[R′T
1 · · ·R′T

m′
]
,

 p′
1

...
p′

m′

 ,

A′k

1

...
Ak

m′

 ,

q′k

1

...
q′k

m′

return V ′

7 Function AGGREGATE(ki, {Vai
j
})

8 (R′T
i, {A′k

i })← ki
9 p′

i ← [
⊕

p1
ai
j
, . . . ,

⊕
ps
ai
j
]

10 q′
i ←

{
q′ki | q′ki ← min{qk

ai
1
, . . . , qk

ai
t
},∀k

}
11 return

(
R′T

i,p
′
i, {A′k

i }, {q′k
i }
)

The network view is represented as row vectors (com-
ponents), as demonstrated in Line 2. Line 3 groups the i-
th component Vi(R

T
i ,Pi, {Ak

i }, {Qk
i }) using a unified row

vector ui =
[
RT

i
T
,A1

i , . . . ,A
t
i

]
1×(n+nt)

as the key. Line 5

computes the aggregation of the components in each group.
Finally Line 6 constructs the new network view by merging all
the aggregated components. For each component Vi, the time
complexity for the grouping and the aggregation is O(n(s+t))
and O(n(s + t)) respectively while the MERGE process is
totally logical, which yields a total time of O(mn(s+ t)).

Now we prove the element aggregation algorithm is correct,
in the sense that it maintains the equivalence condition.

Theorem 2. V ′ ← EQUIVAGGREGATION(V), V ′ ∼ V .

Proof. Sketch: Assume ai represents the index of the compo-
nents in Gi, and let bi ← min aij and cki ← argminj∈ai

qkj .
First we check Equation 1a is met. Let M = R × P , we

have

mij =
⊕
k

rik ⊗ pjk =
⊕

1≤k≤m′

{⊕
u∈ak

riu ⊗ pju

}

=
⊕

1≤k≤m′

ribk ⊗

{⊕
u∈ak

pju

}
=

⊕
1≤k≤m

ribk ⊗ p′
j
u = m′ij

The key steps are based on that ⊕ is transitive and commuta-
tive, ⊗ is distributive over ⊕, and ∀u ∈ bk, riu = riak

.
Now we check Equation 1b. For any k, we have

F k =
{
x | Ak

ix ≤ qk
i,∀i

}
F ′k =

{
x | A′k

ix ≤ q′k
i,∀i

}
=
{
x | Ak

cix ≤ qk
ci ,∀i

}
Since the constraints of F ′k is a subset of F k, F k ⊆ F ′k. If
F ′k 6= F k, ∃x0 ∈ F ′k \F k, meaning x0 must at least violates
one constraint in F k, say Ak

di
where di ∈ ai. Thus, we have

Ak
di
x0 > qkdi

≥ min
j∈ai

qkj = qkci

which means x0 also violates one constraint in F ′k and leads
to contradiction with our assumption. So we have F k = F ′k.

By Theorem 1, V ′ ∼ V .

B. Equivalent element decomposition
In this section, we introduce the motivations for equivalent

element decomposition which can substantially improve the
performance of equivalent element aggregation.

Algorithm 1 guarantees the equivalence condition which is
important to prove the correctness of NOVA, however, the
condition to aggregate components is not easy to be satisfied
without further processing. Thus, in practice we need to
conduct another equivalent transformation, namely equivalent
element decomposition. The intuition of this algorithm can be
demonstrated using the simple example below:

a : routingcost = 1, bandwidth = 100Mbps
b : routingcost = 2, bandwidth = 100Mbps
c : routingcost = 3, bandwidth = 200Mbps

RT
a = Aa =

[
1 0
]T

,RT
b = Ab =

[
0 1
]T

,RT
c = Ac =

[
1 1
]T

5

According to grouping condition, there will be three dif-
ferent groups. But we can make the observation that since
the constraint for c: bw1 + bw2 ≤ 200 is redundant, we can
decompose c as two unified network elements c1 and c2 where

c1 : routingcost = 3, bandwidth = 200Mbps
c2 : routingcost = 3, bandwidth = 200Mbps
RT

c1 = Ac1 =
[
1 0
]T

,RT
c2 = Ac2 =

[
0 1
]T

After c is decomposed, we can invoke EQUIVAGGREGATION
(Algorithm 1) and c1 and c2 can be aggregated with a
and b respectively. We introduce the definition of constraint
redundancy by Telgen [21] as Definition 3 and further prove
that the decomposition guarantees equivalence.

Definition 3 (Redundant linear constraint – Telgen [21]). For
a linear system whose feasible region F = {x | Ax ≤ b}, the
k-the constraint Akx ≤ bk is redundant if and only if the
feasible region Fk = {x | Aix ≤ bi, i 6= k} is equal to F , i.e.
Fk = F .

Theorem 3. For Vi(R
T
i ,Pi, {Ak

i }, {Qk
i }), we say Vi is

redundant if and only if Ak
i x ≤ qk

i is redundant for all k.
If and only if Vi is redundant, we can construct an equivalent
network view V ′ = V \Vi∪{V j

i } where Vi is decomposed as
V

(j)
i (RT

i
j
,P

(j)
i , ∅, ∅) with RT

i =
∑

j R
T
i
(j) and P

(j)
i = Pi.

Proof. Sketch: We still consider the criteria Equation 1a and
Equation 1b and use the same symbols in Theorem 2.

First we can prove criterion Equation 1a holds whether Vi

is redundant or not.

muv =
⊕
k

ruk ⊗ pvk =
⊕
k 6=i

ruk ⊗ pvk + rui ⊗ pvk

=
⊕
k 6=i

ruk ⊗ pvk +

∑
j

r
(j)
ui

⊗ pvk

=
⊕
k 6=i

ruk ⊗ pvk +
⊕

r
(j)
ui ⊗ pvk

(j) = m′uv

For Equation 1b, first we consider the case when Vi is
redundant but V � V ′. Vi is redundant so that ∀k, Ak

i x ≤ qk
i

is redundant. According to Definition 3, we have the feasible
regions F k = F k

i = F ′k for all k. Since we have already
proved that Equation 1a holds, according to Theorem 1,
V ∼ V ′ which leads contradiction.

If Vi is not redundant but V ∼ V ′, we can similarly
construct a contradiction between the definition of redundancy
and the equivalency criterion.

Thus, we have proved that Vi can be equivalently decom-
posed if and only if Vi is redundant.

The efficiency and privacy of equivalent decomposition
depend on 1) how to identify redundant components, and 2)
how to find the basis. In this paper, we use a heuristic approach
which aims to simplify the selection of basis, as introduced in
Algorithm 2.

Line 2 identifies the set of decomposable components Vd

according to Theorem 3, i.e. ∀vi ∈ Vd, vi is redundant. The

algorithm then decomposes these redundant components to a
unit basis {V (i)

j | rji 6= 0} in Line 4-11. According to Theo-
rem 3, V ′ after each iteration is equivalent to the original net-
work view V . Finally we invoke EQUIVAGGREGATION(V ′)
to aggregate the V i

j with the same RT
i , which is also proved

to maintain the equivalence condition as in Theorem 2. Thus,
Algorithm 2 returns the equivalent network view.

For each iteration, the decomposition takes O(n) time to
check the condition in Line 8 and O(ns) to construct the
corresponding basis. The algorithm would at most have m
iterations so the total execution time for decomposition is
O(mns) and the total execution time with EQUIVAGGREGA-
TION is O(mn(s+ t)).

Different algorithms exist to find the decomposable com-
ponents, based on Theorem 3. For example, one can find
all elements with non-redundant linear constraints, which is
a well-studied problem, and get the decomposable set by
calculating its inverse.

C. Privacy preservation

The equivalent aggregation and equivalent decomposition
are equal to matrix factorization. While the consumer can
only infer the network elements which cannot be decomposed
without jeopardizing feasibility or optimality, it is impossible
to infer the complete original network state without knowing
the exact value of the transform matrix. Thus, Algorithm 2 can
improve the privacy preservation and reduce information leak.
It is noticeable that compared with some other optimization
frameworks, NOVA does not require consumers to specify
private information, e.g. private constraints and objective func-
tions, which also protects the privacy of the consumers.

V. EVALUATION

In this section, we evaluate NOVA to demonstrate its effi-
ciency and efficacy in providing accurate on-demand network
views in comparison to some other abstraction models.

Algorithm 2: NOVA Equivalent Element Decomposition
Input: V (R,P ,A,Q), F
Output: V ′(R′,P ′,A′,Q′)

1 Function EQUIVDECOMPOSITION(V, F)
2 Vd ← FINDEQUIVDECOMPOSABLE(V)
3 V ′ ← V
4 foreach Vj ∈ Vd do
5 S ← ∅
6 foreach fi ∈ F do

7 RT
i ←

0, . . . , 0︸ ︷︷ ︸
i−1

, rji, 0, . . .

8 if rij = 1 then
9 V

(i)
j ←

(
RT

i ,Pj i, ∅, ∅
)

10 S ← S ∪
{
V

(i)
j

}
11 V ′ ← (V ′ \ Vj) ∪ {S}
12 V ′ ← EQUIVAGGREGATION(V ′)
13 return V ′

6

A. Methodology

Performance metrics. We evaluate the performance of NOVA
using the following metrics:
• Optimality and feasibility: To demonstrate optimality and

feasibility, we generate random linear objective functions
maximizing the weighted throughput [22] to demonstrate
its generality and compare the results.

• Communication overhead reduction: We measure the com-
munication overhead by the number of (flow, element) pairs
contained in an network view so that smaller numbers
represents better reduction.

• Privacy preservation: We measure the privacy preservation
by the ratio of network elements in the original network
view that still appear in the abstract network view. Smaller
numbers represents less information leak and better privacy.
As being said in Section IV-C, the non-redundant network
elements cannot be reduced, we specifically evaluate the
preservation of redundant elements.

• Computation overhead: We measure the computation over-
head by the execution time of the abstraction process so
that smaller numbers represents better performance.

Topology. Three topologies are used in this evaluation: Kdl
(752 nodes, 1790 links), AS4755 (531 nodes, 1428 links) and
AS2914 (10820 nodes, 32844 links) from two data sets: the
topology zoo [23] and rocketfuel [24]. If the topology already
has bandwidth information, we use it directly. Otherwise,
we generate stepped values for links from edge to core.
We allocate the routingcost randomly following the standard
distribution around the reciprocal of bandwidth multiplied by
a given constant to avoid precision issues.

Redundancy check algorithms. We use two redundancy
check algorithms in our evaluation. The first, denoted as
strict redundancy check, follows Definition 3 and can find the
minimal set of non-redundant linear constraints. The second,
denoted as relaxed, identifies redundancy by randomly select-
ing basis and comparing the bound with the sum of the basis
and may lead to false negative in identifying redundancies.

Flow requests. We use two traffic patterns: few-to-many (ftm)
and many-to-many (mtm). The first represents the server-
client traffic pattern while the second represents the peer-to-
peer traffic pattern. For each pattern, we have 9 groups with
different number of flows and for each group we randomly
generate 3 flow requests for each topology. The flow requests
are computed with bandwidth-only (bw), routingcost-only (rc)
and hybrid (two variants hybrid-1 and hybrid-2) respectively.
For bandwidth-only requests, we use the strict redundancy
check. The other requests uses Algorithm 2 with different
redundancy check algorithms: no check for routingcost-only,
strict redundancy check for hybrid-1 and relaxed redundancy
check for hybrid-2 to demonstrate the effect of how redun-
dancy check algorithms on the performance of NOVA.

Environment and data collection. The prototype system is
built with Python and uses the PuLP framework and COIN
Branch and Cut (CBC) solver to solve linear programming.

(a) Kdl, ftm, normalized. (b) Kdl, mtm, normalized. (c) 2914, mtm, normalized.

Fig. 2: Normalized Maximum Weighted Throughput.

The evaluations are conducted on a laptop with Linux kernel
4.9.6, 4 quad-core Intel(R) Core(TM) i7-4700MQ @2.40GHz
CPU and 16 GB memory. For each topology, we generate
three different routing cost distributions and three different
flow requests of the same flow size. The data are collected
from the same execution.

B. Optimality and feasibility

The normalized results for using different views to solve
the same random linear programming problems are compared
with the original network view (raw) and the one-big-switch
(obs). Since queries with only routing cost would not generate
any linear constraints, it is omitted in this evaluation.

As demonstrated in Figure 2, we can see that NOVA
always achieves the same optimal solution as with the original
network view while the one-big-switch abstraction results in
infeasible solutions. The reason is that one-big-switch abstrac-
tion does not identify the bottleneck links inside the network.

C. Privacy preservation

To demonstrate how much information consumers can learn
about the original network, we use the number of preserved
links to measure privacy preservation as specified in Sec-
tion V-A. As demonstrated in Figure 3, we can see that despite
the non-redundant links which cannot be hidden without jeop-
ardizing equivalence, NOVA with strict redundancy checks can
hide almost all the redundant links.

We have identified three effective factors on the privacy
preservation of NOVA: 1) the redundancy check criterion, 2)
flow patterns, and 3) the number of flows.

As demonstrated in Figure 3, we can see that the effect of
privacy preservation is mostly determined by the redundancy
check algorithm. In both traffic patterns, hybrid-1 using strict
redundancy check preserves very few links in the abstract
network view (less than 10% in all three topologies) that it
almost overlaps with the theoretical optimal ratio denoted by
the bandwidth-only, while hybrid-2 generally preserves more
redundant links. The reason is that the relaxed redundancy
check used in hybrid-2 has false negative results and those
redundant links are not decomposed.

Traffic patterns have slightly less impact on the privacy
preservation but we can still observe that for traffic with the
few-to-many pattern, more links are preserved by hybrid-2.
This is because in the few-to-many traffic pattern, the flows
sharing a link on the “many” side would diverge to different
paths and have no further correlation. Thus, even the link is

7

(a) few-to-many, normalized. (b) many-to-many, normalized.

(c) Kdl, many-to-many, absolute. (d) Kdl, many-to-many, absolute.

Fig. 3: Preserved links in abstract network view.

unlikely to become the bottleneck, it still cannot be identified
by simple redundancy check algorithms.

The number of flows would affect the privacy preservation,
as demonstrated in Figure 3c and Figure 3d. It is intuitive since
more flows can generate more combinations of correlation,
and reveal more information about the network. However,
even with relatively large flow requests (more than 2500
flows), NOVA can protect as much as 60% of the original
sliced network view in both traffic patterns using the strict
redundancy check. It is also worth pointing out that when the
request only contains flow-independent metrics, NOVA will
fall back to the end-to-end abstraction.

D. Communication overhead reduction.

As analyzed in Section IV-A and Section IV-B, while NOVA
guarantees feasibility, optimality and protects privacy, it can
also reduce the communication overhead. The communication
overhead is measured by the number of (flow, element) pairs in
the network view, and the results are normalized by the value
of the original network view. As demonstrated in Figure 4,
we can see that depending on the effective factors, NOVA can
shrink the communication overhead by a factor of 1.25 to 5.

We can see that the communication overhead reduction is
affected by the same effective factors – the redundancy check
algorithm, the traffic pattern and the number of flows – in
a similar way as privacy preservation. The reason is that the
communication overhead is mostly reduced by aggregating and
decomposing redundant links. As the ratio of non-redundant
links grows, the reduction is less obvious.

We can see that the theoretical lower bound (result of
bandwidth-only) of communication overhead reduction is
larger than that of privacy preservation. The reason is that
most bottlenecks are usually shared by more flows, so the

(a) 2914, few-to-many, normalized. (b) Kdl, few-to-many, normalized.

(c) 2914, many-to-many, normalized. (d) Kdl, many-to-many, normalized.

Fig. 4: Communication overhead reduction.

average number of flows on the preserved links is larger than
the average in the whole slice. The gap between hybrid-1 and
bandwidth-only in communication overhead reduction is larger
than that in privacy preservation, because flows are sent to
multiple receivers from a host so links containing a single
flow will not affect the privacy but still has an impact on the
communication overhead.

E. Computation overhead

As we can see from Figure 5, the most time-consuming part
of our evaluation is to find the minimal non-redundant linear
constraints, which is a well-studied problem in optimization
theory and network providers can reduce this cost significantly
by introducing more efficient algorithms. Even our naive so-
lution can return an equivalent network view within 5 seconds
for up to 400 flows in a large network (AS2914), which is
often fast enough for many network optimization problems.

Meanwhile, the equivalent decomposition (represented as
hybrid-1 in Figure 5) is very efficient, which takes less than
250ms even for the largest test case with 3200 flows and a
network with more than 10000 nodes (AS2914). The relaxed
redundancy check algorithm takes approximately 1 second,
which makes it useful in certain scenarios.

F. Summary

In this section, we evaluate the performance of NOVA
thoroughly. We demonstrate that one-big-switch can lead to
infeasible solutions while NOVA guarantees both feasibility
and optimality, which enables consumers to fully utilize the
network resources. Privacy is achieved by decomposing the
redundant network elements. With strict redundancy check
algorithms, we can reduce 60% to nearly 100% of unnecessary
information leaks. Depending on the number of flow requests
and traffic pattern, NOVA can improve the communication

8

(a) 2914, few-to-many. (b) 2914, many-to-many.

Fig. 5: Computation overhead.

time by a factor of 1.25 to 5. The computation overhead is
within a reasonable range for typical uses where elephant
flows usually takes tens to hundreds of seconds to finish. Thus,
NOVA is useful for network providers to achieve collaborative
optimization with non-administrative parties to build QoS-
aware applications.

VI. RELATED WORK

A. Demands for network views

The demands for being network-aware are quite common.
For services built on top of the Internet, user experience
depends heavily on the quality of networking service [25].
Previous studies [26] have already shown that obtaining end-
to-end metrics can significantly improve the user experience
of peer-to-peer services and content delivery networks.

Meanwhile, several studies (e.g., [27]–[29]) have also ad-
dressed the need to conduct flow scheduling over the network,
suggesting the importance of obtaining the correlations be-
tween different data transfers. Such demands are usually asso-
ciated with traffic with large volumes, such as inter-data center
communication, e.g, Google’s globally-deployed B4 [15] sys-
tem and global data intensive science networks [18]. Feeding
these applications with more accurate network information
allows them to make more intelligent operating decisions.

Another example where being aware of the network per-
formance can be beneficial is fine-grained routing. Latest
approaches such as the Software Defined Internet Exchange
point (SDX) [30] have enabled Autonomous Systems to set
up fine-grained forwarding rules. With the ability to query the
expected network performance, an AS would be able to make
routing decisions based not only on the cost, but also on the
real-time quality of service. Meanwhile, such information can
also be provided to QoS-based routing protocols [19], [20].

SOL [31] and CoFlow [27] are SDN-based network opti-
mization frameworks which provide abstractions to simplify
the modeling of network optimization problems. However, it
would require the optimizer to provide all the information to
the network, which jeopardizes the privacy. General collabo-
rative optimization [32]–[34] typically protects the privacy by
multiplying a monomial matrix. NOVA enables collaborative
optimization by providing the network views to the optimizer,
while conducting equivalent transformations to reduce the
communication overhead as well as protect the privacy.

B. Providing network view

The most straight-forward way of providing network views
is to use its graph representation. Several routing protocols
[8]–[11] including OSPF and IS-IS conceptually provide such
an abstraction of the network and it is also adopted by the
I2RS (Interface to Routing System) IETF Working group [35].
Modern SDN controllers [1]–[4] also provide the global view
using the annotated graph model.

The hose model [6] is first introduced for VPN provisioning
in 1999. Each endpoint is associated with a hose in this model
and the details of the actual VPN tunnels are hidden. It is
sometimes referred to as the one-big-switch in the context of
SDN because the network is abstracted as a single logical
switch in this model. Because of its simplicity, the hose model
is widely used, for example, by many network programming
languages [36], [37]. SDX also uses this model to encapsulate
the underlying network topology. Data center fabrics are
highly customized for scalability [7] and can be modeled as a
non-blocking switch where congestion only occurs on access
links [14], thus, the one-big-switch abstraction is also widely
used for data center flow scheduling and tenant resource
provisioning [27]–[29].

The pipe model is mostly used by web-based applications
or measurement frameworks, which have no control over the
network. The pipe model consists of several flows (host pairs)
and provides a single pipe for each flow (pair) with the associ-
ated metrics. PerfSONAR [38], Meridian[39] and ClosestNode
[40] are some concrete examples which provide such end-to-
end network views based on measurement, while P4P [26] and
the ALTO (Application-Layer Traffic Optimization) protocol
[12] are leveraging the network providers’ information.

NOVA is similar to ALTO in the sense that in both cases
information is provided by the network to non-administrative
consumers, which is likely to achieve better accuracy. Mean-
while, we overcome the limitations of ALTO by adopting
the equivalence abstraction to provide fine-grained metrics,
in particular the flow correlations, which makes it possible to
suffice the demands from a broader range of applications. This
underlying philosophy also distinguishes NOVA from other
(especially QoS related) routing protocols and network views
based on topological aggregation [10].

VII. CONCLUSION

In this paper, we systematically study the problem of
providing an accurate on-demand network view which is
general enough to suffice the requirement of heterogeneous
optimization problems. Our abstraction is based on the prin-
ciple of equivalence which guarantees generality, feasibility
and optimality. We design the NOVA framework to construct
equivalent network views with enhanced privacy preservation
and evaluate its performance compared with some well-known
network view abstractions. While we have established the the-
oretical foundations and guidelines of constructing on-demand
network optimization view abstractions, essential functionali-
ties such as communication protocols, easy-to-use API design
and commercial models are still not fully discovered. We plan

9

to explore these missing functionalities in the future, along
with the implementation and deployment in real networks.

VIII. ACKNOWLEDGMENT

The authors would like to thank Chen Gu, Jingxuan Zhang,
Shenshen Chen, Xiao Lin, Haoran Wang and Haizhou Du for
their help during the preparation of the paper. We would also
like to thank the reviewers for their valuable feedback.

This research is sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

This work is also supported by the National Science Foun-
dation (CC-IIE 1440745) and the National Natural Science
Foundation of China (No. 61472213 and No. 61502267).

REFERENCES

[1] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: towards an operating system for networks,” vol. 38,
no. 3, pp. 105–110.

[2] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and others, “Onix: A
distributed control platform for large-scale production networks.” in
OSDI, vol. 10, pp. 1–6.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14, pp. 1–6.

[4] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven SDN controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014.

[5] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4).”
[6] P. Mishra, K. K. Ramakrishnan, and J. E. van der Merwe, “A flexible

model for resource management in virtual private networks,” in Proc.
of ACM SIGCOMM.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data
center network,” in ACM SIGCOMM computer communication review,
vol. 39, pp. 51–62.

[8] J. Moy, “OSPF version 2.”
[9] D. Oran, “OSI IS-IS intra-domain routing protocol.”

[10] T. Vu, A. Baid, H. Nguyen, and D. Raychaudhuri, “EIR: Edge-aware
interdomain routing protocol for the future mobile internet.”

[11] W. C. Lee, “Topology aggregation for hierarchical routing in ATM
networks,” vol. 25, no. 2, pp. 82–92.

[12] R. Alimi, Y. Yang, and R. Penno, “Application-layer traffic optimization
(ALTO) protocol.”

[13] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analysis of
topology aggregation techniques for QoS routing,” vol. 39, no. 3, p. 7.

[14] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O. Guedes,
“Gatekeeper: Supporting bandwidth guarantees for multi-tenant data-
center networks.” in WIOV.

[15] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, and others, “B4: Experience
with a globally-deployed software defined WAN,” in Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM, pp. 3–14.

[16] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, and others,
“BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing,” in ACM SIGCOMM Computer Communication Review,
vol. 45, pp. 1–14.

[17] H. Xu and B. Li, “Joint request mapping and response routing for geo-
distributed cloud services,” in INFOCOM, 2013 Proceedings IEEE, pp.
854–862.

[18] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The science
DMZ: A network design pattern for data-intensive science,” vol. 22,
no. 2, pp. 173–185.

[19] J. L. Sobrinho, “Algebra and algorithms for QoS path computation and
hop-by-hop routing in the internet,” vol. 10, no. 4, pp. 541–550.

[20] H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “Algebra and
algorithms for efficient and correct multipath QoS routing in link state
networks,” in Quality of Service (IWQoS), 2015 IEEE 23rd International
Symposium on, pp. 261–266.

[21] J. Telgen, “Identifying redundant constraints and implicit equalities in
systems of linear constraints,” vol. 29, no. 10, pp. 1209–1222.

[22] Y. Bartal, F. Y. Chin, M. Chrobak, S. P. Fung, W. Jawor, R. Lavi, J. Sgall,
and T. Tich, “Online competitive algorithms for maximizing weighted
throughput of unit jobs,” in Annual Symposium on Theoretical Aspects
of Computer Science, pp. 187–198.

[23] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” vol. 29, no. 9, pp. 1765–1775.

[24] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” vol. 12, no. 1, pp. 2–16.

[25] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of ex-
perience of HTTP video streaming,” in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on, pp. 485–492.

[26] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz,
“P4p: Provider portal for applications,” vol. 38, no. 4, pp. 351–362.

[27] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, pp. 31–36.

[28] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, pp. 19–19.

[29] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
ACM SIGCOMM Computer Communication Review, vol. 43, pp. 435–
446.

[30] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A software defined internet exchange,” vol. 44, no. 4, pp. 551–
562.

[31] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using SOL,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pp. 223–
237.

[32] Y. Hong, “Privacy-preserving collaborative optimization.”
[33] J. Vaidya, “Privacy-preserving linear programming,” in Proceedings of

the 2009 ACM symposium on Applied Computing, pp. 2002–2007.
[34] J. Li and M. J. Atallah, “Secure and private collaborative linear pro-

gramming,” in Collaborative Computing: Networking, Applications and
Worksharing, 2006. CollaborateCom 2006. International Conference on,
pp. 1–8.

[35] J. Medved, N. Bahadur, H. Ananthakrishnan, X. Liu, R. Varga, and
A. Clemm, “A data model for network topologies.”

[36] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, and others,
“Composing software defined networks.” in NSDI, pp. 1–13.

[37] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
simplifying SDN programming using algorithmic policies,” in ACM
SIGCOMM Computer Communication Review, vol. 43, pp. 87–98.

[38] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti,
R. Lapacz, D. M. Swany, S. Trocha, and J. Zurawski, “PerfSONAR:
A service oriented architecture for multi-domain network monitoring,”
in International Conference on Service-Oriented Computing, pp. 241–
254.

[39] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight net-
work location service without virtual coordinates,” in ACM SIGCOMM
Computer Communication Review, vol. 35, pp. 85–96.

[40] B. Wong and E. G. Sirer, “ClosestNode.com: an open access, scalable,
shared geocast service for distributed systems,” vol. 40, no. 1, pp. 62–64.

10

SFP: Toward a Scalable, Efficient, Stable Protocol
for Federation of Software Defined Networks

Franck Le∗ Christopher Leet‡ Christian Makaya∗ Miguel Rio† Xin Wang+‡ Y. Richard Yang+‡

IBM∗ Tongji+ UCL† Yale‡

Abstract—As more networks deploy software defined network-
ing (SDN) to take advantage of its benefits, including logically
centralized, more flexible network-control programming, the
inter-connection of such SDN-based networks has become a ma-
jor remaining challenge. Traditional interconnection approaches
such as BGP are designed for less flexible networks and hence
can have serious efficiency, scalablity and stability issues such
as the compact policy program instantiation (CPPI) issue. In
this paper, we define the requirements of the inter-connection
of SDN networks and propose a novel protocol, called the
SDN Federation Protocol (SFP), to achieve scalable, efficient,
and stable interconnection of SDN networks. Instead of being
a traditional push protocol such as BGP, SFP adopts a novel
pub-sub model to substantially increase flexibility, efficiency and
scalability. Going beyond only packet handling, SFP introduces
flexible network information spaces, such as the packet space
and the flowset space, to achieve more efficient, autonomous fed-
eration of network resources spanning across multiple networks.

Keywords: SDN, interdomain, BGP, SFP

I. INTRODUCTION

A major recent development in computer networking is the
introduction of software defined networking (SDN), which
allows a network to define its behaviors through centralized
policies at a conceptually centralized network controller. With
the emergence of key components including (1) south-bound
datapath models (e.g., Openflow [1], P4 [2]), (2) high-level
programming models (e.g., Frenetic [3], Maple [4]), (3) north-
bound application interfaces (e.g., IETF supa), and (4) emerg-
ing killer SDN applications (e.g., B4 [5]), SDN has made
significant progress in realizing the vision that a network can
be effectively controlled using a simple, centralized control-
plane program with a global view.

As individual networks start to deploy SDN, it is a natural
next step to interconnect such SDN networks. Although there
are many settings where fully localized, transparent deploy-
ment of SDN is enough to reap the benefits of SDN (e.g.,
edge domains [6]), there are also many settings where the in-
terconnection of individually administrated SDN networks can
be beneficial, for example, in expanded reachability settings,
where one network needs to reach entities hosted in another
network, and in pooled resources settings, where multiple
networks benefit from resources made available from each
other, as long as the sharing conforms to their local policy
programs. In the rest of this paper, when we refer to an SDN
network, we mean an individually administrated network. We
refer to the interconnection of individually administrated SDN

networks as realizing the federation of involved SDN networks
or SDN federation for short.

Achieving SDN federation can be challenging, and hence
existing work (e.g., SDX [7], SD-WAN) focuses on limited
settings. Since some might think that one can still use tra-
ditional interdomain protocols to achieve SDN federation,
consider the issues when applying BGP, the well-developed,
de facto interdomain protocol of the Internet, to achieve SDN
federation. Unfortunately, applying BGP to SDN federation
can have at least two basic mismatches, and both can result in
substantial efficiency and scalability issues. First, designed in a
traditional networking setting using only destination-IP based
routing, BGP uses a single-dimension (i.e., the destination-
IP dimension) routing information model. An SDN network,
however, can conduct highly flexible, multi-dimension routing,
based on a large number of decision dimensions, including
not only destination IP, but also source IP, protocol, and port
numbers. Naive conversion of multi-dimension SDN decisions
to the BGP single-dimension information model can lead
to dimension cross-product explosions, resulting in serious
scalability issues. Second, designed in a traditional networking
setting with limited programmability, BGP is fundamentally
a full instantiation information-exchange protocol, in that the
program decisions at each network need to be fully instantiated
as data (i.e., BGP routing information base) and then ex-
changed among networks. The extremely large decision space
of SDN, and in particular, the two-layer SDN decision model,
where the routing information base layer is only a cache of the
SDN program layer, can make full instantiation unfeasible.

The objective of this paper is to conduct a systematic inves-
tigation and design of SDN federation. Instead of adopting an
incremental approach of adapting an existing design such as
BGP, we conduct a clean design of SDN federation, to address
fundamental challenges introduced by SDN, including multi-
dimension decision, two-layer SDN decision.

It turns out that the aforementioned challenges can be
addressed using simple, extensible techniques, which we in-
troduce as key components of a novel protocol called the
SDN federation protocol (SFP). Specifically, to avoid full
instantiation, SFP uses a simple, novel pub-sub model to
constrain the space where program behaviors are converted
into data to be exchanged; to avoid dimension cross-product
explosion, SFP introduces novel, information instantiation
graph; going beyond only packet handling, SFP introduces
flexible network information spaces, such as the flowset space,
to achieve more efficient, autonomous federation of network

resources spanning across multiple networks.
The rest of this paper is organized as follows. Section II

gives the requirements of SFP. Section III evaluates related
work and lists the issues of existing work. Sections IV is the
main technical section and gives the SFP design. Section V
gives future research directions to conclude the paper.

II. DESIGN REQUIREMENTS

We list the following requirements for a SDN federation
protocol:

• Efficiency of resource integration across networks: The
protocol should be low overhead, and scalable. The
scalability requirement applies to memory, network, and
compute resources. For memory resources, for example,
under the BGP paradigm, an AS advertises all of its
routes to its neighbors, even if a neighbor may have no
interest nor traffic to specific destinations. In contrast,
a different communication model may have domains
subscribe to specific header spaces they are interested
in, and only receive information (including updates)
associated with those header spaces. For network
resources, the protocol should make efficient usage of
the bandwidth across domains. Finally, for compute
resources, a domain must be able to reply to a neighbor’s
query within a reasonable time period.

• Autonomy: There is a trade-off between autonomy
and stability: When every node implements the same
algorithm, stability can more easily be guaranteed (e.g.,
shortest path routing). However, this model is rigid,
and does not allow each domain to implement its own
policy. Conversely, in a system where each domain
can implement its own policy, policies from different
domains may conflict and result in instabilities [8]. The
protocol should offer a large degree of autonomy to
its domains while still guaranteeing the stability of the
system.

• Privacy: Although a first domain may send multiple
queries to a second domain, the first domain should
not be able to learn information that the second domain
considers sensitive and chooses not to reveal to the first
domain.

III. RELATED WORK

With the preceding requirements, we now evaluate related
work. Since SDN was initially developed for single admin-
istrative domains (e.g., enterprise, datacenter) [6], i.e., intra-
domain management and control, only recently are there a
number of proposals to extend the benefits of SDN across
domains (e.g., [7], [9]–[13]). Many of these proposals adopt
an incremental approach and suggest extending, or defining
a new protocol similar to, BGP – the current de-facto inter-
domain routing protocol – to carry additional information [9],
[11], [12]. However, extending BGP to support SDN does not

satisfy all of the requirements in Section II. In particular, using
BGP presents the following issues:

Cross-product explosion: One of the main benefits of SDN
is the support for highly flexible, multi-dimension routing,
based on a large number of decision dimensions, including
IP addresses, protocol, and port numbers. In contrast, BGP
uses only the destination IP as the routing decision. Simply
extending the single dimension (i.e., destination IP) of BGP
to multiple dimensions can lead to dimension cross-product
explosions, and scalability issues. For example, routing for N
destinations taking into account up the source IP addresses
and destination ports may require up to N x M x P entries,
with M representing the number of source IP addresses, and
P the number of destination ports.

Full instantiation: BGP is a full instantiation information-
exchange protocol. It requires every Autonomous System to
compute and advertise the best route for every destination a
priori. SDN has a much larger decision space, and adopting
this model where every network computes and exchanges its
decisions for every set of flows a priori may be infeasible.

Domain backup: Networks may require reachability despite
link failures, router failures, and network partitions, as long
as a physical path to the destination exists. However, BGP
does not support domain backup and prevents paths hav-
ing traversed a given Autonomous System from being re-
injected into that same Autonomous System. Despite it being
a design decision, opertional networks may require domain
bcakup [14], [15].

Multi-flows handling: Policies in SDN networks not only
control the reachability of flows but also manage resource al-
locations (e.g., bandwidth) of flows which are not independent
from each other. Hence, multi-flow resource querying is more
complicated than a single flow due to sharing links, concur-
rency of flows, and internal sensitive information preservation
which is not considered in BGP model.

Although protocols beyond BGP have been proposed, they
cannot satisfy the requirements in Section II.

Specifically, a main interdomain protocol for SDN is
SDX [7], which enables more expressive policies than con-
ventional hop-by-hop, destination-based forwarding without
requiring extensions to BGP. However, SDX relies on a
Route Server deployed at Internet Exchange Point (IXP).
Autonomous Systems write their policies to the Route Server,
and only Autonomous Systems participating at the IXP can
therefore benefit from it. In contrast, our requirements include
that it is not restricted to Autonomous Systems present at
specific IXPs. In addition, our requirements include resource
integration to provide resource information (e.g., available
bandwidth) across networks. IXP cannot satisfy this require-
ment.

On the standardization side there has been some limited
efforts to standardize interfaces between SDN controllers in
different domains. SDNi [9] defines 3 elements: an SDN
aggregator to aggregate intra-domain information, a RestAPI

Data Path

DP rules,
e.g. OF, P4states

PB

commands abstraction

App

Network B
North
bound
view

South
bound
view

Network A

East-
West
bound
view

Fig. 1. The unifying model-views framework.

to obtain information from other domains and SDNi wrapper
to share information from federated controllers.

Bueno et al. propose the Network Control Layer
(NCL) [16], a software framework solution based on SDN,
OpenFlow and Network as a Service (NaaS) paradigms.
Petropoulos et al. [17] propose a way of coordinating Quality
of Service (QoS) across different domains. They do not
address all of the requirements in Section II.

IV. SFP DESIGN

We now present the design of SFP. We start with an
overview of the basic structure of SFP in Section IV.A. We
then present in Section IV.B a key component of SFP, the SFP
packet space view.

A. Overview

The model-views context: Considering SDN as a core con-
cept, we design SFP in the context of a unified model-views
framework, where the logically centralized control program
PA of network A defines the core model. To be concrete, we
show an example PA:
f(Packet pkt):

if (pkt.tcpSrcPort != 80)

return drop

else

srcClass = map_policy(pkt.Ipv4Src)

return shortestPath(srcClass, pkt.Ipv4Dst)

It is from this model that multiple views are derived, where
the views include the north bound (NB), which is the interface
of the network to applications using the network; the south
bound (SB), which is the realization from the control plane
to the data plane; and the east-west bound (EWB), which
is the interface between peering networks and hence is the
focus of this paper. See Fig. 1 for illustration of this unifying
framework. Adopting a unified model-views framework leads
to multiple benefits, including automation (as views should be
derivable from the model), sharing of common functions when
computing multiple views, and consistency (among views, as
implied from their consistency to the model).

Each view is different because it has different targets; for
example SB is for switches and EWB is for peering networks.
Although the focus of this paper is SFP, which provides the
EWB view, since a reader may be more familiar with the SB
view, we compare the EWB view with the SB view in Table I,
to allow the reader better appreciate the SFP design.

Southbound East-west Bound
Switch places physical
constraints on SB, as SB
must conform to switch
computing models such as
OpenFlow, and no loop in
routing pipeline

No such constraints, but
preferable to be similar to
existing concepts such as
BGP

No privacy concerns Privacy concerns
Must compile into
distributed devices

No such constraint

Controller can process
packets (only partial
compilation required)

Program must be fully
compiled and transmitted

TABLE I
EWB VS SB PIPELINE COMPARISON.

EWB spaces: In a high level, what a network B provides to
another network A is how PB will handle each packet that A
is interested in. In the basic level, PB processes each packet
independently. Hence, the basic information that B needs is
how each packet in a packet space is handled. As networks
provide more services such as QoS and security services, PB

classifies packets into flows. Since the processing of flows can
be correlated, in particular, in resource sharing case, we say
that A may request information for a set of flows. We refer
to this as the flowset space, where each point in the space is
a set of flows.

In the general case, to better organize information, the EWB
view consists of multiple spaces, with two predefined spaces:
the packet space and the flowset space.

Basic SFP message flow: With the basic concepts of EWB
spaces, we specify the basic SFP message flow, as illustrated
in Fig. 2. It is a sub/pub protocol, where a network A
sends a sequence of subscription interests to network B.
Each subscription is for a subspace of an EWB space that
B supports.

Network A Network B
Sub: Space, metrics

Pub: Space → metrics

Fig. 2. Basic SFP message flow.

Network A can make multiple subscriptions, for example,
with the first for the packet space to obtain reachability for a
subset of IP destination addresses and then a set of flows that
A plans to schedule. A then can send a sequence of flowset
space subscriptions to understand the resource constraints for
each flowset.

Example 1: A first sends a packet space subscription to B,
and then B replies all packets that it can route:

A->B subscription:

packet space: all packets

metric: reachability

B-> reply:

reachable subsets for each individual packet

As simple as Example 1 is, it shows that SFP can take BGP
as a special case.
Example 2: A may be a organization with a set of flows that
it can schedule. Then, we sends a flowset consisting of two
flows, each defined by a standard OpenFlow 5-tuple:
A->B subscription:

flowset space: A single flowset point consisting of two flows;

metric: available bw

B->A reply: feasible region for the flowset

(e.g., x1 <= 10; x2 <= 5; x1+x2 <= 7)

As simple as Example 2 is, it is provides resource con-
straints that are lacking in previous designs.

B. SFP Packet Space View

The preceding section defines the basic message flow. How
the messages are computed and encoded are not specified.
Although how messages are computed do not need to be
standardized, message encoding need to be standardized for
interoperability. In this section, we discuss both message
computing and encoding for the packet space, which is the
most fundamental space of the EWB.
Problem definition: We define the message computing and
encoding problem of the packet space as the following com-
pact policy program instantiation (CPPI) problem: given a
program P which takes a point in packet space and returns a
routing decision for that point’s packets, and a queried subset
of packet space, Q, what is the most compact instantiation of
P ’s behavior over Q?

Such an instantiation can be used as a RIB to communi-
cate an network’s controller’s program to other networks in
response to queries. For this instantiation to be practical in
production networks, however, it must also meet the following
requirements.

• Correctness: P must be represented accurately.
• Updatability: Changes to P must be communicated with-

out complete retransmission.
• Mergability: P ’s encoding must allow other networks to

merge information into its RIB.
• Obfuscation: P ’s encoding should not reveal unqueried

information about P , preserving P ’s privacy.

Solution architecture: The SFP packet space protocol at-
tempts to solve the compact policy program instantiation
problem while ensuring correctness, updatability, mergability
and obfuscation by encoding P ’s behavior over subsets of
packet space as pipeline table formatted RIBs. We present the
protocol’s architecture in Fig. 3.

Consider two networks, controlled by Controller A and
Controller B, running SFP. Upon start up, SFP obtains its
controller’s routing programs PA and PB and compiles each
program into a flow table pipeline, which is updated should
its program or the data it was compiled with change.

Suppose that A sends B a packet space query. Upon receipt,
B passes the query to its SFP app, which selects the subset
of the query it is willing to respond to, selects the flow table
rules in its pipeline queried by this subset, and formats these
rules into a RIB. This RIB is then obfuscated to hide any

Controller B

Controller A
Query, Reply

Program

Pipeline tables

Compile, Update

RIB

Obfuscated RIB

Select, Format

Obfuscate
Reply

Query, Register
subscription

SFP header space
encoding app

Fig. 3. packet space encoding architecture.

information that it contains in excess of the query’s scope,
and passed back to B, which sends it out as a reply to A.

Having given an overview of SFP’s packet space encoding
architecture, we now examine each of the architecture’s three
stages in more detail.

Program compilation and update: Program compilation is
the transformation of a generic program, expressed in a high
level language, into a pipeline of flow tables. Programs are
compiled into flow tables because flow tables allow efficient
querying and require little additional processing to be trans-
mitted efficiently. Compilation occurs “only-once”, offline,
avoiding the burden of per request program compilation and
removing a potentially lengthy computation from the runtime
environment.

We present the compiler’s architecture in Fig. 4. First SFP
compiles the program into a per instruction table (PIT) pipeline
using two synergistic techniques: Symbolic map and Flow
Explore. Subsequently, SFP compresses the PIT pipeline into
a more compact representation via a third technique, Deep
Expansion.

Program PIT Pipeline Compressed Pipeline

Symbolic Map, FlowExplore Deep Expansion

Fig. 4. Program to pipeline compiler architecture.

Per Instruction Table (PIT) pipelines: The key insight
underlying the per instruction table (PIT) pipeline is that any
program instruction I can be converted into a flow table which
matches on I’s argument’s bindings and whose actions reflect
I’s execution on a given binding.

For example, consider the instruction I-example: if
(pkt.dstPort < 1024). We can transparently replace
I-example with the table I-example-PIT.
I-example-PIT: I-symbolic-mapped:

pri dstPort Action pri dstPort Action

--- ------- --------------- --- ----------- ---------------

1 1 goto if block 1 10000000000 goto if block

1 2 1xxxxxxxxxx goto else block

1 2014 goto if block 3 xxxxxxxxxxx goto if block

1 2015 goto else block

1

Symbolic map: While we can encode any I as a PIT
by enumerating all the values in that I’s domain, network
programs often reference variables whose domain is too large
to practically enumerate - an IPv6 address, for example, can

take 2128 distinct values. Fortunately, certain common types
of Is have succinct PIT encodings. Such Is, specifically
comparisons, conditionals, lookup tables, memory reads and
switch function invocations (e.g. checksum) are referred to as
symbolic mappable, and their encoding as symbolic mapping.
I-example, for instance, can be symbolically mapped to the
table I-symbolic-mapped.

The first step to converting generic programs written in
high level languages to PIT pipelines is thus passing over
the program, identifying symbolic mappable Is and symbolic
mapping them.
Flow-Explore: To complete the transformation of a program
into a PIT pipeline we must encode the remaining non-
symbolic mappable instructions. Such encoding is accom-
plished by exploring all possible execution paths through the
program and adding the results of encoding some I during
exploration to that I’s flow table, a process referred to as
Flow-Explore.
Deep Expansion: While a PIT pipeline is a valid flow table
representation of a program, it is often possible to compress
it by merging PITs, conserving transmission bandwidth. Our
compression transformation Deep Expansion uses heuristics
such as shared header fields to identify and combine mergable
PITs.
Selecting, formatting, and subscribing queried rules: Upon
receiving a query, SFP selects the subset of the query it is
willing to respond to Q and then selects the rules in its
program’s pipeline tables queried by Q. Such selection is ac-
complished simply by recursively exploring each path through
the pipeline, marking each rule for transmission whose match
fields correspond either to values within Q or to intermediate
values set earlier in the path currently being explored, and
terminating the exploration of any path whose rules’ match
fields correspond to neither value.

After exploration, the rules marked for transmission are used
to construct a reduced pipeline which only matches on values
within Q. This pipeline constitutes SFP’s pipeline formatted
RIB, and is conceptually ready for transfer through SFP’s
controller’s EWB interface.

As an example, consider formulating a RIB in re-
sponse to the query {dstAddr = (130.91.6.0/30,
18.0.0.0/8), dstPort = x} from the single table
pipeline example-pipeline. Rules with their dstAddr
in the 130.91.6.0/30 block and the default drop rule
fall within the queried packet space and are selected for
transmission, generating the RIB example-RIB.
example-pipeline: example-RIB:

dstAddr dstPort action dstAddr dstPort action

------------- ------- ------ ------------- ------- ------

130.91.6.0/32 < 1024 out(1) 130.91.6.0/32 < 1024 out(1)

130.91.6.1/32 < 1024 out(2) 130.91.6.1/32 < 1024 out(2)

130.91.6.2/31 < 1024 out(1) 130.91.6.2/31 < 1024 out(1)

130.91.6.2/31 >= 1024 out(3) 130.91.6.2/31 >= 1024 out(3)

130.91.6.4/30 < 1024 out(4) x.x.x.x x drop

130.99.6.8/30 < 1024 out(1)

x.x.x.x x drop

Rules transmitted to a controller are also marked as sub-
scribed to that controller. If a subscribed rule is affected or

eclipsed by an update to the controller’s program or to the
data that the program depends on, the updated rule or rules
are transmitted to the subscribed controller.
Obfuscation: After encoding PB in an RIB, SFP obfuscates
the RIB, limiting the information that the RIB shares and
guaranteeing B’s privacy. In particular, obfuscation provides
two privacy guarantees to controllers:

• Flow privacy: Controllers’ network flows are hidden.
• Program privacy: Controllers’ programs are hidden.
A naı̈ve RIB containing a subset of a program’s pipeline

tables may reveal information about the program’s structure
and the flows it prescribes, necessitating obfuscation.

SFP obfuscates RIBs by transforming them with an obfusca-
tion operator. One potential obfuscation operator, for example,
is to first map each terminal action in an RIB’s pipeline to a
single bit label - 1 if the action transmits packets it applies to
and 0 if the action drops them, and then reduce the pipeline
by merging rules that map to the same label where possible
using TCAM range encoding.

Mapping terminal RIB pipeline actions to generic trans-
mit/drop labels hides the flows prescribed by the pipeline,
helping achieve flow privacy. Reducing the pipeline by merg-
ing rules that map to the same generic label blurs the pipeline’s
decisions, helping achieve program privacy. Further investiga-
tion into mechanisms to provide different levels of privacy is
ongoing.

As an example, consider the obfuscation of
example-RIB:
after-map: after-reduce:

dstAddr dstPort label dstAddr dstPort label

------------- ------- ----- ------------- ------- -----

130.91.6.0/32 < 1024 1 130.91.6.0/31 < 1024 1

130.91.6.1/32 < 1024 1 130.91.6.2/31 x 1

130.91.6.2/31 < 1024 1 x.x.x.x x 0

130.91.6.2/31 >= 1024 1

x.x.x.x x 0

First, example-RIB is converted to after-map by map-
ping each of its terminal actions to the labels 0 and 1. Next, the
after-map table is reduced to the after-reduce table
by merging after-map’s first two pairs of rules, exploiting
their shared label 1 and mergable match fields.

V. FUTURE RESEARCH DIRECTIONS

Although SFP allows more flexible routing than BGP, and
strives to address several of its issues, a number of challenges
still need to be addressed. Below we list key research direc-
tions to fully realize the benefits of SFP.
SFP in multi-hop settings: This paper presented the commu-
nication paradigm between two adjacent domains. Extending
the exchange and negotiation of network flows across multiple
domains introduces new challenges. For example, how can a
controller merge its local information with the information
received from its peers? What operations can be executed?
What output and format can be sent by the node to its
neighbors?
SFP for multiflow queries: We illustrated how a domain
can subscribe a flow to its neighbor. Ultimately, a domain

should be able to subscribe to multiple concurrent flows. This
capability would allow the domain to learn of the impact
when sending multiple flows simultaneously. For example, the
flows may share a physical link. As a result, the flows would
not get the total of the advertised bandwidths, but a lower
throughput when sent concurrently. Querying for multiple
flows may also allow a domain to infer the risk of flows
experiencing disruption in the event of a shared node or link
failure. However, can a domain reply to a multiflow query and
still preserve its internal sensitive information?

SFP correctness and stability analysis: We will identify
desired properties of correctness, and ensure that the protocol
satisfies them. For example, in the absence of changes to
the network topology, it is commonly desirable for a routing
protocol to quickly converge to a stable state devoid of routing
anomalies (e.g., black holes, forwarding loops) [18]–[21].
Routing protocols should not be vulnerable to permanent route
oscillations [8], [22], [23].

SFP for fully integrated interconnection: As a result of
failures, a domain may be partitioned into multiple compo-
nents which can no longer directly communicate with each
other. There may exist physical paths between the components
through external domains. However, BGP does not support
domain backup and prevents those physical paths from being
visible to the components. As a result, the components may
become disconnected. To support domain backup, ISPs often
have to resort to ad-hoc solutions [14], [15]. We will investi-
gate and compare means to support domain backup as part of
the proposed protocol.

ACKNOWLEDGEMENT

This research was supported in part by NSF grant #1440745,
CC*IIE Integration: Dynamically Optimizing Research Data
Workflow with a Software Defined Science Network; Google
Research Award, SDN Programming Using Just Minimal Ab-
stractions; NSFC #61672385, FAST Magellan. This research
was also sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement Number
W911NF-16-3-0001. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either ex-
pressed or implied, of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming
language,” in Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’11. New
York, NY, USA: ACM, 2011, pp. 279–291. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034812

[4] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak,
“Maple: Simplifying SDN programming using algorithmic policies,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. ACM, 2013, pp. 87–98. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486030

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined WAN,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, ser. SIGCOMM ’13, 2013.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” SIGCOMM
Comput. Commun. Rev., 2007.

[7] A. Gupta, L. Vanbever, M. Shahbaz, S. P. D. B. Schlinker, N. Feamster,
J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett, “SDX: A Software
Defined Internet Exchange,” in Proceedings og SIGCOMM 2014. IEEE,
August 2014, pp. 233–239.

[8] R. Mahajan, D. Wetherall, and T. Anderson, “Towards coordinated
interdomain traffic engineering,” in Proceedings of Third Workshop on
Hot Topics in Networks (HotNets-III), 2004.

[9] “Inter SDN Controller Communication (SDNi),”
http://events.linuxfoundation.org/sites/events/files/slides/ODL-
SDNi 0.pdf.

[10] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multidomain
SDN controllers,” in Proceedings of IEEE Network Operations and
Management Symposium (NOMS), 2014.

[11] P. Lin, J. Bi, and Y. Wang, “East-West Bridge for SDN Network
Peering,” in Proceedings of ICoC 2013, 2013.

[12] “BGP based SDN http://network-insight.net/2015/09/bgp-based-sdn/,”
2015.

[13] F. Benamrane, M. B. mamoun, and R. Benaini, “An East-West interface
for distributed SDN control plane: Implementation and evaluation,”
Computers & Electrical Engineering, vol. 57, p. 162175, January 2017.

[14] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang, “Shedding light on
the glue logic of the Internet routing architecture,” in ACM SIGCOMM
Computer Communication Review, 2008.

[15] Cisco, “OSPF Redistribution Among Different OSPF Processes,” http:
//www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/
4170-ospfprocesses.html, 2016.

[16] I. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. A. Garcia-Espin,
“An OpenNaaS Based SDN Framework for Dynamic QoS Control,”
in Proceedings of IEEE Conference on SDN for Future Networks and
Services (SDN4FNS), 2013.

[17] G. Petropoulos, F. Sardis, S. Spirou, and T. Mahmoodi, “Software-
defined inter-networking: Enabling coordinated QoS control across the
Internet,” in Proceedings of ICT 2016, 2016.

[18] T. Griffin and G. Wilfong, “An analysis of BGP convergence properties,”
ACM SIGCOMM Computer Communication Review, 1999.

[19] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Transactions on Networking (TON), 2005.

[20] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” SIGCOMM Comput.
Commun. Rev., 2005.

[21] F. Le, G. Xie, and H. Zhang, “Theory and new primitives for safely
connecting routing protocol instances,” ACM SIGCOMM Computer
Communication Review, 2010.

[22] T. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths prob-
lem and interdomain routing,” IEEE/ACM Transactions on Networking
(ToN), 2002.

[23] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” IEEE/ACM Transactions on Networking (TON), 2001.

IEEE Communications Magazine • October 2016 530163-6804/16/$25.00 © 2016 IEEE

AbstrAct

New-generation industries heavily rely on big
data to improve their efficiency. Such big data
are commonly collected by smart nodes and
transmitted to the cloud via wireless. Due to the
limited size of smart node, the shortage of ener-
gy is always a critical issue, and the wireless data
transmission is extremely a big power consum-
er. Aiming to reduce the energy consumption in
wireless, this article introduces a potential breach
from data redundancy. If redundant data are
no longer collected, a large amount of wireless
transmissions can be cancelled and their ener-
gy saved. Motivated by this breach, this article
proposes a compressive-sensing-based collection
framework to minimize the amount of collection
while guaranteeing data quality. This framework
is verified by experiments and extensive real-
trace-driven simulations.

IntroductIon
The Industry 4.0 revolution is taking place in this
big data era. Benefiting from the analysis of big
data, customized services can be provided, pro-
duction efficiencies are optimized, and emerg-
ing industries are gradually growing. In quite a
few modern industries, big data are collected by
smart nodes and transmitted via wireless. For
example, in a manufacturing plant, ubiquitous
sensors gather environmental data to support the
fine-grained adaptation of cooling systems; smart
urban crowdsensing applications [1] acquire real-
time data from thousands of mobile phones to
make local communities and cities more sustain-
able.

For the smart node, whether sensor or phone,
wireless transmission is one of the biggest elec-
tricity burners. A field test [2] shows that the
power consumption of WiFi in a popular smart-
phone is about 500 mW, while its battery is only
1200 mAh and 3.7V Li-Ion. In other words,
this smartphone could support at most 1200
3.7/500 = 8.88-hour WiFi transmission even in
the ideal case.

To address the dilemma between the demand
of big data collection and the limited energy in
smart nodes as shown in Fig. 1, it is urgent to
design a novel green collection solution. Such a

solution is promising to facilitate big-data-based
modern industry.

Plenty of techniques have been developed for
energy-efficient wireless networks, such as anten-
na gain [3] and placement strategy [4]. Consider-
ing the feature of big data, this article introduces
a new direction: data redundancy.

Redundant data widely exist in big data,
and they usually contribute little to the efficien-
cy improvement of next-generation industries.
If we do not collect these redundant data and
only collect the principal data, huge amounts of
power consumption will be saved. Promising as it
seems, however, one challenging problem arises:
How can we distinguish whether a certain datum
is principal or redundant before collecting all
data? No wireless transmission can be saved in
traditional methods because they have to collect
all data and then analyze the redundancy.

To tackle the challenge, this article propos-
es a novel compressive-sensing-based collec-
tion framework. Compressive sensing [5] is an
advanced mathematic theory for data comple-
tion using very few sampled data. The proposed
green collection framework consists of two core
components. First, to reduce the number of
transmissions, an online learning component
predicts the minimal amount of data that needs
to be collected. These data are considered as the
principal data, and their amount is constrained
by compressive sensing. Second, a local con-
trol component running at every node further
tunes the collection strategy according to the
dynamics and unexpected situations. Combining
these two components, this framework reduces
power consumption and guarantees data quality
simultaneously. Extensive real-trace-driven sim-
ulations are conducted to demonstrate the effi-
cacy and efficiency of the proposed framework.
Open issues and future research directions on
this green collection framework are also dis-
cussed.

The proposed solution is a general frame-
work. It is easy to add customized components
into this framework according to the demands
of industrial applications. We believe the green
collection framework has wider implications and
prospects for big-data-based industry than those
explored in this article.

Embracing Big Data with
Compressive Sensing: A Green Approach in

Industrial Wireless Networks
Linghe Kong, Daqiang Zhang, Zongjian He, Qiao Xiang, Jiafu Wan, and Meixia Tao

recent AdvAnces In Green IndustrIAl networkInG

Aiming to reduce the
energy consumption

in wireless, the authors
introduce a potential

breach from data redun-
dancy. If redundant data

are no longer collected, a
large amount of wireless

transmissions can be can-
celled and their energy

saved. Motivated by this
breach, the authors pro-

pose a compressive-sens-
ing-based collection

framework to minimize
the amount of collection
while guaranteeing data

quality.

Linghe Kong and Meixia Tao are with Shanghai Jiao Tong University; Daqiang Zhang, Zongjian He, and Qiao Xiang are with Tongji University;
Jiafu Wan is with South China University of Technology.

IEEE Communications Magazine • October 201654

bAckGround
The green collection framework typically works
at the intersection of three research areas: big
data, energy-efficient data collection, and com-
pressive sensing.

bIG dAtA

Both academia and industry are paying a great
deal of attention to the explosive growth of data.
Lynch [6] posed the open question in Nature:
How do your data grow? This article attracted
many scientists to start working in the area of
big data. Baraniuk [7] reported in Science that
the bottleneck of signal processing now is data
deluge: the amount of data generated worldwide
(1250 billion GB in 2010), which is dominated by
sensory data, is growing by 58 percent per year.
The revolution of big-data-driven industry has
spread all over the world.

enerGy-effIcIent dAtA collectIon

The energy constraint is a critical problem in big
data collection. According to [8], battery capacity
has only doubled in the past 35 years. Moreover,
the hazardous sensing environment precludes
manual battery replacement. The energy con-
straint is unlikely to be solved in the near future
due to the size limitation of smart nodes.

However, collecting and transmitting big data
consume a lot of power in smart nodes. For
example, the transmission power of WiFi is up to
500 mW, LTE is up to 200 mW, Bluetooth is up
to 100 mW, and ZigBee is up to 5 mW.

Hence, green methods are investigated from
the physical layer to the application layer in wire-
less networks [9–12]. Although existing solutions
are highly diverse, none of them take data redun-
dancy into consideration.

compressIve sensInG

Compressive sensing [5] is a generic meth-
od to recover the whole condition with only
a few sampled data. Several effective com-
pressive sensing applications have been devel-
oped in the data completion field [13] (e.g.,
traffic estimation and video streaming). It has
been proven that the whole environment can
be near-optimally recovered even if there are
more than 70 percent sensory data are miss-
ing [14], which motivates us to exploit com-
pressive sensing to reduce the amount of data
collection.

problem stAtement

In a big data collection system, smart nodes are usu-
ally distributed in the given area to sense data and
transmit these data to the cloud via wireless commu-
nications. The cloud analyzes the collected data and
provides customized service or production. Suppose
there are a total of n nodes, and the period of mon-
itoring time is evenly divided into t time slots. Every
node collects data once per time slot at most. With
the growth of the scale in industrial applications, the
total collected data are very big.

The big data can be represented as a large
matrix X, where every element is the data collect-
ed by one node at one time slot. A matrix with
no empty elements means that all data are col-
lected, which indicates 100 percent data quality
but costs nt wireless transmissions.

On one hand, to reduce the number of trans-
missions, it is desired that only principal data
are collected. Assume that the amount of prin-
cipal data is r and r << nt. On the other hand,
to guarantee the data quality, it is desired that
the principal data are adequate to represent the
whole big data, that is, the recovered matrix ̂X is
close to the complete X, where ̂X is the matrix
computed by compressive sensing using only
principal data.

From the above, we state the problem as fol-
lows: The green collection problem aims to min-
imize the amount of principal data r for energy
saving and is constrained by ̂X ≈ X for quality
assurance.

Two main metrics are defined to measure the
performance of green collection solutions:

• Energy consumption ratio a: This ratio can
be approximated as r/nt, that is, transmitting the
amount of principal data over transmitting the
total big data, in which we consider the consump-
tion is equal for every transmission.

• Data error ratio e: The average error
between recovered matrix and complete matrix,
that is, e = || ̂X – X||/||X||.

reAl dAtA AnAlysIs
Before describing the design of a green collection
framework, we analyze the redundancy feature
in big data. We observe that most big datasets
have obvious redundancy. The possible reasons
include redundant smart nodes deployed for data
collection, nodes in close or the same locations
sensing similar data, and sensory data usually
having strong correlation with time variance.

Then we introduce three real traces and vali-
date their low-rank properties, which implies the
data redundancy in common sensory data. The
three datasets are gathered by real projects.

The Intel Indoor experiment was gathered
by the Intel Berkeley Research lab. There are
totally 54 nodes placed in a 40 m 30 m room.
Every node reports data every 30 s. From all the
gathered data, we select 50 nodes’ 4000 slots’
data to form a complete dataset.

The GreenOrbs project is a real-world sensor
network for forest surveillance. More than 500
nodes are scattered on Tianmu Mountain, China,
and gather temperature, light, and humidity data
once every 5 min. We select 249 500 data from
GreenOrbs.

The OceanSense project contributes our third

Figure 1. In wireless data collection applications, the distributed smart nodes
sense and transmit data to the cloud. The dilemma is between the big data
to be transmitted and the limited energy in smart nodes.

Wireless data
collection

Smart
node

Challenges:
big data

vs.
limited energy

Cloud

IEEE Communications Magazine • October 2016 55

dataset. This dataset contains 20 nodes deployed
in the sea of Taipingjiao, China. Each node
reports temperature and light every 2 min. We
select 15 1000 data from OceanSense.

From the three selected datasets, we gener-
ate six complete matrices: Indoor-Temp, Indoor-
Light, Forest-Temp, Forest-Light, Ocean-Temp,
and Ocean-Light for analysis.

redundAncy dIscovery
Data at different locations over different times
are usually not independent, resulting in a low-
rank structure (i.e., some data are redundant).
In order to mine the redundancy, we analyze the
selected matrices using singular value decompo-
sition (SVD) [14], which is an effective non-para-
metric technique for revealing a low-rank
structure. In Fig. 2, we illustrate the cumulative
distribution function (CDF) of top- percent sin-
gular values in the selected matrices. The X-axis
presents the normalized number of singular val-
ues. The Y-axis presents the ratio of the cumu-
lative values of top-percent singular values. This
figure implies that the sum of all singular values
is always contributed by only a few top singu-
lar values in real data. For example, the top 5
percent singular values contribute 92 percent of
sum singular values in Indoor-Temp. The univer-
sal existence of such trends reveals the low-rank
structures in these traces. These redundancy fea-
tures indicate that big data can be near-optimally
recovered by compressive sensing even if only a
few data are collected.

Green collectIon frAmework
Inspired by the observed feature, a novel green
collection framework is designed in this section.

desIGn overvIew

The architecture of our green collection frame-
work is illustrated in Fig. 3, which consists of two
core components.

First, the online learning component runs at
the cloud side. Leveraging the historical data and
compressive sensing, this component predicts the
minimal amount of data that needs to be col-
lected in the near future. Then this component
transforms the data amount to be the collecting
probability and reports the probability to every
node.

Second, the local control component runs
at every node. Since the collecting probability
provided by the online learning component is
an average value from the global view, it may
not be suitable for an individual node. Resorting
to the adaptive control theory, this component
adaptively tunes one node’s collecting probabil-
ity according to the dynamics and unexpected
situation.

The advantages of this framework include:
• This framework is easy to implement in

practice.
• The high-complexity compressive sensing

and prediction are computed at the central-
ized cloud side. The distributed computing
at the node side is low-complexity local con-
trol.

• This framework tactfully takes advantage of
compressive sensing to reduce the power
consumption while guaranteeing the data

quality by both global prediction and local
adjustment.
Detailed designs of two components are intro-

duced in the following two subsections. More-
over, we pose open problems and discuss some
future research directions about this framework.

onlIne leArnInG component

As per the analysis in the previous section, data
redundancy universally exists in big data. Existing
mathematical tools can analyze the redundant
data at the cloud side after collecting all data.
However, because a certain node has no global
view, when it senses a datum, it is not easy to
distinguish whether this datum is principal or
redundant. Thus, it cannot locally decide wheth-
er to transmit this datum to the cloud or not.

Leveraging the advantage of compressive
sensing, this problem can be simplified. Note that
compressive sensing can achieve near-optimal
matrix completion if a minimal amount of data
(related to the rank) are collected and these data
are randomly distributed in the matrix. Thus,
instead of distinguishing an individual datum,
our design aims to acquire the minimal amount
of data and near-optimally recover all of the data
by compressive sensing.

The online learning component operates as
follows.

•Predicting the minimal amount of data col-
lection for compressive sensing. First, the change
of rank in historical data can be analyzed at
the cloud side using SVD. Second, applying the
prediction methods [15] on the historical ranks,
we can estimate the rank in the next time slot.
To achieve an accurate prediction, the classic
ARIMA model is adopted for rank estima-
tion, which considers both trend and periodici-
ty. Third, the minimal amount of data K can be
derived by compressive sensing theory [13].

•Adding the margin in the predicted amount.
Since the environment is dynamic, a predicted K
may not be adequate for near-optimal recovery.
Hence, we introduce some margin into the pre-

Figure 2. CDF of singular values to explore the redundancy feature in real
datasets.

Ratio of the number of singular values (%)
100

70

60

Ra
tio

 o
f t

he
 cu

m
ul

at
ive

 v
alu

es
 o

f σ
i (

%
)

80

90

100

20 30 40

Indoor-Temp
Indoor-Light
Forest-Temp
Forest-Light
Ocean-Temp
Ocean-Light

IEEE Communications Magazine • October 201656

dicted amount by r = bK, where b is the margin
coefficient, and we define r as the amount of
principal data in this article.

•Computing the collecting probability. The
collecting probability P can be computed by P
=r/nt, which indicates that the collecting prob-
ability of every node at every time slot is P. The
cloud will broadcast this probability to all nodes
once it has P.

locAl control component

After receiving P from the cloud, a smart node
could collect data at every time slot with proba-
bility P. However, this probability is an average
result from the global view without consider-
ing the individual difference of every node. For
example, in a noise detection application, indoor
noise changes less frequently than outdoor noise
does. Obviously, the collected data from an out-
door node are more important than those from
an indoor node.

To achieve a better data quality, the local
control component is designed. This component
runs at every node and self-adapts the value of
Pi according to P, dynamics, unexpected issues,

neighbor status, residual energy, and link quality.
Dynamics: The recent sensed datum is com-

pared to the previous sensed data. If the change
of data is stable or periodic, Pi can be decreased
gradually. If an aperiodic and frequent change of
data happens, Pi is gradually increased.

Unexpected Issue: If any unexpected issue
is detected, Pi could be increased sharply. For
example, a smartphone detects a traffic crash; if
there is no other smartphone nearby, this smart-
phone enlarges Pi immediately.

Neighbor Status: Using the same example of
the traffic crash, if there are many smartphones
nearby, each one could keep its Pi for data col-
lection.

Residual Energy: When the residual energy
in a node is not enough, it reduces its collecting
rate Pi for energy saving and reports this condi-
tion to the cloud.

Link Quality: The transmission power
depends on the link quality of the wireless chan-
nel. Generally, a poor channel caused by inter-
ference or mobility results in large transmission
power and multiple retransmissions. Hence, Pi is
reduced when the link quality becomes poor.

The local control component is not limited to
the above aspects. More aspects can be appended
to this control component as input.

performAnce evAluAtIon
We implement a real testbed and conduct
trace-driven simulations to evaluate the perfor-
mance of the proposed green collection frame-
work (GCF).

experImentAl ImplementAtIon

Experimental Testbed: Our testbed includes a
total of 51 TelosB sensor nodes. They are divided
into three groups, A, B, and C, carrying out differ-
ent data collection methods for comparison. Each
group has 16 nodes to sense environmental data
and 1 sink node to gather these data. In a 7.2 m
6 m open-air area, 4 4 = 16 positions are select-
ed to deploy nodes as a grid. As shown in Fig. 4, at
each position, there are three sensor nodes, which
belong to three respective groups. A total of 48
nodes are deployed in the area. The other three
sink nodes are connected to three laptops.

Each group with 17 sensor nodes organizes its
own network. These nodes transmit data using
ZigBee. There are 16 ZigBee channels in the
2.4 GHz industrial, scientific, and medical (ISM)
band. The three groups of WSNs work during the
same period with three non-overlapping channels,
so there is no interference among them.

Implementation Setting: There are some
common configurations for the three groups. The
duration of every time slot is set as 1 min. The
collected data are stored in a database in the lap-
top according to our customized format includ-
ing timestamp, node ID, temperature, humidity,
light, voltage, and received signal strength indi-
cator (RSSI).

The individual configuration for each group
is as follows. Group A: Collection Tree Protocol
(CTP). The TinyOS library provides the code of
CTP. The radio is always on for data transmis-
sion. Group B: Fixed low-duty-cycle (FLDC12.5),
one cycle is set to 4 h with 0.5-h active state and
3.5-hour sleep state. Thus, the duty-cycle is 12.5

Figure 3. Architecture of the green collection framework.

Dynamics

Unexpected
issue

Neighbor
status

Residual
energy

Link
quality

Local controlOnline learning

Sense

P

K

ρ

Sensory
dataDataset

Smart nodesCloud

Lo
ca

lly
 tu

ne
 th

e
co

lle
cti

ng
pr

ob
ab

ilit
y

P
us

in
g

ad
ap

tiv
e

co
nt

ro
l t

he
or

y

Co
m

pr
es

siv
e

se
ns

in
g

Predict the amount
of data collection in

future for CS

Add the margin to
predicted amount

Compute the
collecting probability

Pi

Figure 4. Experiment settings.

2.4 m

2 m

5PC1 6

4

8 9

7

11 12

10

14 15

131

17PC2 18

16

20 21

19

23 24

22

26 27

252

29PC3

Group A

30

28

32 33

31

35 36

34

38 39

37

41 42

40

44 45

43

47 48

46

50 51

49

3

Group B

Group C

IEEE Communications Magazine • October 2016 57

percent. (Different duty cycles are also tested at
50, 25, and 6.25 percent. We only show FLDC12.5
here because it has the lowest power consump-
tion subject to the error ratio ≤ 5 percent.) Group
C: GCF with the requirement of error ratio ≤ 5
percent.

Experiment Results: The data quality and
power consumption are compared among three
groups. All three groups run 10 days for tem-
perature, 10 days for humidity, and 10 days for
light collection and recovery.

The metric of data quality is the data error
ratio e. Figure 5a plots the histogram of e in dif-
ferent groups in different environments. Group
A: Since CTP gathers all data, it has no error, e
= 0. Group B: FLDC12.5 loses 87.5 percent envi-
ronmental data. Although the missing data are
estimated by compressive sensing, error ratios are
3.1 percent in temperature, 3.6 percent in humid-
ity, and 5.4 percent in light. Group C: GCF offers
satisfactory results on data quality. Due to the
accurate prediction and local feedback control,
GCF displays e = 1.8 percent in temperature, 2.1
percent in humidity, and 4.7 percent in light after
compressive sensing. In summary, the compari-
son result indicates that the GCF can ensure the
accuracy requirement.

The power consumption is measured by the
energy consumption ratio a. The results of ener-
gy consumption ratio are displayed in Fig. 5b.
Group A: The radio keeps turning on in CTP, so
a = 100 percent. Group B: Since the duty cycle
is fixed in FLDC, a =12.5 percent. Group C:
The number of transmissions in GCF changes
according to the dynamic environment. From Fig.
5b, we observe that a = 5.3 percent in tempera-
ture, 5.5 percent in humidity, and 8.2 percent in
light. The results imply that GCF is better than
FLDC12.5 and much better than CTP in energy
saving in our experiment.

GCF outperforms classic data collection
methods in this experiment. Compared to CTP,
GCF is much better on energy efficiency within
the requirement of data quality. Compared to
FLDC12.5, both methods can achieve the data
quality, but GCF performs much better in power
consumption.

trAce-drIven sImulAtIon

Simulation Setting: Although the experiment
verifi es the effi cacy and effi ciency of GCF, it only
carries out in an experimental scenario with some

limitations such as small-scale sensor networks
and small area. In order to test the extensive
applicability of GCF, we conduct the simulations
based on the three real datasets introduced earli-
er. These three datasets are on diverse scales (50,
249, 15 nodes), diverse areas (40 m 30 m, 200
m 100 m, and 300 m 100 m), and diverse sce-
narios (indoor, forest, and ocean). Every dataset is
simulated by CTP, FLDC50, FLDC25, FLDC12.5,
FLDC6.25, and GCF, respectively. The require-
ment of data error ratio is still set ≤ 5 percent.

Simulation Results: Figure 6 shows the data
error and energy consumption ratios of different
data collection methods among indoor, forest,
and ocean datasets in our simulations.

We can fi nd in Figs. 6a, 6b, and 6c that every
e is 0 for in CTP; for FLDC, the smaller duty
cycles result in larger error ratios; and the error
ratios of GCF are less than 5 percent in all three
scenarios.

The energy consumption ratios of CTP,
FLDC50, FLDC25, FLDC12.5, and FLDC6.25
are 100, 50, 25, 12.5, and 6.25 in Figs. 6b, 6d, and
6f. These values are fi xed, and are independent
of scenarios or environments. Nevertheless, such
ratios of GCF are dynamic corresponding to the
diverse scenarios or environments. Most energy
consumption ratios a of GCF are smaller than
10 percent. For example, a in Ocean-Temp and
Ocean-Light are only 6.0 percent, and in Indoor-
Temp 7.5 percent.

In summary, the results in the simulation are
similar to the performance in the experiment.
The proposed GCF guarantees the data quality
with low energy consumption. The most import-
ant property of GCF is its self-adaptation to the
dynamics, making it outperform existing methods
in nearly all scenarios.

dIscussIon
Using data redundancy and compressive sensing
to reduce power consumption is a new concept
in wireless big data collection. Open issues and
research directions are worth investigation in the
future.

There are still two open issues in the pro-
posed framework. First, the current GCF can-
not achieve a minimal amount of data collection
because it adopts random collection from a
global view but does not optimize the collection
amount on every individual node. A more accu-
rate collection method is desired to save more

Figure 5. Experiment results: a) experimental performance: data factor; b) experimental performance:
energy consumption.

(a)
Temperature0

2

0

Da
ta

 e
rro

r ε
 (%

)

4

6

8
CTP
FLDC12.5
GCF

1.8

Humidity

2.1

Light

4.7

(b)
Temperature0

25

0

En
er

gy
 co

m
su

m
pt

io
n

ra
tio

 (%

)

50

75

100

5.3

Humidity

5.5

Light

8.2

GCF outperforms classic

data collection methods

in this experiment.

Compared with CTP,

GCF is much better on

energy effi ciency within

the requirement of data

quality. Compared with

FLDC12.5, both meth-

ods can achieve the

data quality, but GCF

performs much better

on power consumption.

IEEE Communications Magazine • October 201658

power consumption. Second, there is a trade-off
between the recovery accuracy and the total col-
lection amount. Deriving the theoretical curve
to present the trade-off relationship is still an
open issue.

The GCF also produces several promising
research directions. One valuable direction is
to study the correlation between multi-source
data to further reduce the amount of data col-
lection. For example, we can collect some light
data to estimate not only the light but also the
temperature distribution due to their high cor-
relation. The second significant direction is
false data detection. To maintain the data qual-
ity, false data should be detected and removed
from the collected principal data. In addition,
this work only considers the correlation in the
time domain. If the positions or trajectories are
known, space correlation could further opti-
mize the amount of mobile data collection. Last
but not least. in a multihop network, network
coding and other data aggregation techniques
can be taken into account to further reduce the
total amount of data collection.

conclusIon
A green collection framework is proposed in this
article to save energy in big-data-based smart
industries. The core contribution of this frame-
work is to reduce the number of transmissions by
leveraging the compressive sensing theory. The
evaluation results demonstrate that the proposed

framework dramatically decreases the power
consumption compared to existing approaches
while the data quality is guaranteed.

AcknowledGment

This research was supported in part by National
Science Foundation of China grant 61303202,
61472283, 61103185, China Postdoctoral Sci-
ence Foundation grant 2014M560334 and
2015T80433, the Fundamental Research Funds
for the Central Universities No. 2015ZZ079, No.
2013KJ034, No. 2100219043, the Fok Ying-Tong
Education Foundation, China grant No. 142006,
and the work by Meixia Tao is supported by the
NSF of China under grant 61322102.

references
[1] G. Cardone et al., “Fostering Participaction in Smart Cities: A Geo-Social

Crowdsensing Platform,” IEEE Commun. Mag., vol. 51, no. 6, 2013,
pp.112–19.

[2] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a Smart-
phone,” Proc. USENIX Annual Technical Conf., vol. 14, 2010.

[3] D. Feng et al., “A Survey of Energy-Efficient Wireless Communications,”
IEEE Commun. Surveys & Tutorials, vol. 15, no. 1, 2013, pp. 167–78.

[4] J. Lloret et al., “A Wireless Sensor Network Deployment for Rural and
Forest Fire Detection and Verification,” Sensors, vol. 9, no. 11, 2009,
pp. 8722–47.

[5] D. L. Donoho, “Compressed Sensing,” IEEE Trans. Info. Theory, vol. 52,
no. 4, 2006, pp. 1289–1306.

[6] C. Lynch, “Big Data: How Do Your Data Grow?” Nature, vol. 455, no.
7209, 2008, pp. 28–29.

[7] R. G. Baraniuk, “More Is Less: Signal Processing and the Data Deluge,”
Science, vol. 331, no. 6018, 2011, pp. 717–19.

[8] T. He et al., “Energy-Efficient Surveillance System Using Wireless Sensor
Networks, Proc. ACM MobiSys, 2004, pp. 270–83.

Figure 6. Simulation results: a) indoor dataset simulation: data error; b) indoor dataset simulation: energy consumption; c) forest
dataset simulation: data error; d) forest dataset simulaiton: energy consumption; e) ocean dataset simulation: data error;
f) ocean dataset simulation: energy consumption.

(a)
Temp Light

5

0

Da
ta

 e
rro

r ε
 (%

)
10

15

20

2.1

5.0

(c)
Temp Light

5

0

Da
ta

 e
rro

r ε
 (%

)

10

15

20

2.4

5.4

(e)
Temp Light

5

0

Da
ta

 e
rro

r ε
 (%

)

10

15

20

1.6 0.9

(b)
Temp Light

25

0

En
er

gy
 co

ns
. r

at
io

 (%

)

50

75

100

7.5 9.8

(d)
Temp Light

25

0

En
er

gy
 co

ns
. r

at
io

 (%

)

50

75

100

9.0
15.0

(f)
Temp Light

25

0

En
er

gy
 co

ns
. r

at
io

 (%

)
50

75

100

6.0 6.0

CTP
FLDC50
FLDC25

FLDC12.5
FLDC6.25
GCF

IEEE Communications Magazine • October 2016 59

[9] M. Dong et al., “Joint Optimization of Lifetime and Transport Delay Under
Reliability Constraint Wireless Sensor Networks,“ IEEE Trans. Parallel
Distrib. Sys., vol. 27, no. 1, 2016, pp. 225–36.

[10] G. Han et al., “Green Routing Algorithms for Wireless Multimedia Sensor
Networks,” IEEE Wireless Commun., 2016.

[11] S. He et al., “Emd: Energy-Efficient Delay-Tolerant P2P Message Dissemi-
nation in Wireless Sensor and Actor Networks,” IEEE JSAC, vol. 31, 2013,
pp. 75–84.

[12] X. Zhang et al., “Cross-Layer-Based Modeling for Quality of Service Guar-
antees in Mobile Wireless Networks,” IEEE Commun. Mag., vol. 44, no.
1, 2006, pp. 100–06.

[13] E. J. Candes and Y. Plan, “Matrix Completion with Noise,” Proc. IEEE, vol.
98, no. 6, 2010, pp. 925–36.

[14] L. Kong et al., “Data Loss and Reconstruction in Wireless Sensor Net-
works,” IEEE Trans. Parallel Distrib. Sys., vol. 25, no. 11, 2014, pp.
2818–28.

[15] W. Shen et al., “A New Energy Prediction Approach for Intrusion Detec-
tion in Cluster-Based Wireless Sensor Networks,” Springer Green Com-
munications and Networking, 2012, pp. 1–12.

bIoGrpAhIes

Linghe Kong is currently an associate professor in the Department of Com-
puter Science and Engineering at Shanghai Jiao Tong University. Before that,
he was a postdoctoral researcher at McGill University, Canada. He received
his Ph.D. degree from Shanghai Jiao Tong University in 2012, his Master’s
degree from TELECOM SudParis in 2007, and his B.E. degree from Xidian
University in 2005. His research interests include wireless communication,
sensor networks, mobile computing, the Internet of Things, and smart energy
systems.

Daqiang Zhang received his B.Sc. degree in management science and M.Sc.
degree in computer science from Anhui University, Heifei, China, in 2003

and 2006, and his Ph.D. degree in computer science from Shanghai Jiao
Tong University, China, in 2010. His research includes mobile computing,
distributed computing, and wireless sensor networks. Currently, he is an
associate professor with the School of Software Engineering, Tongji University,
Shanghai.

Zongjian he received his Ph.D. degree from the Department of Computing,
Hong Kong Polytechnic University in 2015, and his M.Sc. and B.Eng. degree
from Tongji University, Shanghai, China, in 2007 and 2004, respectively. He is
currently an assistant professor in the School of Software Engineering, Tongji
University. His research interests include wireless sensor networks, vehicular
networks, participatory sensing applications, and mobile computing.

qiao Xiang is currently a postdoctoral fellow at Tongji University and Yale Uni-
versity. From 2014 to 2015, he was a postdoctoral fellow at McGill University.
He received his Master’s and Ph.D. degrees from Wayne State University in
2012 and 2014, respectively. He received his Bachelor’s degree from Nankai
University in 2007.

jiafu Wan has been a professor in the School of Mechanical and Automotive
Engineering at South China University of Technology since September 2015.
Thus far, he has authored/co-authored more than 60 journal papers and 30
international conference papers. His research interests include Industry 4.0,
cyber-physical systems, the Internet of Things, industrial wireless networks,
cloud computing, embedded systems, and industrial robotics.

MeiXia Tao received her B.S. degree in electronic engineering from Fudan
University, Shanghai, China, in 1999, and her Ph.D. degree in electrical and
electronic engineering from Hong Kong University of Science and Technol-
ogy in 2003. She is currently a professor with the Department of Electronic
Engineering, Shanghai Jiao Tong University. Prior to that, she was an assistant
professor at the Department of Electrical and Computer Engineering, National
University of Singapore from 2004 to 2007.

Magellan: Generating Multi-Table Datapath from
Datapath Oblivious Algorithmic SDN Policies

Andreas Voellmy+ Shenshen Chen∗ Xing Wang∗ Y. Richard Yang∗+

Yale University+ Tongji University∗

ABSTRACT
Despite the emergence of multi-table pipelining as a key fea-
ture of next-generation SDN data-path models, there is no
existing work that addresses the substantial programming
challenge of utilizing multi-tables automatically. In this pa-
per, we present Magellan, the first system that addresses
the aforementioned challenge. Introducing two novel, sub-
stantial algorithms, map-explore and table-design, Magel-
lan achieves automatic derivation and population of multi-
table pipelines from a datapath-oblivious, high-level SDN
program written in a general-purpose language. Compar-
ing the flow tables generated by Magellan with those pro-
duced from standard SDN controllers including OpenDay-
light and Floodlight, we show that Magellan uses between
46-68x fewer rules.

CCS Concepts
•Networks→ Programming interfaces;

Keywords
SDN, Programming model, Multi-table pipeline

1. INTRODUCTION
Multi-table pipelining has emerged as the foundation of

the next generation SDN datapath models. Avoiding key is-
sues such as unnecessary combinatorial explosions to sub-
stantially reduce datapath table sizes, multi-table pipelining
is essential for making SDN practical. At the same time,
the introduction of multi-tables also adds additional SDN
programming tasks including designing effective layout of
pipelines and populating the content of multiple tables.

In this work, we investigate how to automatically derive
and populate multi-table pipelines from datapath-oblivious

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2959064

algorithmic policies (AP) [1]. We choose the algorithmic
policies model because it is highly flexible and hence poses
minimal constraints on SDN programming. The model is
also general, and hence, can be used to express other models.
As a result of the generality, if we can compute high-quality
multi-table pipelines for algorithmic policies, we can con-
vert other policies into malgorithmic policies, and use al-
gorithmic policies as a powerful intermediate language for
implementing other high-level SDN programming models.

On the other hand, effectively utilizing multi-table pipelines
from algorithmic policies can be extremely challenging, be-
cause APs are expressed in a general-purpose programming
language with arbitrary complex control structures (e.g., con-
ditional statements, loops), and the control structures of APs
can be completely oblivious to the existence of multi-tables.
Hence, it is not clear at all whether one can effectively pro-
gram multi-table pipelines from such APs. We refer to this
as the oblivious multi-table programming challenge.

The main contribution of this paper is the development of
Magellan, the first system that addresses the oblivious multi-
table programming challenge. The core of Magellan con-
sists of two novel, substantial algorithms: the map-explore
algorithm and the table design algorithm. Specifically, the
map-explore algorithm conducts a novel, efficient form of
hybrid symbolic (map) and direct (explore) execution of a
multi-table oblivious program written in a general-purpose
language, resulting in a data-structure called explorer graph.
The table design algorithm partitions the dataflow graph of
program and merges tables.

2. ARCHITECTURE COMPONENTS
The high-level objective of Magellan is simple to state:

automate the tasks of table design and table population for
general-purpose APs.

To achieve the goal, Magellan introduces a sophisticated
compiler and runtime system shown in Figure 1.
• The static analysis and transformation proceeds in two

steps: native compilation, and bytecode rewriting. A na-
tive compiler converts the user program to an objective
code format to remove the extra complexity of high-level
programming language which makes program analysis com-
plex. We refer to the result as the bytecode. The purpose
of bytecode rewriting is first to identify and organize the
compact-mappable statements which can be represented

593

Figure 1: Magellan system components and work flow.

by a compact flow table with a small range output into
brk statements and others into xblocks.

• The dynamic runtime part has two key components: Ex-
plorer and Table Fitter. The goal of Explorer is to gen-
erate the mapper-explorer graph whose nodes indicating
instructions and links indicating control flow between in-
structions. By exploration of the program, a node in the
graph includes all possible values for inputs and outputs
of the instruction generating the node. After generating
the mapper-explorer graph, a simple algorithm can gen-
erate flow tables from the graph. Finally, a table design
algorithm in the Table Fitter merges tables to reduce the
number since the number of flow tables is limited in real
switches. In the next section, we will show a main step
by using an example in the table design. The Incremental
Updater will directly update mapper-explorer graph and
then Magellan recomputes the content of flow tables.

3. EXAMPLE: AP TO DATAFLOW GRAPH
Here we give an example to show the translation from an

AP program to a dataflow graph which is used in the table
design. Bellow is the AP example:

// Program: Static-Example
onPacket(p) {
x = macSrc;
if (x > 4) {y = hostTable[macDst];} else {y = 1;}
egress = [2 * y]; }

To remove language-specific constructs and simplify pro-
gram analysis, we convert programs to a generic, simple,
streamlined labeled instruction set (IR)) that uses conditional
and unconditional jumps for all control flows, and also we do
a simple compile optimizaiton to replace all x with macSrc
and remove x = macSrc:
L2: cjump (macSrc > 4) L3 L5
L3: y = hostTable[macDst]
L4: jump L6
L5: y = 1
L6: egress = [2 * y]

In order to generate Magellan dataflow graph, we also
need to convert jump statements (belong to control flow) to
data dependency. So we introduce guard variable (g in the
following example):
L1: g = (macSrc > 4)
L2: if g: y = hostTable[macDst]
L3: if !g: y = 1
L4: egress = [2 * y]

macDst

macSrc L1

L2

L3

L4

Figure 2: Magellan dataflow graph for Static-Example.

System Hosts Rules Time (s) Med RTT(ms)
POX 70 18787 96 9.7
Floodlight 70 4699 37 2.1
OpenDaylight 70 4769 32 0.6
Pyretic 70 - > 1500
Magellan 70 142 25 0.3
POX 140 13107 389 11.9
Floodlight 140 16451 200 6.1
OpenDaylight 140 19349 150 1.2
Pyretic 140 - -
Magellan 140 282 123 0.6

Figure 3: End-to-end performance comparison.

Then we generate the dataflow graph for this program as
shown in Figure 2. The table design algorithm will partition
the dataflow graph into regions, and merge all nodes in one
region. The dataflow graph guarantees the merging is correct
comparing with control flow graph.

4. PRELIMINARY EVALUATIONS
We compare Magellan with a range of state-of-the-art com-

mercial and academic SDN systems, including OpenDay-
light, Floodlight, POX, and Pyretic. We evaluate all systems
using Open vSwitch (OVS) version 2.0.2, and conduct eval-
uations in a range of settings. In this poster, we report the
results of the L2-learning-and-routing policy, because it is
available in each system from the system’s authors (with mi-
nor variations). Specifically, for each system, after allowing
appropriate initialization of hosts and controller, we perform
an all-to-all ping among the hosts, record the RTT of each
ping, measure the time for all hosts to complete this task.
After completing the task, we retrieve and count all Open-
flow rules installed in the switch.

Figure 3 lists the number of rules, task completion time,
and median ping RTT 1for each system with H = 70 and
H = 140 hosts and. We observe that for 70 hosts, Mag-
ellan uses 33x fewer rules than OpenDaylight and Flood-
light, while for 140 hosts, Magellan uses between 46-68x
fewer rules than other systems. This rule compression is due
to leveraging multi-table pipelines: all other systems gener-
ate rules into a single table, and therefore generate approx-
imately H2 rules, while Magellan generates approximately
only 2 ∗H rules.

5. REFERENCES
[1] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and

P. Hudak. Maple: Simplifying sdn programming using
algorithmic policies. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 87–98. ACM, 2013.

1Tests of Pyretic at both 70 and 140 hosts failed and these
measurements are therefore omitted.

594

FAST: A Simple Programming Abstraction for
Complex State-Dependent SDN Programming ∗

Kai Gao
Tsinghua Univeristy

gaok12@mails.tsinghua.edu.cn

Chen Gu
Tongji University

gc19931011jy@gmail.com

Qiao Xiang
Tongji/Yale University
qiao.xiang@cs.yale.edu

Yang Richard Yang
Tongji/Yale University

yry@cs.yale.edu

Jun Bi
Tsinghua University

junbi@tsinghua.edu.cn

ABSTRACT
Handling state dependencies is a major challenge in
modern SDN programming, but existing frameworks
do not provide sufficient abstractions nor tools to ad-
dress this challenge. In this paper, we propose a novel,
high-level programming abstraction and implement the
Function Automation SysTem (FAST). With the two
key features, i.e., automated state dependency tracking
and efficient re-execution scheduling, we demonstrate
that Fast substantially simplifies state-dependent SDN
programming and boosts the performance.

CCS Concepts
•Networks → Programming interfaces; Network
control algorithms;

Keywords
SDN, Programming abstraction, State dependency

1. INTRODUCTION
A common characteristic of many network control-

plane functions is that their computation depends on
network states. For example, basic routing algorithms
such as the shortest path depend on the topology, QoS-
based routing depends on both topology and the current

∗
This research is supported by the National Science Foundation (CNS-

1018502, CC*IIE 1440745), the National Natual Science Foundation of China
(No.61472213 and No.61502267) and the Google Faculty Research Award .

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis , Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2960424

resource allocations, and security functions (e.g., access
control, policy-based forwarding) depend heavily on the
current state of configured security policies.

Implementing aforementioned control-plane functions
in a correct and efficient manner, however, can be com-
plex. Existing frameworks such as OpenDaylight and
ONOS recognize this complexity and introduce datas-
tores and broker services with a powerful pub/sub API
to enable state dependent programming. However, many
programming complexities remain.

Firstly, it is still the responsibility of the program-
mers to handle the complexity of identifying dependent
data and subscribing to their changes. This, however,
is not trivial. For example, a production implementa-
tion of the Dijkstra algorithm using a priority queue[2]
touches only a subset of links, depending on the specific
source and destination locations. Missing a subscription
to a touched link can lead to inconsistency between the
calculated path and the current network topology. On
the other hand, naive approaches to simplify the pro-
gramming by oversubscribing to changes on all links in
the whole topology, lead to unnecessary re-executions.

Secondly and more importantly, it can be more com-
plex than one might think to handle state changes cor-
rectly. Consider a control function f which depends on a
certain state variable vs. When the value of vs changes,
the naive solution, which simply update the outcome by
re-executing f using the new value, can lead to errors.
Consider the QoS routing example which finds a path
and makes bandwidth reservations along the path. As-
sume a link on the path fails, and the function is to be
re-executed to find an alternative. It is important that
the previously reserved bandwidth be released first, to
avoid “garbage” bandwidth reservations. However, re-
leasing the reservations may trigger other data change
events and lead to cascading effects.

We address the preceding complexities by exploring a
novel and substantially simpler control-plane program-

579

ming abstraction where state changes are transparent to
programmers. The tasks to manage state dependency
tracking and schedule re-executions are automated by
our runtime system, Fast.

2. PROGRAMMING ABSTRACTION
There are two different views for a programmer in

Fast, as demonstrated in Figure 1.

Figure 1: Programmers’ view of Fast.

The datastore provides the API for control func-
tions to access and modify persistent network state. As
Fast handles data changes internally, the control func-
tion f contains no event driven code and is programmed
to execute with the current state.

The function store is the key concept of Fast. It is
built on top of the datastore and manages the meta in-
formation about submitted control functions for better
analysis and scheduling. The launcher programs can
submit certain control functions to the Fast function
store and withdraw them when appropriate. They can
also configure the parameters passed to the control func-
tions and set attributes to specify the behaviours of cer-
tain control functions. For example, launchers can spec-
ify the precedence relationship between different control
functions to create a workflow, or using groups to en-
force that all updates in a group be committed as a
single transaction.

3. SYSTEM COMPONENTS
Fast function store is driven by a sophisticated run-

time, shown in Figure 2, which includes novel algo-
rithms to automate complex tasks of state-dependent
programming. Specifically, the runtime system consists
of the following key components.

Event dispatcher Classify events such as state changes
and submission/withdrawal of control functions, and
dispatch them to corresponding components.
Restoration module Restore the system state after
certain events so that the current state is consistent
with the status of the function instances.
Min-makespan scheduler Schedule execution orders
to minimize the maximum sum of control plane comput-
ing latency and the control path outbound latency.
Instance executor Execute and monitor the control
functions to obtain fine-grained state dependencies.

Figure 2: Runtime system for Fast.

Datastore Store the persistent network states and also
act as the the storage for function metadata.

4. PRELIMINARY EVALUATION
We implement a prototype of Fast and evaluate its

performance using Open vSwitch to simulate real topolo-
gies. We demonstrate the efficiency of Fast arisen from
state awareness and fine-grained dependency tracking.

Figure 3a demonstrates the recovery time of restor-
ing end-to-end connectivities after the control plane is
notified of a random link failure event. We compare a
routing function using Fast with periodic path com-
putation engines in Floodlight[1] with various timeout
values. We observe that being state-aware substantially
improves the end-to-end recovery time.

Figure 3b shows how the number of re-executions
changes with the number of running functions for dif-
ferent state tracking strategies. From the result, we
see that re-executions both increase linearly but the
slope with fine-grained state tracking is much smaller
as expected, because Fast only monitors the touched
links so that some link change events will not trigger re-
executions. In addition, we find that allowing users to
specify the satisfiability attribute of instances in Fast
substantially reduces the number of re-executions, which
is approximately 1/40 and 1/20 of those caused by the
coarse-grained system and Fast without SAT attributes.

5. REFERENCES
[1] Floodlight OpenFlow Controller.

http://floodlight.openflowhub.org/.

[2] F. B. Zhan. Three fastest shortest path algorithms
on real road networks: Data structures and
procedures. Journal of geographic information and
decision analysis, 1(1):69–82, 1997.

 0

 5

 10

 15

 20

 25

 30

 35

State Aware 10s 20s 30s

R
ec

o
v

er
y

 T
im

e
(s

)

(a) Benefits of state-awareness

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
u

m
b

er
 o

f
R

e-
ex

ec
u

ti
o

n
s

Number of Instances

Coarse-grained
Fine-grained

Fine-grained-SAT

(b) Benefits of being fine-grained

Figure 3: Evaluation results.

580

ORSAP: Abstracting Routing State on Demand

Kai Gao†, Chen Gu∗, Qiao Xiang‡, Xin Wang∗, Y. Richard Yang‡, Jun Bi†
∗Tongji University †Tsinghua University ‡Yale University

Abstract—Providing an interface for network applications
to access network state, Software-Defined Networking (SDN)
northbound API protocol is the foundation for the development
of programmable networks with adaptive applications. However,
with the growing network scale and applications’ need for routing
state at multi-domain level, feeding complete routing states
to applications would jeopardize their scalability and network
providers’ privacy. Thus a good routing state abstraction is
needed, which must be on-demand so that different applications
can receive customized abstract state suiting their needs. More-
over, it must be minimal and equivalent, i.e., containing all the
necessary information for applications to make decisions as the
complete state does with no redundancy. Current routing state
abstractions are not on-demand, and adopt extreme aggregation
approaches (e.g., the big switch) to provide a minimal abstraction
with the price of severe information loss. For instance, bottleneck
links shared between flows are concealed, leading applications to
make sub-optimal decisions. In this paper, we design ORSAP, the
first on-demand routing state abstraction protocol, through which
network applications can describe their demands while Internet
service providers can provide the on-demand minimal equivalent
routing state accordingly. ORSAP ensures applications’ scalabil-
ity, protects network providers’ privacy, and significantly reduces
the traffic to disseminate the information. Experiments show that
with ORSAP and the abstraction engine we introduced in this
paper, one can achieve a state abstraction ratio of up to 60% with
an extremely low computation time even with large networks and
complex application queries.

I. INTRODUCTION

Providing applications with the network information includ-

ing the routes and the attributes of the links on the routes

is fundamental for developing adaptive network applications.

Thus many SDN controllers, such as ONOS [1] and Open-

Daylight [2], have provided the API for applications to access

the global routing state.

However, feeding a complete routing state to applications

causes severe privacy leaks for network service providers and

brings significant challenges on the scalability of applications.

And these drawbacks are magnified with the growing network

size and applications’ needs for routing state on the multi-

domain level. It is important that an abstract routing state
be provided, which should not only guarantee privacy and

scalability but also reduce the load of information updates.

Despite these substantial benefits, designing such an routing

state abstraction is a non-trivial task because a series of

challenges need to be resolved: 1) The abstraction must be

on-demand. Different applications may have different require-

ments on the routing state. A good abstraction should allow

applications to specify their needs and return customized

abstract routing states. 2) The abstraction must ensure that

for any routing state query, there is no information loss in

the returned abstraction. In other words, applications should

be able to make the same decision based on the returned

routing state as they do based on the complete routing state.

3) The abstraction must be scalable. Returning a complete

routing state for a given query is infeasible because the

number of routes between a source-destination pair grows

exponentially with the increase of the scales of network and

attached properties. 4) The abstraction must protect the privacy
of network providers. Exposing the complete routing state to

applications will cause massive information leaks, making the

network more vulnerable.

Existing routing abstractions usually adopt two strategies.

One is the big switch approach, in which a network is

abstracted as a single node with all the details hidden from ap-

plications [3]–[5]. The other one is the aggregation approach,

in which the network is divided into several groups and each

group is aggregated as a single node [6], [7]. Though both ap-

proaches provide certain support for application scalability and

network provider privacy, they are application-oblivious, and

suffer from severe routing information loss, e.g., bottleneck

links shared between flows are concealed from applications,

leading them to make sub-optimal decisions. Thus neither of

them is the correct direction to an efficient on-demand routing

state abstraction.

In this work, we explore the feasibility and benefits of

providing such an on-demand routing state abstraction. In

particular, we propose ORSAP, the first On-demand Routing
State Abstraction Protocol. ORSAP allows network applica-

tions to specify their needs on routing state, and network

administrators to provide network information based on the

policies. We have also built a prototype providing the on-

demand routing state abstraction service with ORSAP. A

core component of the prototype system is a routing state

abstraction engine that computes the abstract routing state

with the complete network state, the set of paths computed

from an application’s query request and the network policies

specified by administrators. The engine is capable of providing

the minimal equivalent routing state in the sense that the result

contains all the necessary information for the application to

make decisions as the complete routing state does, and with

no redundant information.

II. PROTOCOL DESIGN

The protocol is based on the Application-Layer Traffic

Optimization [4] protocol, with the additional extensions:

Flow requests Applications must provide the interested flows

as well as the desired attributes using the FlowRequest as

demonstrated below. Each flow is specified by its header field

1

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Poster Paper

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE

values and is uniquely identified by its UUID. Applications can

also provide additional application-specific constraints, which

can be leveraged to further reduce the size of the abstract

routing state.

object {
FlowSpecMap flows;
JSONString attributes<0..*>;
[JSONString extra-constraints<0..*>;]

} FlowRequest;

object-map {
UUID -> FlowSpec;

} FlowSpecMap;

object {
IPv4Address source;
IPv4Address destination;

...
} FlowSpec;

Routing state encoding Applications will receive the routing

state in a format that is very similar to path vectors where a list

of traversed links is provided for each flow. The representation

is more compact to support links with multiple appearances

and fine-grained attributes. Bottlenecks can also be identified

where the paths for different flows have intersects.

The redundancy elimination algorithm One principle in

designing ORSAP is to reduce the data size as much as

possible while maintaining the equivalence condition. Our RE

algorithm can identify and eliminate all redundant constraints

and computes the minimal equivalent routing state, which

contains the minimal number of links among all possible

routing states that are equivalent to the complete routing state.

III. SYSTEM OVERVIEW

Figure 1 gives an overview of our ORSAP system, which

leverages the power of SDN and provides a general framework

of computing on-demand abstract routing state. The system

consists of five major components:

Path computation engine The path computation engine

(PCE) finds the paths for the flows specified by the user

request. It can be very efficient for SDN controllers with

centralized routing algorithms.

Constraint compiling engine The constraint compiling en-

gine (CCE) takes the policies from the network administrators

and compiles them into linear constraints on the nodes/links.

NOS Adapter The NOS adapter provides a unified interface

for the system to access the network information such as

topologies and attributes for nodes/links.

Routing state assembler The routing state assembler com-

bines the information collected by PCE, CCE and the NOS

adaptor to construct the complete routing state.

The RE Abstraction engine The abstraction engine is the

core of our framework. It uses the redundancy elimination
algorithm to find the minimal equivalent routing state and can

leverage parallel processing to reduce the execution time.

IV. PRELIMINARY EVALUATIONS

We evaluate our prototype system and demonstrate the

preliminary results in Figure 2, where the compression ratio

Fig. 1: Architecture of the ORSAP system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45 50 55 60 65 70

C
om

pr
es

si
on

 R
at

io

Topology size (#node)

 mecs
 01-constraint

 mecs + parallel (8 threads)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
om

pr
es

si
on

 R
at

io

Number of flows

 mecs
 01-constraint

 mecs + parallel (8 threads)

(b)

Fig. 2: Factors on the compression ratio.

denotes the portion of non-redundant links after the abstrac-

tion. As we can see from Figure 2(a), the compression ratio

decreases as the topology size grows, which indicates that the

ORSAP service has improved the scalability. Meanwhile, from

Figure 2(b) we can infer that even the compression ratio grows

with more flows, it can still reduce more than 40% of the

complete routing state for flow requests of a moderate size.

V. ACKNOWLEDGEMENT

This project is supported by the National Science Founda-
tion (CNS-1018502, CC*IIE1440745), the National Natural
Science Foundation of China (No.61472213, No.61502267)

and the Google Faculty Research Award.

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[2] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven SDN controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, 2014.

[3] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),
RFC 4271,” 2006.

[4] R. Alimi, R. Penno, S. Previdi, A. Tian, Y.-S. Wang, and Y. R. Yang,
“The ALTO protocol, RFC 7285,” 2014.

[5] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one big
switch abstraction in software-defined networks,” in ACM CoNEXT’13.

[6] T. Vu, A. Baid, H. Nguyen, and D. Raychaudhuri, “EIR: Edge-aware
Interdomain Routing protocol for the future mobile Internet,” WINLAB,
Rutgers University, Tech. Rep. WINLAB-TR-414, 2013.

[7] W. C. Lee, “Topology aggregation for hierarchical routing in ATM
networks,” ACM SIGCOMM Computer Communication Review, vol. 25,
no. 2, pp. 82–92, 1995.

2

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Poster Paper

2

ALTO WG K. Gao
Internet-Draft Sichuan University
Intended status: Standards Track Y. Lee
Expires: January 23, 2020 Huawei
 S. Randriamasy
 Nokia Bell Labs
 Y. Yang
 Yale University
 J. Zhang
 Tongji University
 July 22, 2019

 ALTO Extension: Path Vector
 draft-ietf-alto-path-vector-08

Abstract

 This document defines an ALTO extension that allows a resource to
 provide not only preferences of network paths but also correlations
 of network paths, including aggregations of network components and
 their properties on the paths between different PIDs or endpoints.
 The extended information can be used to improve the robustness and
 performance for applications in some new usage scenarios, such as
 high-speed data transfers and traffic optimization using in-network
 storage and computation. This document introduces abstract network
 element (ANE) as an abstraction for aggregations of network
 components. It extends the base protocol and the Unified Property
 extension to enable the capability of encoding such information in a
 "path vector", i.e., an array of ANEs that are traversed by traffic
 from a source to a destination.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

Gao, et al. Expires January 23, 2020 [Page 1]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ALTO Extension: Path Vector July 2019

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 23, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 3. Use Cases . 5
 3.1 . Shared Risk Resource Group 6
 3.2 . Capacity Region . 7
 3.3 . In-Network Caching 9
 4. Overview . 9
 4.1 . Workflow . 10
 4.2 . Abstract Network Element 11
 4.3 . Protocol Extensions 12
 4.3.1 . Path Vector Cost Type 12
 4.3.2 . Property Negotiation 12
 4.3.3 . Multipart/Related Message 13
 5. Basic Data Types . 14
 5.1 . ANE Identifier . 15
 5.2 . Path Vector Cost Type 15
 5.2.1 . Cost Metric: ane-path 15
 5.2.2 . Cost Mode: array 15
 5.3 . ANE Domain . 15
 5.3.1 . Entity Domain Type 16
 5.3.2 . Domain-Specific Entity Identifier 16
 5.3.3 . Hierarchy and Inheritance 16
 5.4 . New Resource-Specific Entity Domain Exports 16
 5.4.1 . ANE Domain of Cost Map Resource 16

Gao, et al. Expires January 23, 2020 [Page 2]

https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft ALTO Extension: Path Vector July 2019

 5.4.2 . ANE Domain of Endpoint Cost Resource 16
 5.5 . ANE Properties . 16
 5.5.1 . ANE Property: Maximum Reservable Bandwidth 16
 5.5.2 . ANE Property: Persistent Entity 17
 5.6 . Part Resource ID . 17
 6. Service Extensions . 17
 6.1 . Multipart Filtered Cost Map for Path Vector 17
 6.1.1 . Media Type . 17
 6.1.2 . HTTP Method . 17
 6.1.3 . Accept Input Parameters 18
 6.1.4 . Capabilities . 18
 6.1.5 . Uses . 19
 6.1.6 . Response . 19
 6.2 . Multipart Endpoint Cost Service for Path Vector 20
 6.2.1 . Media Type . 20
 6.2.2 . HTTP Method . 20
 6.2.3 . Accept Input Parameters 20
 6.2.4 . Capabilities . 21
 6.2.5 . Uses . 21
 6.2.6 . Response . 21
 7. Examples . 22
 7.1 . Example: Information Resource Directory 22
 7.2 . Example: Multipart Filtered Cost Map 24
 7.3 . Example: Multipart Endpoint Cost Resource 26
 7.4 . Example: Incremental Updates 28
 8. Compatibility . 29
 8.1 . Compatibility with Legacy ALTO Clients/Servers 29
 8.2 . Compatibility with Multi-Cost Extension 29
 8.3 . Compatibility with Incremental Update 29
 8.4 . Compatibility with Cost Calendar 29
 9. General Discussions . 30
 9.1 . Provide Calendar for Property Map 30
 9.2 . Constraint Tests for General Cost Types 30
 9.3 . General Multipart Resources Query 31
 10. Security Considerations 31
 11. IANA Considerations . 32
 11.1 . ALTO Cost Mode Registry 32
 11.2 . ALTO Entity Domain Registry 32
 11.3 . ALTO Entity Property Type Registry 32
 11.4 . ALTO Resource Entity Domain Export Registries 32
 11.4.1 . costmap . 33
 11.4.2 . endpointcost . 33
 12. Acknowledgments . 33
 13. References . 33
 13.1 . Normative References 33
 13.2 . Informative References 34
 Authors’ Addresses . 34

Gao, et al. Expires January 23, 2020 [Page 3]

Internet-Draft ALTO Extension: Path Vector July 2019

1. Introduction

 The ALTO protocol is aimed to provide applications with knowledge of
 the underlying network topologies from the point of views of ISPs.
 The base protocol [RFC7285] defines cost maps and endpoint cost
 services that expose the preferences of network paths for a set of
 source and destination pairs.

 While the preferences of network paths are already sufficient for a
 wide range of applications, new application traffic patterns and new
 network technologies are emerging that are well beyond the domain for
 which existing ALTO maps are engineered, including but not limited
 to:

 Very-high-speed data transfers: Applications, such as Content
 Distribution Network (CDN) overlays, geo-distributed data centers
 and large-scale data analytics, are foundations of many Internet
 services today and have very large traffic between a source and a
 destination. Thus, the interference between traffic of different
 source and destination pairs cannot be omitted, which cannot be
 provided by or inferred from existing ALTO base protocol and
 extensions.

 In-network storage and computation: Emerging networking technologies
 such as network function virtualization and mobile edge computing
 provide storage and computation inside the network. Applications
 can leverage these resources to further improve their performance,
 for example, using in-network caching to reduce latency and
 bandwidth from a given source to multiple clients. However,
 existing ALTO extensions provide no map resources to discover
 available in-network services, nor any information to help ALTO
 clients determine how to effectively and efficiently use these
 services.

 This document specifies a new extension to incorporate these newly
 emerged scenarios into the ALTO framework. The essence of this
 extension is that an ALTO server exposes correlations of network
 paths in additional to preferences of network paths.

 The correlations of network paths are represented by path vectors.
 Each element in a path vector, which is referred to as an abstract
 network element (ANE), is the aggregation of network components on
 the path, such as routers, switches, links and clusters of in-network
 servers. If an abstract network element appears in multiple network
 paths, the traffic along these paths will join at this abstract
 network element and are subject to the corresponding resource
 constraints.

Gao, et al. Expires January 23, 2020 [Page 4]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft ALTO Extension: Path Vector July 2019

 The availability of the path correlations by itself can help ALTO
 clients conduct better traffic scheduling. For example, an ALTO
 client can use the path correlations to conduct more intelligent end-
 to-end measurement and identify traffic bottlenecks.

 By augmenting these abstract network elements with different
 properties, an ALTO server can provide a more fine-grained view of
 the network. ALTO clients can use this view to derive information
 such as shared risk resource groups, capacity regions and available
 in-network cache locations, which can be used to improve the
 robustness and performance of the application traffic.

2. Terminology

 This document extends the ALTO base protocol [RFC7285] and the
 Unified Property Map extension [I-D.ietf-alto-unified-props-new]. In
 additional to the ones defined in these documents, this document also
 uses the following additional terms:

 o Abstract network element (ANE): An abstract network element is an
 abstraction of network components. It can be a link, a
 middleboxes, a virtualized network function (VNF), etc., or their
 aggregations. In a response, each abstract network element has a
 unique ANE identifier.

 o Path vector: A path vector is an array of ANE identifiers. It
 presents an abstract network path between source/destination
 points such as PIDs or endpoints.

 o Path vector resource: A path vector resource refers to an ALTO
 resource which supports the extension defined in this document.

 o

 o Path vector response: A path vector response refers to the
 multipart/related message returned by a path vector resource. It
 consists of a path vector part, i.e., the (endpoint) cost map part
 which contains the path vector information, and a property map
 part.

3. Use Cases

 This section describes typical use cases of the path vector
 extension. These use cases provide new usage scenarios of the ALTO
 framework.

Gao, et al. Expires January 23, 2020 [Page 5]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft ALTO Extension: Path Vector July 2019

3.1 . Shared Risk Resource Group

 Consider an application which controls 4 end hosts (eh1, eh2, eh3 and
 eh4), which are connected by an ISP network with 5 switches (sw1,
 sw2, sw3, sw4 and sw5) and 5 links (l1, l2, l3, l4 and l5), as shown
 in Figure 1. Assume the end hosts are running data storage services
 and some analytics tasks, which requires high data availability. In
 order to determine the replica placement, the application must know
 how the end hosts will be partitioned if certain network failures
 happen.

 +-----------------+
 ------------->| |<---------
 / ---------->| ALTO Client |<------ \
 / / +-----------------+ \ \
 | | ^ | | | |
 | | | | |
 | | v | |
 | | +-----------------+ | |
 | | | |...... | |
 | | . | ALTO Server | . | |
 | | . +-----------------+ . | |
 | | . . | |
 | v . +-----+ +-----+ . v |
 | eh1 --| |- l3. -| |-- eh3 |
 | . | sw1 | \..l1 ../ | sw4 | . |
 | . +-----+ \ +-----+ / +-----+ . |
 | . --| |-- | . |
 | . | sw3 | l5..| . |
 | . --| |-- | . |
 | . +-----+ / +-----+ \ +-----+ . |
 | . | | /..l2 l4..\ | | . |
 -->eh2 --| sw2 |- -| sw5 |-- eh4<--
 . +-----+ +-----+ .

 Figure 1: Topology for the Shared Risk Resource Group and the
 Capacity Region Use Cases

 For that purpose, the application uses an ALTO client, which
 communicates with an ALTO server provided by the ISP network. Since
 the Endpoint Cost Service with only scalar cost values cannot provide
 essential information for the application, thus, both the client and
 the server have the path vector extension enabled.

 Assume the ISP uses shortest path routing. For simplicity, consider
 the data availability on eh4. The network components on the paths
 from all other end hosts to eh4 are as follows:

Gao, et al. Expires January 23, 2020 [Page 6]

Internet-Draft ALTO Extension: Path Vector July 2019

 eh1->eh4: sw1, l1, sw3, l4, sw5
 eh2->eh4: sw2, l2, sw3, l4, sw5
 eh3->eh4: sw4, l5, sw5

 These network components can be categorized into 5 categories:

 1. Failure will only disconnect eh1 to eh4: sw1, l1.

 2. Failure will only disconnect eh2 to eh4: sw2, l2.

 3. Failure will only disconnect eh3 to eh4: sw4, l5.

 4. Failure will only disconnect eh1 and eh2 to eh4: sw3, l4.

 5. Failure will disconnect eh1, eh2 and eh3 to eh4: sw5.

 The ALTO server can then aggregate sw1 and l1 as an abstract network
 element, ane1. By applying the aggregation to the categories, the
 response may be as follows:

 eh1->eh4: ane1, ane4, ane5
 eh2->eh4: ane2, ane4, ane5
 eh3->eh4: ane3, ane5

 Thus, the application can still derive the potential network
 partitions for all possible network failures without knowing the
 exact network topology, which protects the privacy of the ISP.

3.2 . Capacity Region

 This use case uses the same topology and application settings as in
 Section 3.1 as shown in Figure 1. Assume the capacity of each link
 is 10 Gbps, except l5 whose capacity is 5 Gbps . Assume the
 application is running a map-reduce task, where the optimal traffic
 scheduling is usually referred to the co-flow scheduling problem.
 Consider a simplified co-flow scheduling problem, e.g., the first
 stage of a map-reduce task which needs to transfer data from two data
 nodes (eh1 and eh3) to the mappers (eh2 and eh4). In order to
 optimize the job completion time, the application needs to determine
 the bottleneck of the transfers.

 If the ALTO server encodes the routing cost as bandwidth of the path,
 the client will obtain the following information:

 eh1->eh2: 10 Gbps,
 eh1->eh4: 10 Gbps,
 eh3->eh2: 10 Gbps,
 eh3->eh4: 5 Gbps.

Gao, et al. Expires January 23, 2020 [Page 7]

Internet-Draft ALTO Extension: Path Vector July 2019

 However, it does not provide sufficient information to determine the
 bottleneck. With the path vector extension, the ALTO server will
 first return the correlations of network paths between eh1, eh3 and
 eh2, eh4, as follows:

 eh1->eh2: ane1 (l1), ane2 (l2),
 eh1->eh4: ane1 (l1), ane4 (l4),
 eh3->eh2: ane3 (l3), ane2 (l2),
 eh3->eh3: ane5 (l5).

 Meanwhile, the ALTO server can also return the capacity of each ANE:

 ane1.capacity = 10 Gbps,
 ane2.capacity = 10 Gbps,
 ane3.capacity = 10 Gbps,
 ane4.capacity = 10 Gbps,
 ane5.capacity = 5 Gbps.

 With the correlation of network paths and the link capacity property,
 the client is able to derive the capacity region of data transfer
 rates. Let x1 denote the transfer rate of eh1->eh2, x2 denote the
 rate of eh1->eh4, x3 denote the rate of eh3->eh2, and x4 denote the
 rate of eh3->eh4. The application can derive the following
 information from the responses:

 eh1->eh2 eh1->eh4 eh3->eh2 eh3->eh4 capaity
 ane1 1 1 0 0 | 10 Gbps
 ane2 1 0 1 0 | 10 Gbps
 ane3 0 0 1 0 | 10 Gbps
 ane4 0 1 0 0 | 10 Gbps
 ane5 0 0 0 1 | 5 Gbps

 Specifically, the coefficient matrix on the left hand side is the
 transposition of the matrix directly derived from the path vector
 part, and the right-hand-side vector is directly derived from the
 property map part. Thus, the bandwidth constraints of the data
 transfers are as follows:

 x1 + x2 <= 10 Gbps (ane1),
 x1 + x3 <= 10 Gbps (ane2),
 x2 + x3 <= 10 Gbps (ane3),
 x2 <= 10 Gbps (ane4),
 x4 <= 5 Gbps (ane5).

Gao, et al. Expires January 23, 2020 [Page 8]

Internet-Draft ALTO Extension: Path Vector July 2019

3.3 . In-Network Caching

 Consider an application which controls 3 end hosts (eh1, eh2 and
 eh3), which are connected by an ISP network and the Internet, as
 shown in Figure 2. Assume two clients at end hosts eh2 and eh3 are
 downloading the same data from a data server at eh1. Meanwhile, the
 network provider offers an in-network caching service at the gateway.

 +-------------+
 ------->| |<-----------------------
 / ----->| ALTO Client |<------- \
 / / +-------------+ | \
 / / v |
 / / +-------------+ |
 / / | ALTO Server |...... |
 / / . +-------------+ . |
 / / . +---------+ . |
 | | . -+ Caching | . | |
 | | . / | Proxy | . |
 | |S .+-------+ / +---------+ . |
 | -->eh1--| sub |_ | . |
 | .| net 1 | \ +------+ +----------+. |
 | .+-------+ ---| | | |. v C2
 | . | Gate +---------+ Internet |--eh3
 | C1 .+-------+ --| way | | |.
 ----->eh2--| sub |__/ +------+ +----------+.
 .| net 2 | .
 .+-------+ .
 ...

 Figure 2: Topology for the In-Network Caching Use Case.

 With the path vector extension enabled, the ALTO server can expose
 two types of information

 Without the traffic correlation information, the ALTO client cannot
 know whether or how the traffic goes through the proxy. For example,
 if subnet1 and subnet2 are directly connected and the traffic from
 eh1 to eh2 bypasses the gateway, the in-network cache can only be
 used for traffic from C2 to S and is less effective.

4. Overview

 This section gives a top-down overview of approaches adopted by the
 path vector extension, with discussions to fully explore the design
 space. It is assumed that readers are familiar with both the base
 protocol [RFC7285] and the Unified Property Map extension
 [I-D.ietf-alto-unified-props-new].

Gao, et al. Expires January 23, 2020 [Page 9]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft ALTO Extension: Path Vector July 2019

4.1 . Workflow

 The workflow of the base ALTO protocol consists of one round of
 communication: An ALTO client sends a request to an ALTO server, and
 the ALTO server returns a response, as shown in Figure 3. Each
 response contains only one type of ALTO resources, e.g., network
 maps, cost maps, or property maps.

 +-------------+ +-------------+
 | ALTO Client | | ALTO Server |
 +-------------+ +-------------+
 | Request |
 |--------------------------------------->|
 | |
 | Response |
 |<---------------------------------------|
 | |
 . . .
 . . .
 . . .
 | PV Request |
 |--------------------------------------->|
 | |
 | PV Response (Cost Map Part) |
 |<---------------------------------------|
 | |
 | PV Response (Property Map Part) |
 |<---------------------------------------|
 | |

 Figure 3: Information Exchange Process of the base ALTO Protocol and
 the Path Vector Extension

 The path vector extension, on the other hand, CAN be decomposed to
 two types of information resources. First, path vectors, which
 represent the correlations of network paths for all <source,
 destination> pairs in the requst, CAN be encoded as an (endpoint)
 cost map with an extended cost type. Second, properties associated
 with the ANEs CAN be encoded as a property map.

 Instead of making two consecutive queries, however, the path vector
 extension adopts a workflow which also consists of only one round of
 communication, based on the following reasons:

 1. ANE Computation Flexibility. For better scalability, flexibility
 and privacy, Abstract Network Elements MAY be constructed on
 demand, and potentially based on the properties (See Section 4.2
 for more details). If sources and destinations are not in the

Gao, et al. Expires January 23, 2020 [Page 10]

Internet-Draft ALTO Extension: Path Vector July 2019

 same request as the properties, an ALTO server either CANNOT
 construct ANEs on-demand, or MUST wait until both requests are
 received.

 2. Server Scalability. As ANEs are constructed on demand, mappings
 of each ANE to its underlying network devices and resources CAN
 be different in different queries. In order to respond to the
 second request correctly, an ALTO server MUST store the mapping
 of each path vector request until the client fully retrieves the
 property information, which CAN substantially harm the server
 scalability and potentially lead to Denial-of-Service attacks.

 Thus, the path vector extension encapsulates all essential
 information in one request, and returns both path vectors and
 properties associated with the ANEs in a single response. See
 Section 4.3 for more details.

4.2 . Abstract Network Element

 A key design in the path vector extension is abstract network
 element. Abstract network elements can be statically generated, for
 example, based on geo-locations, OSPF areas, or simply the raw
 network topology. They CAN also be generated dynamically, based on a
 client’s request. This on-demand ANE generation allows for better
 scalability, flexibility and privacy enhancement.

 Consider an extreme case where the client only queries the bandwidth
 between one source and one destination in the topology shown in
 Figure 4. Without knowing in prior the desired property, an ALTO
 server MAY need to include all network components on the paths for
 high accuracy. However, with the prior knowledge that the client
 only asks for the bandwidth information, an ALTO server CAN either 1)
 selectively pick the link with the smallest available bandwidth, or
 2) dynamically generate a new ANE whose available bandwidth is the
 smallest value of the links’ on the path. Thus, an ALTO server can
 provide accurate information with very little leak of its internal
 network topology. ANEs MAY also be constructed based on algebraic
 aggregations, please see [TON2019] for more details.

 +-----+ +-----+ +-----+
 eh1 --| sw1 |--| sw2 |--...--| swN |-- eh2
 +-----+ +-----+ +-----+

 Figure 4: Topology for Dynamic ANE Example.

 An ANE is uniquely identified by an ANE identifier (see Section 5.1)
 in the same response. However, since ANEs CAN be generated
 dynamically, an ALTO client MUST NOT assume that ANEs with the same

Gao, et al. Expires January 23, 2020 [Page 11]

Internet-Draft ALTO Extension: Path Vector July 2019

 identifier but from different queries refer to the same aggregation
 of network components. This approach simplifies the management of
 ANE identifiers at ALTO servers, and increases the difficulty to
 infer the real network topology with cross queries. It is
 RECOMMENDED that the identifiers of statically generated ANEs be
 anonymized in the path vector response, for example, by shuffling the
 ANEs and shrinking their identifier space to [1, N], where N is the
 number of ANEs etc.

4.3 . Protocol Extensions

 Section 4.1 has well articulated the reasons to complete the
 information exchange in a single round of communication. This
 section introduces the three major extended components to the base
 ALTO protocol and the Unified Property Map extension, as shown in
 Table 1.

 +------------------------+-------+----------+-----------+
 | Component | IRD | Request | Response |
 +------------------------+-------+----------+-----------+
 | Path Vector Cost Type | Yes | Yes | Yes |
 | Property Negotiation | Yes | Yes | Yes |
 | Multipart Message | Yes | No | Yes |
 +------------------------+-------+----------+-----------+

 Table 1: Extended Components and Where They Apply.

4.3.1 . Path Vector Cost Type

 Existing cost modes defined in [RFC7285] allow only scalar cost
 values. However, the path vector extension MUST convey vector format
 information. To fulfill this requirement, this document defines a
 new cost mode named "array", which indicates that the cost value MUST
 be interpreted as an array of JSONValue. This document also
 introduces a new cost metric "ane-path" to convey an array of ANE
 identifiers.

 The combination of the "array" cost mode and the "ane-path" cost
 metric also complies best with the ALTO base protocol, where cost
 mode specifies the interpretation of a cost value, and cost metric
 conveys the meaning.

4.3.2 . Property Negotiation

 Similar to cost types, an ALTO server MAY only support a given set of
 ANE properties in a path vector information resource. Meanwhile, an
 ALTO client MAY only require a subset of the available properties.
 Thus, a property negotiation process is required.

Gao, et al. Expires January 23, 2020 [Page 12]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft ALTO Extension: Path Vector July 2019

 This document uses a similar approach as the negotiation process of
 cost types: the available properties for a given resource are
 announced in the Information Resource Directory and more
 specifically, in a new capability called "ane-properties"; the
 selected properties SHOULD be specified in a new filter called "ane-
 properties" in the request body; the response MUST return and only
 return the selected properties for the ANEs in the response, if
 applicable.

4.3.3 . Multipart/Related Message

 Path vectors and the property map containing the ANEs are two
 different types of objects, but they need to be encoded in one
 message. One approach is to define a new media type to contain both
 objects, but this violates modular design.

 This document uses standard-conforming usage of "multipart/related"
 media type defined in [RFC2387] to elegantly combine the objects.
 Path vectors are encoded as a cost map or an endpoint cost map, and
 the property map is encoded as a Unified Propert Map. They are
 encapsulated as parts of a multipart message. The modular
 composition allows ALTO servers and clients to reuse the data models
 of the existing information resources. Specifically, this document
 addresses the following practical issues using "multipart/related".

4.3.3.1 . Identifying the Media Type of the Root Object

 ALTO uses media type to indicate the type of an entry in the
 Information Resource Directory (IRD) (e.g., "application/alto-
 costmap+json" for cost map and "application/alto-endpointcost+json"
 for endpoint cost map). Simply putting "multipart/related" as the
 media type, however, makes it impossible for an ALTO client to
 identify the type of service provided by related entries.

 To address this issue, this document uses the "type" parameter to
 indicate the root object of a multipart/related message. For a cost
 map resource, the "media-type" in the IRD entry MUST be "multipart/
 related" with the parameter "type=application/alto-costmap+json"; for
 an Endpoint Cost Service, the parameter MUST be "type=application/
 alto-endpointcost+json".

4.3.3.2 . References to Part Messages

 The ALTO SSE extension (see [I-D.ietf-alto-incr-update-sse]) uses
 "client-id" to demultiplex push updates. However, "client-id" is
 provided for each request, which introduces ambiguity when applying
 SSE to a path vector resource.

Gao, et al. Expires January 23, 2020 [Page 13]

https://tools.ietf.org/pdf/rfc2387

Internet-Draft ALTO Extension: Path Vector July 2019

 To address this issue, an ALTO server MUST assign a unique identifier
 to each part of the "multipart/related" response message. This
 identifier, referred to as a Part Resource ID (See Section 5.6 for
 details), MUST be present in the part message’s "Resource-Id" header.
 The MIME part header MUST also contain the "Content-Type" header,
 whose value is the media type of the part (e.g., "application/alto-
 costmap+json", "application/alto-endpointcost+json", or "application/
 alto-propmap+json").

 If an ALTO server provides incremental updates for this path vector
 resource, it MUST generate incremental updates for each part
 separately. The client-id MUST have the following format:

 pv-client-id ’.’ part-resource-id

 where pv-client-id is the client-id assigned to the path vector
 request, and part-resource-id is the "Resource-Id" header value of
 the part. The media-type MUST match the "Content-Type" of the part.

 The same problem happens inside the part messages as well. The two
 parts MUST contain a version tag, which SHOULD contain a unique
 Resource ID. This document requires the resource-id in a Version Tag
 to have the following format:

 pv-resource-id ’.’ part-resource-id

 where pv-resource-id is the resource ID of the path vector resource
 in the IRD entry, and the part-resource-id has the same value as the
 "Resource-Id" header of the part.

4.3.3.3 . Order of Part Messages

 According to RFC 2387 [RFC2387], the path vector part, whose media
 type is the same as the "type" parameter of the multipart response
 message, is the root object. Thus, it is the element the application
 processes first. Even though the "start" parameter allows it to be
 placed anywhere in the part sequence, it is RECOMMENDED that the
 parts arrive in the same order as they are processed, i.e., the path
 vector part is always put as the first part, followed by the property
 map part. It is also RECOMMENDED that when doing so, an ALTO server
 SHOULD NOT set the "start" parameter, which implies the first part is
 the root object.

5. Basic Data Types

Gao, et al. Expires January 23, 2020 [Page 14]

https://tools.ietf.org/pdf/rfc2387
https://tools.ietf.org/pdf/rfc2387

Internet-Draft ALTO Extension: Path Vector July 2019

5.1 . ANE Identifier

 An ANE identifier is encoded as a JSON string. The string MUST be no
 more than 64 characters, and it MUST NOT contain characters other
 than US-ASCII alphanumeric characters (U+0030-U+0039, U+0041-U+005A,
 and U+0061-U+007A), the hyphen ("-", U+002D), the colon (":",
 U+003A), the at sign ("@", code point U+0040), the low line ("_",
 U+005F), or the "." separator (U+002E). The "." separator is
 reserved for future use and MUST NOT be used unless specifically
 indicated in this document, or an extension document.

 The type ANEIdentifier is used in this document to indicate a string
 of this format.

5.2 . Path Vector Cost Type

 This document defines a new cost type, which is referred to as the
 "path vector" cost type. An ALTO server MUST offer this cost type if
 it supports the path vector extension.

5.2.1 . Cost Metric: ane-path

 This cost metric conveys an array of ANE identifiers, where each
 identifier uniquely represents an ANE traversed by traffic from a
 source to a destination.

5.2.2 . Cost Mode: array

 This cost mode indicates that every cost value in a cost map or an
 endpoint cost map MUST be interpreted as a JSON array object.

 Note that this cost mode only requires the cost value to be a JSON
 array of JSONValue. However, an ALTO server that enables this
 extension MUST return a JSON array of ANEIdentifier (Section 5.1)
 when the cost metric is "ane-path".

5.3 . ANE Domain

 This document specifies a new ALTO entity domain called "ane" in
 addition to the ones in [I-D.ietf-alto-unified-props-new]. The ANE
 domain associates property values with the ANEs in a network. The
 entity in ANE domain is often used in the path vector by cost maps or
 endpoint cost resources. Accordingly, the ANE domain always depends
 on a cost map or an endpoint cost map.

Gao, et al. Expires January 23, 2020 [Page 15]

Internet-Draft ALTO Extension: Path Vector July 2019

5.3.1 . Entity Domain Type

 ane

5.3.2 . Domain-Specific Entity Identifier

 The entity identifier of ANE domain uses the same encoding as
 ANEIdentifier (Section 5.1).

5.3.3 . Hierarchy and Inheritance

 There is no hierarchy or inheritance for properties associated with
 ANEs.

5.4 . New Resource-Specific Entity Domain Exports

5.4.1 . ANE Domain of Cost Map Resource

 If an ALTO cost map resource supports "ane-path" cost metric, it can
 export an "ane" typed entity domain defined by the union of all sets
 of ANE names, where each set of ANE names are an "ane-path" metric
 cost value in this ALTO cost map resource.

5.4.2 . ANE Domain of Endpoint Cost Resource

 If an ALTO endpoint cost resource supports "ane-path" cost metric, it
 can export an "ane" typed entity domain defined by the union of all
 sets of ANE names, where each set of ANE names are an "ane-path"
 metric cost value in this ALTO endpoint cost resource.

5.5 . ANE Properties

5.5.1 . ANE Property: Maximum Reservable Bandwidth

 The maximum reservable bandwidth property conveys the maximum
 bandwidth that can be reserved for traffic from a source to a
 destination and is indicated by the property name "maxresbw". The
 value MUST be encoded as a numerical cost value as defined in
 Section 6.1.2.1 of [RFC7285] and the unit is bit per second.

 If this property is requested but is missing for a given ANE, it MUST
 be interpreted as that the ANE does not support bandwidth reservation
 but have sufficiently large bandwidth for all traffic that traverses
 it.

Gao, et al. Expires January 23, 2020 [Page 16]

https://tools.ietf.org/pdf/rfc7285#section-6.1.2.1

Internet-Draft ALTO Extension: Path Vector July 2019

5.5.2 . ANE Property: Persistent Entity

 The persistent entity property conveys the physical or logical
 network entities (e.g., links, in-network caching service) that are
 contained by an abstract network element. It is indicated by the
 property name "persistent-entity". The value is encoded as a JSON
 array of entity identifiers ([I-D.ietf-alto-unified-props-new]).
 These entity identifiers are persistent so that a client CAN further
 query their properties for future use.

 If this property is requested but is missing for a given ANE, it MUST
 be interpreted as that no such entities exist in this ANE.

5.6 . Part Resource ID

 A Part Resource ID is encoded as a JSON string with the same format
 as that of the Resource ID (Section 10.2 of [RFC7285]).

 WARNING: Even though the client-id assigned to a path vector request
 and the Part Resource ID MAY contain up to 64 characters by their own
 definition. Their concatenation (see Section 4.3.3.2) MUST also
 conform to the same length constraint. The same requirement applies
 to the resource ID of the path vector resource, too. Thus, it is
 RECOMMENDED to limit the length of resource ID and client ID related
 to a path vector resource to 31 characters.

6. Service Extensions

6.1 . Multipart Filtered Cost Map for Path Vector

 This document introduces a new ALTO resource called multipart
 filtered cost map resource, which allows an ALTO server to provide
 other ALTO resources associated to the cost map resource in the same
 response.

6.1.1 . Media Type

 The media type of the multipart filtered cost map resource is
 "multipart/related;type=application/alto-costmap+json".

6.1.2 . HTTP Method

 The multipart filtered cost map is requested using the HTTP POST
 method.

Gao, et al. Expires January 23, 2020 [Page 17]

https://tools.ietf.org/pdf/rfc7285#section-10.2

Internet-Draft ALTO Extension: Path Vector July 2019

6.1.3 . Accept Input Parameters

 The input parameters of the multipart filtered cost map are supplied
 in the body of an HTTP POST request. This document extends the input
 parameters to a filtered cost map with a data format indicated by the
 media type "application/alto-costmapfilter+json", which is a JSON
 object of type PVReqFilteredCostMap, where:

 object {
 [PropertyName ane-properties<0..*>;]
 } PVReqFilteredCostMap : ReqFilteredCostMap;

 with fields:

 ane-properties: A list of properties that are associated with the
 ANEs. Each property in this list MUST match one of the supported
 ANE properties indicated in the resource’s "ane-properties"
 capability. If the field is NOT present, it MUST be interpreted
 as an empty list, indicating that the ALTO server MUST NOT return
 any property in the unified property part.

6.1.4 . Capabilities

 The multipart filtered cost map resource extends the capabilities
 defined in Section 11.3.2.4 of [RFC7285] . The capabilities are
 defined by a JSON object of type PVFilteredCostMapCapabilities:

 object {
 [PropertyName ane-properties<0..*>;]
 } PVFilteredCostMapCapabilities : FilteredCostMapCapabilities;

 with fields:

 cost-type-names: The "cost-type-names" field MUST only include the
 path vector cost type, unless explicitly documented by a future
 extension. This also implies that the path vector cost type MUST
 be defined in the "cost-types" of the Information Resource
 Directory’s "meta" field.

 ane-properties: Defines a list of ANE properties that can be
 returned. If the field is NOT present, it MUST be interpreted as
 an empty list, indicating the ALTO server CANNOT provide any ANE
 property.

Gao, et al. Expires January 23, 2020 [Page 18]

https://tools.ietf.org/pdf/rfc7285#section-11.3.2.4

Internet-Draft ALTO Extension: Path Vector July 2019

6.1.5 . Uses

 The resource ID of the network map based on which the PIDs in the
 returned cost map will be defined. If this resource supports
 "persistent-entities", it MUST also include ALL the resources that
 exposes the entities that MAY appear in the response.

6.1.6 . Response

 The response MUST indicate an error, using ALTO protocol error
 handling, as defined in Section 8.5 of [RFC7285] , if the request is
 invalid.

 The "Content-Type" header of the response MUST be "multipart/related"
 as defined by [RFC2387] with the following parameters:

 type: The type parameter MUST be "application/alto-costmap+json".
 Note that [RFC2387] permits both parameters with and without the
 double quotes.

 start: The start parameter MUST be a quoted string where the quoted
 part has the same value as the "Resource-ID" header in the first
 part.

 boundary: The boundary parameter is as defined in [RFC2387].

 The body of the response consists of two parts.

 The first part MUST include "Resource-Id" and "Content-Type" in its
 header. The value of "Resource-Id" MUST has the format of a Part
 Resource ID. The "Content-Type" MUST be "application/alto-
 costmap+json".

 The body of the first part MUST be a JSON object with the same format
 as defined in Section 11.2.3.6 of [RFC7285] . The JSON object MUST
 include the "vtag" field in the "meta" field, which provides the
 version tag of the returned cost map. The resource ID of the version
 tag MUST follow the format in Section 4.3.3.2 . The "meta" field MUST
 also include the "dependent-vtags" field, whose value is a single-
 element array to indicate the version tag of the network map used,
 where the network map is specified in the "uses" attribute of the
 multipart filtered cost map resource in IRD.

 The second part MUST also include "Resource-Id" and "Content-Type" in
 its header. The value of "Resource-Id" has the format of a Part
 Resource ID. The "Content-Type" MUST be "application/alto-
 propmap+json".

Gao, et al. Expires January 23, 2020 [Page 19]

https://tools.ietf.org/pdf/rfc7285#section-8.5
https://tools.ietf.org/pdf/rfc2387
https://tools.ietf.org/pdf/rfc2387
https://tools.ietf.org/pdf/rfc2387
https://tools.ietf.org/pdf/rfc7285#section-11.2.3.6

Internet-Draft ALTO Extension: Path Vector July 2019

 The body of the second part MUST be a JSON object with the same
 format as defined in Section 4.6 of
 [I-D.ietf-alto-unified-props-new]. The JSON object MUST include the
 "dependent-vtags" field in the "meta" field. The value of the
 "dependent-vtags" field MUST be an array of VersionTag objects as
 defined by Section 10.3 of [RFC7285] . The "vtag" of the first part
 MUST be included in the "dependent-vtags". If "persistent-entities"
 is requested, the version tags of the dependent resources that MAY
 expose the entities in the response MUST also be included. The
 PropertyMapData has one member for each ANE identifier that appears
 in the first part, where the EntityProps has one member for each
 property requested by the client if applicable.

6.2 . Multipart Endpoint Cost Service for Path Vector

 This document introduces a new ALTO resource called multipart
 endpoint cost resource, which allows an ALTO server to provide other
 ALTO resources associated to the endpoint cost resource in the same
 response.

6.2.1 . Media Type

 The media type of the multipart endpoint cost resource is
 "multipart/related;type=application/alto-endpointcost+json".

6.2.2 . HTTP Method

 The multipart endpoint cost resource is requested using the HTTP POST
 method.

6.2.3 . Accept Input Parameters

 The input parameters of the multipart endpoint cost resource are
 supplied in the body of an HTTP POST request. This document extends
 the input parameters to an endpoint cost map with a data format
 indicated by the media type "application/alto-
 endpointcostparams+json", which is a JSON object of type
 PVEndpointCostParams, where

 object {
 [PropertyName ane-properties<0..*>;]
 } PVReqEndpointcost : ReqEndpointcost;

 with fields:

 ane-properties: This document defines the "ane-properties" in
 PVReqEndpointcost as the same as in PVReqFilteredCostMap. See
 Section 6.1.3 .

Gao, et al. Expires January 23, 2020 [Page 20]

https://tools.ietf.org/pdf/rfc7285#section-10.3

Internet-Draft ALTO Extension: Path Vector July 2019

6.2.4 . Capabilities

 The capabilities of the multipart endpoint cost resource are defined
 by a JSON object of type PVEndpointcostCapabilities, which is defined
 as the same as PVFilteredCostMapCapabilities. See Section 6.1.4 .

6.2.5 . Uses

 If a multipart endpoint cost resource supports "persistent-entities",
 the "uses" field in its IRD entry MUST include ALL the resources
 which exposes the entities that MAY appear in the response.

6.2.6 . Response

 The response MUST indicate an error, using ALTO protocol error
 handling, as defined in Section 8.5 of [RFC7285] , if the request is
 invalid.

 The "Content-Type" header of the response MUST be "multipart/related"
 as defined by [RFC2387] with the following parameters:

 type: The type parameter MUST be "application/alto-
 endpointcost+json".

 start: The start parameter MUST be a quoted string where the quoted
 part has the same value as the "Resource-ID" header in the first
 part.

 boundary: The boundary parameter is as defined in [RFC2387].

 The body consists of two parts:

 The first part MUST include "Resource-Id" and "Content-Type" in its
 header. The value of "Resource-Id" MUST has the format of a Part
 Resource ID. The "Content-Type" MUST be "application/alto-
 endpointcost+json".

 The body of the first part MUST be a JSON object with the same format
 as defined in Section 11.5.1.6 of [RFC7285] . The JSON object MUST
 include the "vtag" field in the "meta" field, which provides the
 version tag of the returned endpoint cost map. The resource ID of
 the version tag MUST follow the format in Section 4.3.3.2 .

 The second part MUST also include "Resource-Id" and "Content-Type" in
 its header. The value of "Resource-Id" MUST has the format of a Part
 Resource ID. The "Content-Type" MUST be "application/alto-
 propmap+json".

Gao, et al. Expires January 23, 2020 [Page 21]

https://tools.ietf.org/pdf/rfc7285#section-8.5
https://tools.ietf.org/pdf/rfc2387
https://tools.ietf.org/pdf/rfc2387
https://tools.ietf.org/pdf/rfc7285#section-11.5.1.6

Internet-Draft ALTO Extension: Path Vector July 2019

 The body of the second part MUST be a JSON object with the same
 format as defined in Section 4.6 of
 [I-D.ietf-alto-unified-props-new]. The JSON object MUST include the
 "dependent-vtags" field in the "meta" field. The value of the
 "dependent-vtags" field MUST be an array of VersionTag objects as
 defined by Section 10.3 of [RFC7285] . The "vtag" of the first part
 MUST be included in the "dependent-vtags". If "persistent-entities"
 is requested, the version tags of the dependent resources that MAY
 expose the entities in the response MUST also be included. The
 PropertyMapData has one member for each ANE identifier that appears
 in the first part, where the EntityProps has one member for each
 property requested by the client if applicable.

7. Examples

 This section lists some examples of path vector queries and the
 corresponding responses. Some long lines are truncated for better
 readability.

7.1 . Example: Information Resource Directory

 Below is an example of an Information Resource Directory which
 enables the path vector extension. Some critical modifications
 include:

 o The "path-vector" cost type (Section 5.2) is defined in the "cost-
 types" of the "meta" field.

 o The "cost-map-pv" information resource provides a multipart
 filtered cost map resource, which exposes the Maximum Reservable
 Bandwidth ("maxresbw") property.

 o The "http-proxy-props" information resource provides a filtered
 unified property map resource, which exposes the HTTP proxy entity
 domain (encoded as "http-proxy") and the "price" property. Note
 that HTTP proxy is NOT a valid entity domain yet and is used here
 only for demonstration.

 o The "endpoint-cost-pv" information resource provides a multipart
 endpoint cost resource. It exposes the Maximum Reservable
 Bandwidth ("maxresbw") property and the Persistent Entity property
 ("persistent-entities"). The persistent entities MAY come from
 the "http-proxy-props" resource.

 o The "update-pv" information resource provides the incremental
 update ([I-D.ietf-alto-incr-update-sse]) service for the
 "endpoint-cost-pv" resource.

Gao, et al. Expires January 23, 2020 [Page 22]

https://tools.ietf.org/pdf/rfc7285#section-10.3

Internet-Draft ALTO Extension: Path Vector July 2019

 {
 "meta": {
 "cost-types": {
 "path-vector": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 }
 }
 },
 "resources": {
 "my-default-networkmap": {
 "uri" : "http://alto.example.com/networkmap",
 "media-type" : "application/alto-networkmap+json"
 },
 "cost-map-pv": {
 "uri": "http://alto.example.com/costmap/pv",
 "media-type": "multipart/related;
 type=application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "capabilities": {
 "cost-type-names": ["path-vector"],
 "ane-properties": ["maxresbw"]
 },
 "uses": ["my-default-networkmap"]
 },
 "http-proxy-props": {
 "uri": "http://alto.example.com/proxy-props",
 "media-type": "application/alto-propmap+json",
 "accpets": "application/alto-propmapparams+json",
 "capabilities": {
 "mappings": {
 "http-proxy": ["price"]
 }
 }
 },
 "endpoint-cost-pv": {
 "uri": " http://alto.exmaple.com/endpointcost/pv ",
 "media-type": "multipart/related;
 type=application/alto-endpointcost+json",
 "accepts": "application/alto-endpointcostparams+json",
 "capabilities": {
 "cost-type-names": ["path-vector"],
 "ane-properties": ["maxresbw", "persistent-entities"]
 },
 "uses": ["http-proxy-props"]
 },
 "update-pv": {
 "uri": "http://alto.example.com/updates/pv",

Gao, et al. Expires January 23, 2020 [Page 23]

http://alto.exmaple.com/endpointcost/pv

Internet-Draft ALTO Extension: Path Vector July 2019

 "media-type": "text/event-stream",
 "uses": ["endpoint-cost-pv"],
 "accepts": "application/alto-updatestreamparams+json",
 "capabilities": {
 "support-stream-control": true
 }
 }
 }
 }

7.2 . Example: Multipart Filtered Cost Map

 The following examples demonstrate the request to the "cost-map-pv"
 resource and the corresponding response.

 The request uses the path vector cost type in the "cost-type" field.
 The "ane-properties" field is missing, indicating that the client
 only requests for the path vector but not the ANE properties.

 The response consists of two parts. The first part returns the array
 of ANE identifiers for each source and destination pair. There are
 three ANEs, where "ane:L001" is shared by traffic from "PID1" to both
 "PID2" and "PID3".

 The second part returns an empty property map. Note that the ANE
 entries are omitted since they have no properties (See Section 3.1 of
 [I-D.ietf-alto-unified-props-new]).

 POST /costmap/pv HTTP/1.1
 Host: alto.example.com
 Accept: multipart/related;type=application/alto-costmap+json,
 application/alto-error+json
 Content-Length: [TBD]
 Content-Type: application/alto-costmapfilter+json

 {
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 },
 "pids": {
 "srcs": ["PID1"],
 "dsts": ["PID2", "PID3"]
 }
 }

 HTTP/1.1 200 OK
 Content-Length: [TBD]

Gao, et al. Expires January 23, 2020 [Page 24]

Internet-Draft ALTO Extension: Path Vector July 2019

 Content-Type: multipart/related; boundary=example-1;
 type=application/alto-costmap+json

 --example-1
 Resource-Id: costmap
 Content-Type: application/alto-costmap+json

 {
 "meta": {
 "vtag": {
 "resource-id": "cost-map-pv.costmap",
 "tag": "d827f484cb66ce6df6b5077cb8562b0a"
 },
 "dependent-vtags": [
 {
 "resource-id": "my-default-networkmap",
 "tag": "75ed013b3cb58f896e839582504f6228"
 }
],
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 }
 },
 "cost-map": {
 "PID1": {
 "PID2": ["ane:L001", "ane:L003"],
 "PID3": ["ane:L001", "ane:L004"]
 }
 }
 }
 --example-1
 Resource-Id: propmap
 Content-Type: application/alto-propmap+json

 {
 "meta": {
 "dependent-vtags": [
 {
 "resource-id": "cost-map-pv.costmap",
 "tag": "d827f484cb66ce6df6b5077cb8562b0a"
 }
]
 },
 "property-map": {
 }
 }

Gao, et al. Expires January 23, 2020 [Page 25]

Internet-Draft ALTO Extension: Path Vector July 2019

7.3 . Example: Multipart Endpoint Cost Resource

 The following examples demonstrate the request to the "endpoint-cost-
 pv" resource and the corresponding response.

 The request uses the path vector cost type in the "cost-type" field,
 and queries the Maximum Reservable Bandwidth ANE property and the
 Persistent Entity property.

 The response consists of two parts. The first part returns the array
 of ANE identifiers for each valid source and destination pair.

 The second part returns the requested properties of ANEs in the first
 part. The "ane:NET001" element contains an HTTP proxy entity, which
 can be further used by the client. Since it does not contain a
 "maxresbw" property, the client SHOULD assume it does NOT support
 bandwidth reservation but will NOT become a traffic bottleneck, as
 specified in Section 5.5.1 .

 POST /endpointcost/pv HTTP/1.1
 Host: alto.example.com
 Accept: multipart/related;
 type=application/alto-endpointcost+json,
 application/alto-error+json
 Content-Length: [TBD]
 Content-Type: application/alto-endpointcostparams+json

 {
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 },
 "endpoints": {
 "srcs": ["ipv4:192.0.2.2"],
 "dsts": ["ipv4:192.0.2.89",
 "ipv4:203.0.113.45",
 "ipv6:2001:db8::10"]
 },
 "ane-properties": ["maxresbw", "persistent-entities"]
 }

 HTTP/1.1 200 OK
 Content-Length: [TBD]
 Content-Type: multipart/related; boundary=example-2;
 type=application/alto-endpointcost+json

 --example-2
 Resource-Id: ecs

Gao, et al. Expires January 23, 2020 [Page 26]

Internet-Draft ALTO Extension: Path Vector July 2019

 Content-Type: application/alto-endpointcost+json

 {
 "meta": {
 "vtags": {
 "resource-id": "endpoint-cost-pv.ecs",
 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"
 },
 "cost-type": {
 "cost-mode": "array",
 "cost-metric": "ane-path"
 }
 },
 "endpoint-cost-map": {
 "ipv4:192.0.2.2": {
 "ipv4:192.0.2.89": ["ane:NET001", "ane:L002"],
 "ipv4:203.0.113.45": ["ane:NET001", "ane:L003"]
 }
 }
 }
 --example-2
 Resource-Id: propmap
 Content-Type: application/alto-propmap+json

 {
 "meta": {
 "dependent-vtags": [
 {
 "resource-id": "endpoint-cost-pv.ecs",
 "tag": "bb6bb72eafe8f9bdc4f335c7ed3b10822a391cef"
 },
 {
 "resource-id": "http-proxy-props",
 "tag": "bf3c8c1819d2421c9a95a9d02af557a3"
 }
]
 },
 "property-map": {
 "ane:NET001": {
 "persistent-entities": ["http-proxy:192.0.2.1"]
 },
 "ane:L002": { "maxresbw": 48000000 },
 "ane:L003": { "maxresbw": 35000000 }
 }
 }

Gao, et al. Expires January 23, 2020 [Page 27]

Internet-Draft ALTO Extension: Path Vector July 2019

7.4 . Example: Incremental Updates

 In this example, an ALTO client subscribes to the incremental update
 for the multipart endpoint cost resource "endpoint-cost-pv".

 POST /updates/pv HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: [TBD]

 {
 "add": {
 "ecspvsub1": {
 "resource-id": "endpoint-cost-pv",
 "input": <ecs-input>
 }
 }
 }

 Based on the server-side process defined in
 [I-D.ietf-alto-incr-update-sse], the ALTO server will send the
 "control-uri" first using Server-Sent Event (SSE), followed by the
 full response of the multipart message.

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri": "http://alto.example.com/updates/streams/1414"}

 event: multipart/related;boundary=example-3;
 type=application/alto-endpointcost+json,ecspvsub1
 data: --example-3
 data: Resource-ID: ecsmap
 data: Content-Type: application/alto-endpointcost+json
 data:
 data: <endpoint-cost-map-entry>
 data: --example-3
 data: Resource-ID: propmap
 data: Content-Type: application/alto-propmap+json
 data:
 data: <property-map-entry>
 data: --example-3--

 When the contents change, the ALTO server will publish the updates
 for each node in this tree separately.

Gao, et al. Expires January 23, 2020 [Page 28]

Internet-Draft ALTO Extension: Path Vector July 2019

 event: application/merge-patch+json, ecspvsub1.ecsmap
 data: <Merge patch for endpoint-cost-map-update>

 event: application/merge-patch+json, ecspvsub1.propmap
 data: <Merge patch for property-map-update>

8. Compatibility

8.1 . Compatibility with Legacy ALTO Clients/Servers

 The multipart filtered cost map resource and the multipart endpoint
 cost resource has no backward compatibility issue with legacy ALTO
 clients and servers. Although these two types of resources reuse the
 media types defined in the base ALTO protocol for the accept input
 parameters, they have different media types for responses. If the
 ALTO server provides these two types of resources, but the ALTO
 client does not support them, the ALTO client will ignore the
 resources without conducting any incompatibility.

8.2 . Compatibility with Multi-Cost Extension

 This document does not specify how to integrate the "path-vector"
 cost mode with the multi-cost extension [RFC8189]. Although there is
 no reason why somebody has to compound the path vectors with other
 cost types in a single query, there is no compatible issue doing it
 without constraint tests.

8.3 . Compatibility with Incremental Update

 The extension specified in this document is NOT compatible with the
 original incremental update extension
 [I-D.ietf-alto-incr-update-sse]. A legacy ALTO client CANNOT
 recognize the compound client-id, and a legacy ALTO server MAY use
 the same client-id for updates of both parts.

 ALTO clients and servers MUST follow the specifications given in this
 document to ensure compatibility with the incremental update
 extension.

8.4 . Compatibility with Cost Calendar

 The extension specified in this document is compatible with the Cost
 Calendar extension [I-D.ietf-alto-cost-calendar]. When used together
 with the Cost Calendar extension, the cost value between a source and
 a destination is an array of path vectors, where the k-th path vector
 refers to the abstract network paths traversed in the k-th time
 interval by traffic from the source to the destination.

Gao, et al. Expires January 23, 2020 [Page 29]

https://tools.ietf.org/pdf/rfc8189

Internet-Draft ALTO Extension: Path Vector July 2019

 When used with time-varying properties, e.g., maximum reservable
 bandwidth (maxresbw), a property of a single entity may also have
 different values in different time intervals. In this case, an ANE
 with different property values MUST be considered as different ANEs.

 The two extensions combined together CAN provide the historical
 network correlation information for a set of source and destination
 pairs. A network broker or client MAY use this information to derive
 other resource requirements such as Time-Block-Maximum Bandwidth,
 Bandwidth-Sliding-Window, and Time-Bandwidth-Product (TBP) (See
 [SENSE] for details.)

9. General Discussions

9.1 . Provide Calendar for Property Map

 Fetching the historical network information is useful for many
 traffic optimization problem. [I-D.ietf-alto-cost-calendar] already
 proposes an ALTO extension called Cost Calendar which provides the
 historical cost values using filtered cost map and endpoint cost
 service. However, the calendar for only path costs is not enough.

 For example, as the properties of ANEs (e.g., available bandwidth and
 link delay) are usually the real-time network states, they change
 frequently in the real network. It is very helpful to get the
 historical value of these properties. Applications may predicate the
 network status using these information to better optimize their
 performance.

 So the coming requirement may be a general calendar service for the
 ALTO information resources.

9.2 . Constraint Tests for General Cost Types

 The constraint test is a simple approach to query the data. It
 allows users to filter the query result by specifying some boolean
 tests. This approach is already used in the ALTO protocol.
 [RFC7285] and [RFC8189] allow ALTO clients to specify the
 "constraints" and "or-constraints" tests to better filter the result.

 However, the current defined syntax is too simple and can only be
 used to test the scalar cost value. For more complex cost types,
 like the "array" mode defined in this document, it does not work
 well. It will be helpful to propose more general constraint tests to
 better perform the query.

 In practice, it is too complex to customize a language for the
 general-purpose boolean tests, and can be a duplicated work. So it

Gao, et al. Expires January 23, 2020 [Page 30]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc8189

Internet-Draft ALTO Extension: Path Vector July 2019

 may be a good idea to integrate some already defined and widely used
 query languages (or their subset) to solve this problem. The
 candidates can be XQuery and JSONiq.

9.3 . General Multipart Resources Query

 Querying multiple ALTO information resources continuously MAY be a
 general requirement. And the coming issues like inefficiency and
 inconsistency are also general. There is no standard solving these
 issues yet. So we need some approach to make the ALTO client request
 the compound ALTO information resources in a single query.

10. Security Considerations

 This document is an extension of the base ALTO protocol, so the
 Security Considerations [RFC7285] of the base ALTO protocol fully
 apply when this extension is provided by an ALTO server.

 The path vector extension requires additional considerations on two
 security considerations discussed in the base protocol:
 confidentiality of ALTO information (Section 15.3 of [RFC7285]) and
 availability of ALTO service (Section 15.5 of [RFC7285]).

 For confidentiality of ALTO information, a network operator should be
 aware of that this extension may introduce a new risk: the path
 vector information may make network attacks easier. For example, as
 the path vector information may reveal more network internal
 structures than the base protocol, an ALTO client may detect the
 bottleneck link and start a distributed denial-of-service (DDoS)
 attack involving minimal flows to conduct the in-network congestion.

 To mitigate this risk, the ALTO server should consider protection
 mechanisms to reduce information exposure or obfuscate the real
 information, in particular, in settings where the network and the
 application do not belong to the same trust domain. But the
 implementation of path vector extension involving reduction or
 obfuscation should guarantees the constraints on the requested
 properties are still accurate.

 For availability of ALTO service, an ALTO server should be cognizant
 that using path vector extension might have a new risk: frequent
 requesting for path vectors might conduct intolerable increment of
 the server-side storage and break the ALTO server. It is known that
 the computation of path vectors is unlikely to be cacheable, in that
 the results will depend on the particular requests (e.g., where the
 flows are distributed). Hence, the service providing path vectors
 may become an entry point for denial-of-service attacks on the

Gao, et al. Expires January 23, 2020 [Page 31]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285#section-15.3
https://tools.ietf.org/pdf/rfc7285#section-15.5

Internet-Draft ALTO Extension: Path Vector July 2019

 availability of an ALTO server. To avoid this risk, authenticity and
 authorization of this ALTO service may need to be better protected.

11. IANA Considerations

11.1 . ALTO Cost Mode Registry

 This document specifies a new cost mode "path-vector". However, the
 base ALTO protocol does not have a Cost Mode Registry where new cost
 mode can be registered. This new cost mode will be registered once
 the registry is defined either in a revised version of [RFC7285] or
 in another future extension.

11.2 . ALTO Entity Domain Registry

 As proposed in Section 9.2 of [I-D.ietf-alto-unified-props-new],
 "ALTO Domain Entity Registry" is requested. Besides, a new domain is
 to be registered, listed in Table 2.

 +-------------+--------------------------+--------------------------+
 | Identifier | Entity Address Encoding | Hierarchy & Inheritance |
 +-------------+--------------------------+--------------------------+
 | ane | See Section 5.3.2 | None |
 +-------------+--------------------------+--------------------------+

 Table 2: ALTO Entity Domain

11.3 . ALTO Entity Property Type Registry

 The "ALTO Entity Property Type Registry" is required by the ALTO
 Domain "ane", listed in Table 3.

 +-------------------------+---+
 | Identifier | Intended Semantics |
 +-------------------------+---+
ane:maxresbw	The maximum reservable bandwidth for
	the ANE
ane:persistent-entities	An array of identifiers of persistent
	entities that reside in an ANE
 +-------------------------+---+

 Table 3: ALTO Entity Property Types

11.4 . ALTO Resource Entity Domain Export Registries

Gao, et al. Expires January 23, 2020 [Page 32]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft ALTO Extension: Path Vector July 2019

11.4.1 . costmap

 +---------------------+--------------------+
 | Entity Domain Type | Export Function |
 +---------------------+--------------------+
 | ane | See Section 5.4.1 |
 +---------------------+--------------------+

 Table 4: ALTO Cost Map Entity Domain Export.

11.4.2 . endpointcost

 +---------------------+--------------------+
 | Entity Domain Type | Export Function |
 +---------------------+--------------------+
 | ane | See Section 5.4.2 |
 +---------------------+--------------------+

 Table 5: ALTO Endpoint Cost Entity Domain Export.

12. Acknowledgments

 The authors would like to thank discussions with Andreas Voellmy,
 Erran Li, Haibin Song, Haizhou Du, Jiayuan Hu, Qiao Xiang, Tianyuan
 Liu, Xiao Shi, Xin Wang, and Yan Luo. The authors thank Greg
 Bernstein (Grotto Networks), Dawn Chen (Tongji University), Wendy
 Roome, and Michael Scharf for their contributions to earlier drafts.

13. References

13.1 . Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997, < https://www.rfc-
 editor.org/info/rfc2119 >.

 [RFC2387] Levinson, E., "The MIME Multipart/Related Content-type",
 RFC 2387 , DOI 10.17487/RFC2387, August 1998,
 < https://www.rfc-editor.org/info/rfc2387 >.

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285 , DOI 10.17487/RFC7285, September 2014,
 < https://www.rfc-editor.org/info/rfc7285 >.

Gao, et al. Expires January 23, 2020 [Page 33]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc2387
https://www.rfc-editor.org/info/rfc2387
https://tools.ietf.org/pdf/rfc7285
https://www.rfc-editor.org/info/rfc7285

Internet-Draft ALTO Extension: Path Vector July 2019

 [RFC8189] Randriamasy, S., Roome, W., and N. Schwan, "Multi-Cost
 Application-Layer Traffic Optimization (ALTO)", RFC 8189 ,
 DOI 10.17487/RFC8189, October 2017, < https://www.rfc-
 editor.org/info/rfc8189 >.

13.2 . Informative References

 [I-D.bernstein-alto-topo]
 Bernstein, G., Yang, Y., and Y. Lee, "ALTO Topology
 Service: Uses Cases, Requirements, and Framework", draft-
 bernstein-alto-topo-00 (work in progress), October 2013.

 [I-D.ietf-alto-cost-calendar]
 Randriamasy, S., Yang, Y., Wu, Q., Lingli, D., and N.
 Schwan, "ALTO Cost Calendar", draft-ietf-alto-cost-
 calendar-01 (work in progress), February 2017.

 [I-D.ietf-alto-incr-update-sse]
 Roome, W. and Y. Yang, "ALTO Incremental Updates Using
 Server-Sent Events (SSE)", draft-ietf-alto-incr-update-
 sse-16 (work in progress), March 2019.

 [I-D.ietf-alto-performance-metrics]
 Wu, Q., Yang, Y., Lee, Y., Dhody, D., and S. Randriamasy,
 "ALTO Performance Cost Metrics", draft-ietf-alto-
 performance-metrics-06 (work in progress), November 2018.

 [I-D.ietf-alto-unified-props-new]
 Roome, W., Randriamasy, S., Yang, Y., and J. Zhang,
 "Unified Properties for the ALTO Protocol", draft-ietf-
 alto-unified-props-new-07 (work in progress), March 2019.

 [SENSE] "Services - SENSE", 2019, < http://sense.es.net/services >.

 [TON2019] Gao, K., Xiang, Q., Wang, X., Yang, Y., and J. Bi, "An
 objective-driven on-demand network abstraction for
 adaptive applications", IEEE/ACM Transactions on
 Networking (TON) 27, no. 2 (2019): 805-818., 2019.

Authors’ Addresses

 Kai Gao
 Sichuan University
 Chengdu 610000
 China

 Email: kaigao@scu.edu.cn

Gao, et al. Expires January 23, 2020 [Page 34]

https://tools.ietf.org/pdf/rfc8189
https://www.rfc-editor.org/info/rfc8189
https://www.rfc-editor.org/info/rfc8189
https://tools.ietf.org/pdf/draft-bernstein-alto-topo-00
https://tools.ietf.org/pdf/draft-bernstein-alto-topo-00
https://tools.ietf.org/pdf/draft-ietf-alto-cost-calendar-01
https://tools.ietf.org/pdf/draft-ietf-alto-cost-calendar-01
https://tools.ietf.org/pdf/draft-ietf-alto-incr-update-sse-16
https://tools.ietf.org/pdf/draft-ietf-alto-incr-update-sse-16
https://tools.ietf.org/pdf/draft-ietf-alto-performance-metrics-06
https://tools.ietf.org/pdf/draft-ietf-alto-performance-metrics-06
https://tools.ietf.org/pdf/draft-ietf-alto-unified-props-new-07
https://tools.ietf.org/pdf/draft-ietf-alto-unified-props-new-07
http://sense.es.net/services

Internet-Draft ALTO Extension: Path Vector July 2019

 Young Lee
 Huawei
 TX
 USA

 Email: leeyoung@huawei.com

 Sabine Randriamasy
 Nokia Bell Labs
 Route de Villejust
 NOZAY 91460
 FRANCE

 Email: Sabine.Randriamasy@nokia-bell-labs.com

 Y. Richard Yang
 Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yry@cs.yale.edu

 Jingxuan Jensen Zhang
 Tongji University
 4800 Caoan Road
 Shanghai 201804
 China

 Email: jingxuan.n.zhang@gmail.com

Gao, et al. Expires January 23, 2020 [Page 35]

ALTO WG W. Roome
Internet-Draft S. Randriamasy
Intended status: Standards Track Nokia Bell Labs
Expires: March 7, 2020 Y. Yang
 Yale University
 J. Zhang
 Tongji University
 K. Gao
 Sichuan University
 September 4, 2019

 Unified Properties for the ALTO Protocol
 draft-ietf-alto-unified-props-new-09

Abstract

 This document extends the Application-Layer Traffic Optimization
 (ALTO) Protocol [RFC7285] by generalizing the concept of "endpoint
 properties" to generic types of entities, and by presenting those
 properties as maps, similar to the network and cost maps in
 [RFC7285].

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 7, 2020.

Roome, et al. Expires March 7, 2020 [Page 1]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Unified Properties September 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Overview: Basic Concepts 6
 2.1 . Entity . 6
 2.2 . Entity Property . 6
 2.3 . Property Map . 7
 2.4 . Information Resource 7
 2.5 . Entity Domain . 7
 2.5.1 . Resource-Specific Entity Domain 7
 2.5.2 . Relationship between Entity and Entity Domain 8
 2.5.3 . Aggregated Entity Domain 8
 2.5.4 . Resource-Specific Entity Property 9
 2.6 . Scope of Property Map 9
 2.7 . Entity Hierarchy and Property Inheritance 10
 3. Protocol Specification: Basic Data Type 10
 3.1 . Entity Domain . 10
 3.1.1 . Entity Domain Type 10
 3.1.2 . Entity Domain Name 11
 3.1.3 . Entity Identifier 11
 3.1.4 . Hierarchy and Inheritance 12
 3.2 . Entity Property . 12
 3.2.1 . Entity Property Type 12
 3.2.2 . Entity Property Name 13
 3.3 . Information Resource Export 14
 3.3.1 . Resource-Specific Entity Domain Export 14
 3.3.2 . Entity Property Mapping Export 14
 4. Entity Domain Types . 14
 4.1 . Internet Address Domain Types 15
 4.1.1 . IPv4 Domain . 15
 4.1.2 . IPv6 Domain . 15
 4.1.3. Hierarchy and Inheritance of Internet Address Domains 15
 4.2 . PID Domain . 17

Roome, et al. Expires March 7, 2020 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Unified Properties September 2019

 4.2.1 . Entity Domain Type 17
 4.2.2 . Domain-Specific Entity Identifiers 17
 4.2.3 . Hierarchy and Inheritance 17
 4.2.4 . Relationship To Internet Addresses Domains 17
 4.3 . Internet Address Properties vs. PID Properties 17
 5. Entity Domains and Property Mappings in Information Resources 18
 5.1 . Network Map Resource 18
 5.1.1 . Resource-Specific Entity Domain 18
 5.1.2 . Entity Property Mapping 18
 5.2 . Endpoint Property Resource 19
 5.2.1 . Resource-Specific Entity Domain 19
 5.2.2 . Entity Property Mapping 19
 5.3 . Property Map Resource 19
 6. Property Map . 19
 6.1 . Media Type . 19
 6.2 . HTTP Method . 20
 6.3 . Accept Input Parameters 20
 6.4 . Capabilities . 20
 6.5 . Uses . 20
 6.6 . Response . 20
 7. Filtered Property Map . 22
 7.1 . Media Type . 22
 7.2 . HTTP Method . 22
 7.3 . Accept Input Parameters 22
 7.4 . Capabilities . 23
 7.5 . Uses . 23
 7.6 . Response . 23
 8. Impact on Legacy ALTO Servers and ALTO Clients 25
 8.1 . Impact on Endpoint Property Service 25
 8.2 . Impact on Resource-Specific Properties 25
 8.3 . Impact on Other Properties 25
 9. Examples . 25
 9.1 . Network Map . 25
 9.2 . Property Definitions 26
 9.3 . Information Resource Directory (IRD) 27
 9.4 . Property Map Example 29
 9.5 . Filtered Property Map Example #1 30
 9.6 . Filtered Property Map Example #2 31
 9.7 . Filtered Property Map Example #3 32
 9.8 . Filtered Property Map Example #4 33
 10. Security Considerations 34
 11. IANA Considerations . 35
 11.1 . application/alto-* Media Types 35
 11.2 . ALTO Entity Domain Type Registry 36
 11.2.1. Consistency Procedure between ALTO Address Type
 Registry and ALTO Entity Domain Type Registry . . . 37
 11.2.2 . ALTO Entity Domain Type Registration Process 38
 11.3 . ALTO Entity Property Type Registry 39

Roome, et al. Expires March 7, 2020 [Page 3]

Internet-Draft Unified Properties September 2019

 11.4 . ALTO Resource-Specific Entity Domain Registries 40
 11.4.1 . Network Map . 40
 11.4.2 . Endpoint Property 40
 11.5 . ALTO Resource Entity Property Mapping Registries 40
 11.5.1 . Network Map . 41
 12. Acknowledgments . 41
 13. Normative References . 41
 Authors’ Addresses . 42

1. Introduction

 The ALTO protocol [RFC7285] introduces the concept of "properties"
 attached to "endpoint addresses", and defines the Endpoint Property
 Service (EPS) to allow ALTO clients to retrieve those properties.
 While useful, the EPS, as defined in [RFC7285], has at least three
 limitations.

 First, the EPS allows properties to be associated with only endpoints
 which are identified by individual communication addresses like IPv4
 and IPv6 addresses. It is reasonable to think that collections of
 endpoints, as defined by CIDRs [RFC4632] or PIDs, may also have
 properties. Furthermore, recent ALTO use cases show that properties
 of network flows [RFC7011] and routing elements [RFC7921] are also
 very useful. Since the EPS cannot be extended to those generic
 entities, new services, with new request and response messages, would
 have to be defined for them.

 Second, the EPS only allows endpoints identified by global
 communication addresses. However, many other generic entities like
 PIDs may not have global identifiers. Even for Internet addresses,
 there may be some local IP addresses and anycast IP addresses which
 are also not global unique.

 Third, the EPS is only defined as a POST-mode service. Clients must
 request the properties for an explicit set of endpoint addresses. By
 contrast, [RFC7285] defines a GET-mode cost map resource which
 returns all available costs, so a client can get a full set of costs
 once, and then processes costs lookups without querying the ALTO
 server. [RFC7285] does not define a similar service for endpoint
 properties. At first a map of endpoint properties might seem
 impractical, because it could require enumerating the property value
 for every possible endpoint. But in practice, it is highly unlikely
 that properties will be defined for every endpoint address. It is
 much more likely that properties may be defined for only a subset of
 endpoint addresses, and the specification of properties uses an
 aggregation representation to allow enumeration. This is
 particularly true if blocks of endpoint addresses with a common
 prefix (e.g., a CIDR) have the same value for a property. Entities

Roome, et al. Expires March 7, 2020 [Page 4]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc4632
https://tools.ietf.org/pdf/rfc7011
https://tools.ietf.org/pdf/rfc7921
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

 in other domains may very well allow aggregated representation and
 hence be enumerable as well.

 This document specifies a new approach for defining and retrieving
 ALTO properties to address the three limitations:

 o This document addresses the first limitation by introducing a
 generic concept called ALTO Entity which is a generalization of an
 endpoint to represent a PID, a network element, a cell in a
 cellular network, or other physical or logical objects used by
 ALTO. Each entity is included by a collection called ALTO Entity
 Domain. And each entity domain includes only one type of
 entities. Thus, each entity domain also has a type to indicate
 the type of entities in it.

 o Additionally, this document addresses the second limitation by
 using resource-specific entity domains. A resource-specific
 entity domain is an entity domain exported by an existing ALTO
 information resource. And a resource-specific entity domain is
 named by its type and the resource id of the ALTO information
 resource which exports it. As each resource-specific entity
 domain name is unique, an entity can be uniquely identified by the
 name of a resource-specific entity domain and its domain-specific
 identifier.

 o Finally, this document addresses the third limitation by defining
 two new types of ALTO information resources, namely Property Map
 (see Section 6) and Filtered Property Map (see Section 7). The
 former is a GET-mode resource which returns the property values
 for all entities in some entity domains, and is analogous to a
 network map or a cost map in [RFC7285]. The latter is a POST-mode
 resource which returns the values for a set of properties and
 entities requested by the client, and is analogous to a filtered
 network map or a filtered cost map.

 This approach is extensible, because new entity domain types can be
 defined without revising the protocol specification defined in this
 document, in the same way that new cost metrics and new endpoint
 properties can be defined without revising the protocol specification
 defined in [RFC7285].

 This document subsumes the Endpoint Property Service defined in
 [RFC7285], although that service may be retained for legacy clients
 (see Section 8).

Roome, et al. Expires March 7, 2020 [Page 5]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

2. Overview: Basic Concepts

 Before we define the specification of unified properties, there are
 several basic concepts which we need to introduce.

2.1 . Entity

 The entity concept generalizes the concept of the endpoint defined in
 Section 2.1 of [RFC7285] . An entity is an object that can be an
 endpoint and is identified by its network address, but can also be an
 object that has a defined mapping to a set of one or more network
 addresses or is even not related to any network address.

 Examples of eligible entities are:

 o a PID, defined in [RFC7285], that has a provider defined human
 readable abstract identifier defined by a ALTO network map, which
 maps a PID to a set of ipv4 and ipv6 addresses;

 o an autonomous system (AS), that has an AS number (ASN) as its
 identifier and maps to a set of ipv4 and ipv6 addresses;

 o a region representing a country, that is identified by its country
 code defined by ISO 3166 and maps to a set of cellular addresses;

 o a TCP/IP network flow, that has a server defined identifier
 consisting of the defining TCP/IP 5-Tuple, , which is an example
 that all endpoints are entities while not all entities are
 endpoints;

 o a routing element, that is specified in [RFC7921] and includes
 routing capability information;

 o an abstract network element, that has a server defined identifier
 and represents a network node, link or their aggregation.

2.2 . Entity Property

 An entity property defines a property of an entity. It is similar to
 the endpoint property defined by Section 7.1 of [RFC7285] , but can be
 general besides network-aware.

 For example,

 o an "ipv4" entity may have a property whose value is an Autonomous
 System (AS) number indicating the AS which this IPv4 address is
 owned by;

Roome, et al. Expires March 7, 2020 [Page 6]

https://tools.ietf.org/pdf/rfc7285#section-2.1
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7921
https://tools.ietf.org/pdf/rfc7285#section-7.1

Internet-Draft Unified Properties September 2019

 o a "pid" entity may have a property which indicates the central
 geographical location of endpoints included by it.

2.3 . Property Map

 An ALTO property map provides a set of properties for a set of
 entities. These entities may be in different types. For example, an
 ALTO property map may define the ASN property for both "ipv4" and
 "ipv6" entities.

2.4 . Information Resource

 This document uses the same definition of the information resource as
 defined by [RFC7285]. Each information resource usually has a JSON
 format representation following a specific schema defined by its
 media type.

 For example, an ALTO network map resource is represented by a JSON
 objectof type InfoResourceNetworkMap defined by the media type
 "application/alto-networkmap+json".

2.5 . Entity Domain

 An entity domain defines a set of entities in the same type. This
 type is also called the type of this entity domain.

 Using entity domains, an ALTO property map can indicate which
 entities the ALTO client can query to get their properties.

2.5.1 . Resource-Specific Entity Domain

 To define an entity domain, one naive solution is to enumerate all
 entities in this entity domain. But it is inefficient when the size
 of the entity domain is large.

 To avoid enumerating all entities, this document introduces an
 approach called "Resource-Specific Entity Domain" to define entity
 domains:

 Each information resource may define several types of entity domains.
 And for each type of entity domain, an information resource can
 define at most one entity domain. For example, an ALTO netowrk map
 resource can define an IPv4 domain, an IPv6 domain and a pid domain.
 In this document, these entity domains are called resource-specific
 entity domains. An ALTO property map only need to indicate which
 types of entity domain defined by which information resources can be
 queried, the ALTO client will know which entities are effective to be
 queried.

Roome, et al. Expires March 7, 2020 [Page 7]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

2.5.2 . Relationship between Entity and Entity Domain

 In this document, an entity is owned by exact one entity domain. It
 requires that when an ALTO client or server references an entity, it
 must indicate its entity domain explicitly. Even two entities in two
 different entity domains may reflect to the same physical or logical
 object, we treat them as different entities.

 Because of this rule, although the resource-specific entity domain
 approach has no ambiguity, it may introduce redundancy.

2.5.3 . Aggregated Entity Domain

 Two entities in two different resource-specific entity domains may
 reflect to the same physical or logical object. For example, the
 IPv4 entity "192.0.2.34" in the IPv4 domain of the network map
 "netmap1" and the IPv4 entity "192.0.2.34" in the IPv4 domain of the
 network map "netmap2" should indicate the same Internet endpoint
 addressed by the IPv4 address "192.0.2.34".

 Each entity in each resource-specific entity domain may only have
 part of properties of its associated physical or logical object. For
 example, the IPv4 entity in the IPv4 domain of the network map
 "netmap1" only has the PID property defined by "netmap1"; same to the
 IPv4 entity in the IPv4 domain of the network map "netmap2". If the
 ALTO client wants to get the complete properties, using the resource-
 specific entity domain, the ALTO client has to query the IPv4 entity
 "192.0.2.34" twice.

 To simplify the query process of the ALTO client, this document
 introduces the concept "Aggregated Entity Domain". An aggregated
 entity domain defines a union set of entities coming from multiple
 resource-specific entity domains in the same type. An entity in the
 aggregated entity domain inherits all properties defined for its
 associated entity in each associated resource-specific entity
 domains. For example, the IPv4 entity "192.0.2.34" in the aggregated
 entity domain between the IPv4 domain of "netmap1" and the IPv4
 domain of "netmap2" has PID properties defined by both "netmap1" and
 "netmap2".

 Note that some resource-specific entity domains may not be able to be
 aggregated even if they are in the same type. For example, a
 property map "propmap1" may define the "asn" property on both PID
 domains "netmap1.pid" and "netmap2.pid". But the PID "pid1" in
 "netmap1.pid" and the PID with the same name in "netmap2.pid" have
 different "asn" property values. It does not make sense to define an
 aggregated PID domain between "netmap1.pid" and "netmap2.pid" to
 provide the "propmap1.asn" property because it is ambiguous.

Roome, et al. Expires March 7, 2020 [Page 8]

Internet-Draft Unified Properties September 2019

2.5.4 . Resource-Specific Entity Property

 According to the example of the aggregated entity domain, an entity
 may have multiple properties in the same type but associated to
 different information resources. To distinguish them, this document
 uses the same approach proposed by Section 10.8.1 of [RFC7285] , which
 is called "Resource-Specific Entity Property".

2.6 . Scope of Property Map

 Using entity domains to organize entities, an ALTO property map
 resource actually provides a set of properties for some entity
 domains. If we ignore the syntax sugar of the aggregated entity
 domain, we can consider an ALTO property map resource just provides a
 set of (ri, di) => (ro, po) mappings, where (ri, di) means a
 resource-specific entity domain of type di defined by the information
 resource ri, and (ro, po) means a resource-specific entity property
 po defined by the information resource ro.

 For each (ri, di) => (ro, po) mapping, the scope of an ALTO property
 map resource must be one of cases in the following diagram:

 domain.resource domain.resource
 (ri) = r (ri) = this
 +-----------------|-----------------+
 prop.resource | Export | Non-exist |
 (ro) = r | | |
 +-----------------|-----------------+
 prop.resource | Extend | Define |
 (ro) = this | | |
 +-----------------|-----------------+

 where "this" points to the resulting property map resource, "r"
 presents an existing ALTO information resource other the resulting
 property map resource.

 o ri = ro = r ("export" mode): the property map resource just
 transforms the property mapping di => po defined by r into the
 unified representation format and exports it. For example: r =
 "netmap1", di = "ipv4", po = "pid". The property map resource
 exports the "ipv4 => pid" mapping defined by "netmap1".

 o ri = r, ro = this ("extend" mode): the property map extends
 properties of entities in the entity domain (r, di) and defines a
 new property po on them. For example: the property map resource
 ("this") defines a "geolocation" property on domain "netmap1.pid".

Roome, et al. Expires March 7, 2020 [Page 9]

https://tools.ietf.org/pdf/rfc7285#section-10.8.1

Internet-Draft Unified Properties September 2019

 o ri = ro = this ("define" mode): the property map defines a new
 intrinsic entity domain and defines property po for each entities
 in this domain. For example: the property map resource ("this")
 defines a new entity domain "asn" and defines a property
 "ipprefixes" on this domain.

 o ri = this, ro = r: in the scope of a property map resource, it
 does not make sense that another existing ALTO information
 resource defines a property for this property map resource.

2.7 . Entity Hierarchy and Property Inheritance

 Enumerating all individual effective entities are inefficient. Some
 types of entities have the hierarchy format, e.g., cidr, which stand
 for sets of individual entities. Many entities in the same
 hierarchical format entity sets may have the same proprety values.
 To reduce the size of the property map representation, this document
 introduces an approach called "Property Inheritance". Individual
 entities can inherit the property from its hierarchical format entity
 set.

3. Protocol Specification: Basic Data Type

3.1 . Entity Domain

3.1.1 . Entity Domain Type

 An entity domain has a type, which is defined by a string that MUST
 be no more than 64 characters, and MUST NOT contain characters other
 than US-ASCII alphanumeric characters (U+0030-U+0039, U+0041-U+005A,
 and U+0061-U+007A), hyphen ("-", U+002D), and low line ("_", U+005F).
 For example, the strings "ipv4", "ipv6", and "pid" are valid entity
 domain types.

 The type EntityDomainType is used in this document to denote a JSON
 string confirming to the preceding requirement.

 An entity domain type defines the semantics of a type of entity
 domains. Each entity domain type MUST be registered with the IANA.
 The format of the entity identifiers (see Section 3.1.3) in that type
 of entity domains, as well as any hierarchical or inheritance rules
 (see Section 3.1.4) for those entities, MUST be specified at the same
 time.

Roome, et al. Expires March 7, 2020 [Page 10]

Internet-Draft Unified Properties September 2019

3.1.2 . Entity Domain Name

 Each entity domain is identified by an entity domain name, a string
 of the following format:

 EntityDomainName ::= [[ResourceID] ’.’] EntityDomainType

 This document distinguish three types of entity domains: resource-
 specific entity domains, self-defined entity domain and aggregated
 entity domains. Their entity domain names are derived as follows.

 Each ALTO information resource MAY define a resource-specific entity
 domain (which could be empty) in a given entity domain type. A
 resource-specific entity domain is identified by an entity domain
 name derived as follows. It MUST start with a resource ID using the
 ResourceID type defined in [RFC7285], followed by the "." separator
 (U+002E), followed by an EntityDomainType typed string. For example,
 if an ALTO server provides two network maps "netmap-1" and "netmap-
 2", they can define two different "pid" domains identified by
 "netmap-1.pid" and "netmap-2.pid" respectively. To be simplified, in
 the scope of a specific information resource, the resource-specific
 entity domain defined by itself can be identified by the "."
 EntityDomainTyep without the ResourceID.

 When the associated information resource of a resource-specific
 entity domain is the current information resource itself, this
 resource-specific entity domain is a self-defined entity domain, and
 its ResourceID SHOULD be ignored from its entity domain name.

 Given a set of ALTO information resources, there MAY be an aggregated
 entity domain in a given entity domain type amongst them. An
 aggregated entity domain is simply identified by its entity domain
 type. For example, given two network maps "net-map-1" and "net-map-
 2", "ipv4" and "ipv6" identify two aggregated Internet address entity
 domains (see Section 4.1) between them.

 Note that the "." separator is not allowed in EntityDomainType and
 hence there is no ambiguity on whether an entity domain name refers
 to a global entity domain or a resource-specific entity domain.

3.1.3 . Entity Identifier

 Entities in an entity domain are identified by entity identifiers
 (EntityID) of the following format:

 EntityID ::= EntityDomainName ’:’ DomainTypeSpecificEntityID

Roome, et al. Expires March 7, 2020 [Page 11]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

 Examples from the Internet address entity domains include individual
 IP addresses such as "net1.ipv4:192.0.2.14" and
 "net1.ipv6:2001:db8::12", as well as address blocks such as
 "net1.ipv4:192.0.2.0/26" and "net1.ipv6:2001:db8::1/48".

 The format of the second part of an entity identifier depends on the
 entity domain type, and MUST be specified when registering a new
 entity domain type. Identifiers MAY be hierarchical, and properties
 MAY be inherited based on that hierarchy. Again, the rules defining
 any hierarchy or inheritance MUST be defined when the entity domain
 type is registered.

 The type EntityID is used in this document to denote a JSON string
 representing an entity identifier in this format.

 Note that two entity identifiers with different textual
 representations may refer to the same entity, for a given entity
 domain. For example, the strings "net1.ipv6:2001:db8::1" and
 "net1.ipv6:2001:db8:0:0:0:0:0:1" refer to the same entity in the
 "ipv6" entity domain.

3.1.4 . Hierarchy and Inheritance

 To make the representation efficient, some types of entity domains
 MAY allow the ALTO client/server to use a hierarchical format entity
 identifier to represent a block of individual entities. e.g., In an
 IPv4 domain "net1.ipv4", a cidr "net1.ipv4:192.0.2.0/26" represents
 64 individual IPv4 entities. In this case, the corresponding
 property inheritance rule MUST be defined for the entity domain type.
 The hierarchy and inheritance rule MUST have no ambiguity.

3.2 . Entity Property

 Each entity property has a type to indicate the encoding and the
 semantics of the value of this entity property, and has a name to be
 identified. One entity MAY have multiple properties in the same
 type.

3.2.1 . Entity Property Type

 The type EntityPropertyType is used in this document to indicate a
 string denoting an entity property type. The string MUST be no more
 than 32 characters, and it MUST NOT contain characters other than US-
 ASCII alphanumeric characters (U+0030-U+0039, U+0041-U+005A, and
 U+0061-U+007A), the hyphen ("-", U+002D), the colon (":", U+003A), or
 the low line (’_’, U+005F).

Roome, et al. Expires March 7, 2020 [Page 12]

Internet-Draft Unified Properties September 2019

 Each entity property type MUST be registered with the IANA. The
 intended semantics of the entity property type MUST be specified at
 the same time.

 To distinguish with the endpoint property type, the entity property
 type has the following features.

 o Some entity property types may be applicable to entities in only
 particular types of entity domains, not all. For example, the
 "pid" property is not applicable to entities in a "pid" typed
 entity domain, but is applicable to entities in the "ipv4" or
 "ipv6" domains.

 o The intended semantics of the value of a entity property may also
 depend on the the entity domain type of this entity. For example,
 suppose that the "geo-location" property is defined as the
 coordinates of a point, encoded as (say) "latitude longitude
 [altitude]." When applied to an entity that represents a specific
 host computer, identified by an address in the "ipv4" or "ipv6"
 entity domain, the property defines the host’s location. However,
 when applied to an entity in a "pid" domain, the property would
 indicate the location of the center of all hosts in this "pid"
 entity.

3.2.2 . Entity Property Name

 Each entity property is identified by an entity property name, which
 is a string of the following format:

 EntityPropertyName ::= [ResourceID] ’.’ EntityPropertyType

 Similar to the endpoint property type defined in Section 10.8 of
 [RFC7285] , each entity property may be defined by either the property
 map itself (self-defined) or some other specific information resource
 (resource-specific).

 The entity property name of a resource-specific entity property
 starts with a string of the type ResourceID defined in [RFC7285],
 followed by the "." separator (U+002E) and a EntityDomainType typed
 string. For example, the "pid" properties of an "ipv4" entity
 defined by two different maps "net-map-1" and "net-map-2" are
 identified by "net-map-1.pid" and "net-map-2.pid" respectively.

 When the associated information resource of the entity property is
 the current information resource itself, the ResourceID in the
 property name SHOULD be ignored. For example, the ".asn" property of
 an "ipv4" entity indicates the AS number of the AS which this IPv4
 address is owned by.

Roome, et al. Expires March 7, 2020 [Page 13]

https://tools.ietf.org/pdf/rfc7285#section-10.8
https://tools.ietf.org/pdf/rfc7285#section-10.8
https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

3.3 . Information Resource Export

 Each information resource MAY export a set of entity domains and
 entity property mappings.

3.3.1 . Resource-Specific Entity Domain Export

 Each type of information resource MAY export several types of entity
 domains. For example, a network map resource defines a "pid" domain,
 a "ipv4" domain and a "ipv6" domain (which may be empty).

 When a new ALTO information resource type is registered, if this type
 of information resource can export an existing type of entity domain,
 the corresponding document MUST define how to export such type of
 entity domain from such type of information resource.

 When a new entity domain type is defined, if an existing type of
 information resource can export an entity domain in this entity
 domain type, the corresponding document MUST define how to export
 such type of entity domain from such type of information resource.

3.3.2 . Entity Property Mapping Export

 For each entity domain which could be exported by an information
 resource, this information resource MAY also export some mapping from
 this entity domain to some entity property. For example, a network
 map resource can map an "ipv4" entity to its "pid" property.

 When a new ALTO information resource type is registered, if this type
 of information resource can export an entity domain in an existing
 entity domain type, and map entities in this entity domain to an
 existing type of entity property, the corresponding document MUST
 define how to export such type of an entity property.

 When a new ALTO entity domain type or a new entity property type is
 defined, if an existing type of resource can export an entity domain
 in this entity domain type, and map entities in this entity domain to
 this type of entity property, the corresponding document MUST define
 how to export such type of an entity property.

4. Entity Domain Types

 This document defines three entity domain types. The definition of
 each entity domain type below includes the following: (1) entity
 domain type name, (2) entity domain-specific entity identifiers, and
 (3) hierarchy and inheritance semantics. Since a global entity
 domain type defines a single global entity domain, we say entity
 domain instead of entity domain type.

Roome, et al. Expires March 7, 2020 [Page 14]

Internet-Draft Unified Properties September 2019

4.1 . Internet Address Domain Types

 The document defines two entity domain types (IPv4 and IPv6) for
 Internet addresses. Both types are global entity domain types and
 hence define a corresponding global entity domain as well. Since the
 two domains use the same hierarchy and inheritance semantics, we
 define the semantics together, instead of repeating for each.

4.1.1 . IPv4 Domain

4.1.1.1 . Entity Domain Type

 ipv4

4.1.1.2 . Domain-Specific Entity Identifiers

 Individual addresses are strings as specified by the IPv4Addresses
 rule of Section 3.2.2 of [RFC3986] ; blocks of addresses are prefix-
 match strings as specified in Section 3.1 of [RFC4632] . For the
 purpose of defining properties, an individual Internet address and
 the corresponding full-length prefix are considered aliases for the
 same entity. Thus "ipv4:192.0.2.0" and "ipv4:192.0.2.0/32" are
 equivalent.

4.1.2 . IPv6 Domain

4.1.2.1 . Entity Domain Type

 ipv6

4.1.2.2 . Domain-Specific Entity Identifiers

 Individual addresses are strings as specified by Section 4 of
 [RFC5952] ; blocks of addresses are prefix-match strings as specified
 in Section 7 of [RFC5952] . For the purpose of defining properties,
 an individual Internet address and the corresponding 128-bit prefix
 are considered aliases for the same entity. That is,
 "ipv6:2001:db8::1" and "ipv6:2001:db8::1/128" are equivalent, and
 have the same set of properties.

4.1.3 . Hierarchy and Inheritance of Internet Address Domains

 Both Internet address domains allow property values to be inherited.
 Specifically, if a property P is not defined for a specific Internet
 address I, but P is defined for some block C which prefix-matches I,
 then the address I inherits the value of P defined for block C. If
 more than one such block defines a value for P, I inherits the value
 of P in the block with the longest prefix. It is important to notice

Roome, et al. Expires March 7, 2020 [Page 15]

https://tools.ietf.org/pdf/rfc3986#section-3.2.2
https://tools.ietf.org/pdf/rfc4632#section-3.1
https://tools.ietf.org/pdf/rfc5952#section-4
https://tools.ietf.org/pdf/rfc5952#section-4
https://tools.ietf.org/pdf/rfc5952#section-7

Internet-Draft Unified Properties September 2019

 that this longest prefix rule will ensure no multiple inheritance,
 and hence no ambiguity.

 Address blocks can also inherit properties: if a property P is not
 defined for a block C, but is defined for some block C’ which covers
 all IP addresses in C, and C’ has a shorter mask than C, then block C
 inherits the property from C’. If there are several such blocks C’,
 C inherits from the block with the longest prefix.

 As an example, suppose that a server defines a property P for the
 following entities:

 ipv4:192.0.2.0/26: P=v1
 ipv4:192.0.2.0/28: P=v2
 ipv4:192.0.2.0/30: P=v3
 ipv4:192.0.2.0: P=v4

 Figure 1: Defined Property Values.

 Then the following entities have the indicated values:

 ipv4:192.0.2.0: P=v4
 ipv4:192.0.2.1: P=v3
 ipv4:192.0.2.16: P=v1
 ipv4:192.0.2.32: P=v1
 ipv4:192.0.2.64: (not defined)
 ipv4:192.0.2.0/32: P=v4
 ipv4:192.0.2.0/31: P=v3
 ipv4:192.0.2.0/29: P=v2
 ipv4:192.0.2.0/27: P=v1
 ipv4:192.0.2.0/25: (not defined)

 Figure 2: Inherited Property Values.

 An ALTO server MAY explicitly indicate a property as not having a
 value for a particular entity. That is, a server MAY say that
 property P of entity X is "defined to have no value", instead of
 "undefined". To indicate "no value", a server MAY perform different
 behaviours:

 o If that entity would inherit a value for that property, then the
 ALTO server MUST return a "null" value for that property. In this
 case, the ALTO client MUST recognize a "null" value as "no value"
 and "do not apply the inheritance rules for this property."

 o If the entity would not inherit a value, then the ALTO server MAY
 return "null" or just omit the property. In this case, the ALTO
 client cannot infer the value for this property of this entity

Roome, et al. Expires March 7, 2020 [Page 16]

Internet-Draft Unified Properties September 2019

 from the Inheritance rules. So the client MUST interpret that
 this property has no value.

 If the ALTO server does not define any properties for an entity, then
 the server MAY omit that entity from the response.

4.2 . PID Domain

 The PID domain associates property values with the PIDs in a network
 map. Accordingly, this entity domain always depends on a network
 map.

4.2.1 . Entity Domain Type

 pid

4.2.2 . Domain-Specific Entity Identifiers

 The entity identifiers are the PID names of the associated network
 map.

4.2.3 . Hierarchy and Inheritance

 There is no hierarchy or inheritance for properties associated with
 PIDs.

4.2.4 . Relationship To Internet Addresses Domains

 The PID domain and the Internet address domains are completely
 independent; the properties associated with a PID have no relation to
 the properties associated with the prefixes or endpoint addresses in
 that PID. An ALTO server MAY choose to assign some or all properties
 of a PID to the prefixes in that PID.

 For example, suppose "PID1" consists of the prefix
 "ipv4:192.0.2.0/24", and has the property "P" with value "v1". The
 Internet address entities "ipv4:192.0.2.0" and "ipv4:192.0.2.0/24",
 in the IPv4 domain MAY have a value for the property "P", and if they
 do, it is not necessarily "v1".

4.3 . Internet Address Properties vs. PID Properties

 Because the Internet address and PID domains are completely separate,
 the question may arise as to which entity domain is the best for a
 property. In general, the Internet address domains are RECOMMENDED
 for properties that are closely related to the Internet address, or
 are associated with, and inherited through, blocks of addresses.

Roome, et al. Expires March 7, 2020 [Page 17]

Internet-Draft Unified Properties September 2019

 The PID domain is RECOMMENDED for properties that arise from the
 definition of the PID, rather than from the Internet address prefixes
 in that PID.

 For example, because Internet addresses are allocated to service
 providers by blocks of prefixes, an "ISP" property would be best
 associated with the Internet address domain. On the other hand, a
 property that explains why a PID was formed, or how it relates a
 provider’s network, would best be associated with the PID domain.

5. Entity Domains and Property Mappings in Information Resources

5.1 . Network Map Resource

 The ALTO network map resource defined by the media type "application/
 alto-networkmap+json" exports the following types of entity domains
 and entity property mappings.

5.1.1 . Resource-Specific Entity Domain

 An ALTO network map resource defines a "pid" domain, an "ipv4" domain
 and an "ipv6" domain by follows:

 o The defined "pid" domain includes all PIDs in keys of the
 "network-map" object.

 o The defined "ipv4" domain includes all IPv4 addresses appearing in
 the "ipv4" field of the endpoint address group of each PID.

 o The defined "ipv6" domain includes all IPv6 addresses appearing in
 the "ipv6" field of the endpoint address group of each PID.

5.1.2 . Entity Property Mapping

 For each of the preceding entity domains, an ALTO network map
 resource provides the properties mapping as follows:

 ipv4 -> pid: An "networkmap" typed resource can map an "ipv4" entity
 to a "pid" property whose value is a PID defined by this
 "networkmap" resource and including the IPv4 address of this
 entity.

 ipv6 -> pid: An "networkmap" typed resource can map an "ipv6" entity
 to a "pid" property whose value is a PID defined by this
 "networkmap" resource and including the IPv6 address of this
 entity.

Roome, et al. Expires March 7, 2020 [Page 18]

Internet-Draft Unified Properties September 2019

5.2 . Endpoint Property Resource

 The ALTO endpoint property resource defined by the media type
 "application/alto-endpointprop+json" exports the following types of
 entity domains and entity property mappings.

5.2.1 . Resource-Specific Entity Domain

 An ALTO endpoint property resource defined an "ipv4" domain and an
 "ipv6" domain by follows:

 o The defined "ipv4" domain includes all IPv4 addresses appearing in
 keys of the "endpoint-properties" object.

 o The defined "ipv6" domain includes all IPv6 addresses appearing in
 keys of the "endpoint-properties" object.

5.2.2 . Entity Property Mapping

 For each of the preceding entity domains, an ALTO endpoint property
 resource exports the properties mapping from it to each supported
 global endpoint property. The property value is the corresponding
 global endpoint property value in the "endpiont-properties" object.

5.3 . Property Map Resource

 To avoid the nested reference and its potential complexity, this
 document does not specify the export rule of resource-specific entity
 domain and entity property mapping for the ALTO property map resource
 defined by the media type "application/alto-propmap+json" (see
 Section 6.1).

6. Property Map

 A property map returns the properties defined for all entities in one
 or more domains, e.g., the "location" property of entities in "pid"
 domain, and the "ASN" property of entities in "ipv4" and "ipv6"
 domains.

 Section 9.4 gives an example of a property map request and its
 response.

6.1 . Media Type

 The media type of a property map is "application/alto-propmap+json".

Roome, et al. Expires March 7, 2020 [Page 19]

Internet-Draft Unified Properties September 2019

6.2 . HTTP Method

 The property map is requested using the HTTP GET method.

6.3 . Accept Input Parameters

 None.

6.4 . Capabilities

 The capabilities are defined by an object of type
 PropertyMapCapabilities:

 object {
 EntityPropertyMapping mappings;
 } PropertyMapCapabilities;

 object-map {
 EntityDomainName -> EntityPropertyName<1..*>;
 } EntityPropertyMapping

 with fields:

 mappings: A JSON object whose keys are names of entity domains and
 values are the supported entity properties of the corresponding
 entity domains.

6.5 . Uses

 The "uses" field of a property map resource in an IRD entry specifies
 dependent resources of this property map. It is an array of the
 resource ID(s) of the resource(s).

6.6 . Response

 If the entity domains in this property map depend on other resources,
 the "dependent-vtags" field in the "meta" field of the response MUST
 be an array that includes the version tags of those resources, and
 the order MUST be consistent with the "uses" field of this property
 map resource. The data component of a property map response is named
 "property-map", which is a JSON object of type PropertyMapData,
 where:

Roome, et al. Expires March 7, 2020 [Page 20]

Internet-Draft Unified Properties September 2019

 object {
 PropertyMapData property-map;
 } InfoResourceProperties : ResponseEntityBase;

 object-map {
 EntityID -> EntityProps;
 } PropertyMapData;

 object {
 EntityPropertyName -> JSONValue;
 } EntityProps;

 The ResponseEntityBase type is defined in Section 8.4 of [RFC7285] .

 Specifically, a PropertyMapData object has one member for each entity
 in the property map. The entity’s properties are encoded in the
 corresponding EntityProps object. EntityProps encodes one name/value
 pair for each property, where the property names are encoded as
 strings of type PropertyName. A protocol implementation SHOULD
 assume that the property value is either a JSONString or a JSON
 "null" value, and fail to parse if it is not, unless the
 implementation is using an extension to this document that indicates
 when and how property values of other data types are signaled.

 For each entity in the property map:

 o If the entity is in a resource-specific entity domain, the ALTO
 server SHOULD only return self-defined properties and resource-
 specific properties which depend on the same resource as the
 entity does. The ALTO client SHOULD ignore the resource-specific
 property in this entity if their mapping is not registered in the
 ALTO Resource Entity Property Transfer Registry of the type of the
 corresponding resource.

 o If the entity is in a shared entity domain, the ALTO server SHOULD
 return self-defined properties and all resource-specific
 properties defined for all resource-specific entities which have
 the same domain-specific entity identifier as this entity does.

 For efficiency, the ALTO server SHOULD omit property values that are
 inherited rather than explicitly defined; if a client needs inherited
 values, the client SHOULD use the entity domain’s inheritance rules
 to deduce those values.

Roome, et al. Expires March 7, 2020 [Page 21]

https://tools.ietf.org/pdf/rfc7285#section-8.4

Internet-Draft Unified Properties September 2019

7. Filtered Property Map

 A filtered property map returns the values of a set of properties for
 a set of entities selected by the client.

 Section 9.5 , Section 9.6 , Section 9.7 and Section 9.8 give examples
 of filtered property map requests and responses.

7.1 . Media Type

 The media type of a property map resource is "application/alto-
 propmap+json".

7.2 . HTTP Method

 The filtered property map is requested using the HTTP POST method.

7.3 . Accept Input Parameters

 The input parameters for a filtered property map request are supplied
 in the entity body of the POST request. This document specifies the
 input parameters with a data format indicated by the media type
 "application/alto-propmapparams+json", which is a JSON object of type
 ReqFilteredPropertyMap:

 object {
 EntityID entities<1..*>;
 EntityPropertyName properties<1..*>;
 } ReqFilteredPropertyMap;

 with fields:

 entities: List of entity identifiers for which the specified
 properties are to be returned. The ALTO server MUST interpret
 entries appearing multiple times as if they appeared only once.
 The domain of each entity MUST be included in the list of entity
 domains in this resource’s "capabilities" field (see Section 7.4).

 properties: List of properties to be returned for each entity. Each
 specified property MUST be included in the list of properties in
 this resource’s "capabilities" field (see Section 7.4). The ALTO
 server MUST interpret entries appearing multiple times as if they
 appeared only once.

 Note that the "entities" and "properties" fields MUST have at
 least one entry each.

Roome, et al. Expires March 7, 2020 [Page 22]

Internet-Draft Unified Properties September 2019

7.4 . Capabilities

 The capabilities are defined by an object of type
 PropertyMapCapabilities, as defined in Section 6.4 .

7.5 . Uses

 Same to the "uses" field of the Property Map resource (see
 Section 6.5).

7.6 . Response

 The response MUST indicate an error, using ALTO protocol error
 handling, as defined in Section 8.5 of [RFC7285] , if the request is
 invalid.

 Specifically, a filtered property map request can be invalid as
 follows:

 o An entity identifier in "entities" in the request is invalid if:

 * The domain of this entity is not defined in the "entity-
 domains" capability of this resource in the IRD;

 * The entity identifier is an invalid identifier in the entity
 domain.

 A valid entity identifier is never an error, even if this filtered
 property map resource does not define any properties for it.

 If an entity identifier in "entities" in the request is invalid,
 the ALTO server MUST return an "E_INVALID_FIELD_VALUE" error
 defined in Section 8.5.2 of [RFC7285] , and the "value" field of
 the error message SHOULD indicate this entity identifier.

 o A property name in "properties" in the request is invalid if this
 property name is not defined in the "properties" capability of
 this resource in the IRD.

 It is not an error that a filtered property map resource does not
 define a requested property’s value for a particular entity. In
 this case, the ALTO server MUST omit that property from the
 response for that endpoint.

 If a property name in "properties" in the request is invalid, the
 ALTO server MUST return an "E_INVALID_FIELD_VALUE" error defined
 in Section 8.5.2 of [RFC7285] . The "value" field of the error
 message SHOULD indicate the property name.

Roome, et al. Expires March 7, 2020 [Page 23]

https://tools.ietf.org/pdf/rfc7285#section-8.5
https://tools.ietf.org/pdf/rfc7285#section-8.5.2
https://tools.ietf.org/pdf/rfc7285#section-8.5.2

Internet-Draft Unified Properties September 2019

 The response to a valid request is the same as for the Property Map
 (see Section 6.6), except that:

 o If the requested entities include entities in the shared entity
 domain, the "dependent-vtags" field in its "meta" field MUST
 include version tags of all dependent resources appearing in the
 "uses" field.

 o If the requested entities only include entities in resource-
 specific entity domains, the "dependent-vtags" field in its "meta"
 field MUST include version tags of resources which requested
 resource-specific entity domains and requested resource-specific
 properties are dependent on.

 o The response only includes the entities and properties requested
 by the client. If an entity in the request is identified by a
 hierarchical identifier (e.g., an "ipv4" or "ipv6" address block),
 the response MUST cover properties for all identifiers in this
 hierarchical identifier.

 It is important that the filtered property map response MUST include
 all inherited property values for the requested entities and all the
 entities which are able to inherit property values from them. To
 achieve this goal, the ALTO server MAY follow three rules:

 o If a property for a requested entity is inherited from another
 entity not included in the request, the response SHOULD include
 this property for the requested entity. For example, A full
 property map may skip a property P for an entity A (e.g.,
 ipv4:192.0.2.0/31) if P can be derived using inheritance from
 another entity B (e.g., ipv4:192.0.2.0/30). A filtered property
 map request may include only A but not B. In such a case, the
 property P SHOULD be included in the response for A.

 o If there are entities covered by a requested entity but having
 different values for the requested properties, the response SHOULD
 include all those entities and the different property values for
 them. For example, considering a request for property P of entity
 A (e.g., ipv4:192.0.2.0/31), if P has value v1 for
 A1=ipv4:192.0.2.0/32 and v2 for A2=ipv4:192.0.2.1/32, then, the
 response SHOULD include A1 and A2.

 o If an entity in the response is already covered by some other
 entities in the same response, it SHOULD be removed from the
 response for compactness. For example, in the previous example,
 the entity A=ipv4:192.0.2.0/31 SHOULD be removed because A1 and A2
 cover all the addresses in A.

Roome, et al. Expires March 7, 2020 [Page 24]

Internet-Draft Unified Properties September 2019

 An ALTO client should be aware that the entities in the response MAY
 be different from the entities in its request.

8. Impact on Legacy ALTO Servers and ALTO Clients

8.1 . Impact on Endpoint Property Service

 Since the property map and the filtered property map defined in this
 document provide the functionality of the Endpoint Property Service
 (EPS) defined in Section 11.4 of [RFC7285] , it is RECOMMENDED that
 the EPS be deprecated in favor of Property Map and Filtered Property
 Map. However, ALTO servers MAY provide an EPS for the benefit of
 legacy clients.

8.2 . Impact on Resource-Specific Properties

 Section 10.8 of [RFC7285] defines two categories of endpoint
 properties: "resource-specific" and "global". Resource-specific
 property names are prefixed with the ID of the resource they depend
 upon, while global property names have no such prefix. The property
 map and the filtered property map defined in this document defines
 the similar categories for entity properties. The difference is that
 there is no "global" entity properties but the "self-defined" entity
 properties as the special case of the "resource-specific" entity
 properties instead.

8.3 . Impact on Other Properties

 In general, there should be little or no impact on other previously
 defined properties. The only consideration is that properties can
 now be defined on blocks of entity identifiers, rather than just
 individual entity identifiers, which might change the semantics of a
 property.

9. Examples

9.1 . Network Map

 The examples in this section use a very simple default network map:

 defaultpid: ipv4:0.0.0.0/0 ipv6:::0/0
 pid1: ipv4:192.0.2.0/25
 pid2: ipv4:192.0.2.0/28 ipv4:192.0.2.16/28
 pid3: ipv4:192.0.3.0/28
 pid4: ipv4:192.0.3.16/28

 Figure 3: Example Default Network Map

Roome, et al. Expires March 7, 2020 [Page 25]

https://tools.ietf.org/pdf/rfc7285#section-11.4
https://tools.ietf.org/pdf/rfc7285#section-10.8

Internet-Draft Unified Properties September 2019

 And another simple alternative network map:

 defaultpid: ipv4:0.0.0.0/0 ipv6:::0/0
 pid1: ipv4:192.0.2.0/28 ipv4:192.0.2.16/28
 pid2: ipv4:192.0.3.0/28 ipv4:192.0.3.16/28

 Figure 4: Example Alternative Network Map

9.2 . Property Definitions

 Beyond "pid", the examples in this section use four additional
 properties for Internet address domains, "ISP", "ASN", "country" and
 "state", with the following values:

 ISP ASN country state
 ipv4:192.0.2.0/23: BitsRus - us -
 ipv4:192.0.2.0/28: - 12345 - NJ
 ipv4:192.0.2.16/28: - 12345 - CT
 ipv4:192.0.2.0: - - - PA
 ipv4:192.0.3.0/28: - 12346 - TX
 ipv4:192.0.3.16/28: - 12346 - MN

 Figure 5: Example Property Values for Internet Address Domains

 And the examples in this section use the property "region" for the
 PID domain of the default network map with the following values:

 region
 pid:defaultpid: -
 pid:pid1: us-west
 pid:pid2: us-east
 pid:pid3: us-south
 pid:pid4: us-north

 Figure 6: Example Property Values for Default Network Map’s PID
 Domain

 Note that "-" means the value of the property for the entity is
 "undefined". So the entity would inherit a value for this property
 by the inheritance rule if possible. For example, the value of the
 "ISP" property for "ipv4:192.0.2.0" is "BitsRus" because of
 "ipv4:192.0.2.0/24". But the "region" property for "pid:defaultpid"
 has no value because no entity from which it can inherit.

 Similar to the PID domain of the default network map, the examples in
 this section use the property "ASN" for the PID domain of the
 alternative network map with the following values:

Roome, et al. Expires March 7, 2020 [Page 26]

Internet-Draft Unified Properties September 2019

 ASN
 pid:defaultpid: -
 pid:pid1: 12345
 pid:pid2: 12346

 Figure 7: Example Property Values for Alternative Network Map’s PID
 Domain

9.3 . Information Resource Directory (IRD)

 The following IRD defines the relevant resources of the ALTO server.
 It provides two property maps, one for the "ISP" and "ASN"
 properties, and another for the "country" and "state" properties.
 The server could have provided a single property map for all four
 properties, but did not, presumably because the organization that
 runs the ALTO server believes any given client is not interested in
 all four properties.

 The server provides two filtered property maps. The first returns
 all four properties, and the second just returns the "pid" property
 for the default network map.

 The filtered property maps for the "ISP", "ASN", "country" and
 "state" properties do not depend on the default network map (it does
 not have a "uses" capability), because the definitions of those
 properties do not depend on the default network map. The Filtered
 Property Map for the "pid" property does have a "uses" capability for
 the default network map, because that defines the values of the "pid"
 property.

 Note that for legacy clients, the ALTO server provides an Endpoint
 Property Service for the "pid" property for the default network map.

 "meta" : {
 ...
 "default-alto-network-map" : "default-network-map"
 },
 "resources" : {
 "default-network-map" : {
 "uri" : "http://alto.example.com/networkmap/default",
 "media-type" : "application/alto-networkmap+json"
 },
 "alt-network-map" : {
 "uri" : "http://alto.example.com/networkmap/alt",
 "media-type" : "application/alto-networkmap+json"
 },
 property map resources
 "ia-property-map" : {

Roome, et al. Expires March 7, 2020 [Page 27]

Internet-Draft Unified Properties September 2019

 "uri" : "http://alto.example.com/propmap/full/inet-ia",
 "media-type" : "application/alto-propmap+json",
 "uses": ["default-network-map", "alt-network-map"],
 "capabilities" : {
 "mappings": {
 "ipv4": [".ISP", ".ASN"],
 "ipv6": [".ISP", ".ASN"]
 }
 }
 },
 "iacs-property-map" : {
 "uri" : "http://alto.example.com/propmap/full/inet-iacs",
 "media-type" : "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "uses": ["default-network-map", "alt-network-map"],
 "capabilities" : {
 "mappings": {
 "ipv4": [".ISP", ".ASN", ".country", ".state"],
 "ipv6": [".ISP", ".ASN", ".country", ".state"]
 }
 }
 },
 "region-property-map": {
 "uri": " http://alto.exmaple.com/propmap/region ",
 "media-type": "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "uses" : ["default-network-map", "alt-network-map"],
 "capabilities": {
 "mappings": {
 "default-network-map.pid": [".region"],
 "alt-network-map.pid": [".ASN"],
 }
 }
 },
 "ip-pid-property-map" : {
 "uri" : "http://alto.example.com/propmap/lookup/pid",
 "media-type" : "application/alto-propmap+json",
 "accepts" : "application/alto-propmapparams+json",
 "uses" : ["default-network-map", "alt-network-map"],
 "capabilities" : {
 "mappings": {
 "ipv4": ["default-network-map.pid",
 "alt-network-map.pid"],
 "ipv6": ["default-network-map.pid",
 "alt-network-map.pid"]
 }
 }
 },

Roome, et al. Expires March 7, 2020 [Page 28]

http://alto.exmaple.com/propmap/region

Internet-Draft Unified Properties September 2019

 "legacy-endpoint-property" : {
 "uri" : "http://alto.example.com/legacy/eps-pid",
 "media-type" : "application/alto-endpointprop+json",
 "accepts" : "application/alto-endpointpropparams+json",
 "capabilities" : {
 "properties" : ["default-network-map.pid",
 "alt-network-map.pid"]
 }
 }
 }

 Figure 8: Example IRD

9.4 . Property Map Example

 The following example uses the properties and IRD defined above to
 retrieve a Property Map for entities with the "ISP" and "ASN"
 properties.

 Note that, to be compact, the response does not includes the entity
 "ipv4:192.0.2.0", because values of all those properties for this
 entity are inherited from other entities.

 Also note that the entities "ipv4:192.0.2.0/28" and
 "ipv4:192.0.2.16/28" are merged into "ipv4:192.0.2.0/27", because
 they have the same value of the "ASN" property. The same rule
 applies to the entities "ipv4:192.0.3.0/28" and "ipv4:192.0.3.0/28".
 Both of "ipv4:192.0.2.0/27" and "ipv4:192.0.3.0/27" omit the value
 for the "ISP" property, because it is inherited from
 "ipv4:192.0.2.0/23".

 GET /propmap/full/inet-ia HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-propmap+json,application/alto-error+json

Roome, et al. Expires March 7, 2020 [Page 29]

Internet-Draft Unified Properties September 2019

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "meta": {
 "dependent-vtags": [
 {"resource-id": "default-network-map",
 "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"},
 {"resource-id": "alt-network-map",
 "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"}
]
 },
 "property-map": {
 "ipv4:192.0.2.0/23": {".ISP": "BitsRus"},
 "ipv4:192.0.2.0/27": {".ASN": "12345"},
 "ipv4:192.0.3.0/27": {".ASN": "12346"}
 }
 }

9.5 . Filtered Property Map Example #1

 The following example uses the filtered property map resource to
 request the "ISP", "ASN" and "state" properties for several IPv4
 addresses.

 Note that the value of "state" for "ipv4:192.0.2.0" is the only
 explicitly defined property; the other values are all derived by the
 inheritance rules for Internet address entities.

 POST /propmap/lookup/inet-iacs HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-propmap+json,application/alto-error+json
 Content-Length: ###
 Content-Type: application/alto-propmapparams+json

 {
 "entities" : ["ipv4:192.0.2.0",
 "ipv4:192.0.2.1",
 "ipv4:192.0.2.17"],
 "properties" : [".ISP", ".ASN", ".state"]
 }

Roome, et al. Expires March 7, 2020 [Page 30]

Internet-Draft Unified Properties September 2019

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "meta": {
 "dependent-vtags": [
 {"resource-id": "default-network-map",
 "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"},
 {"resource-id": "alt-network-map",
 "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"}
]
 },
 "property-map": {
 "ipv4:192.0.2.0":
 {".ISP": "BitsRus", ".ASN": "12345", ".state": "PA"},
 "ipv4:192.0.2.1":
 {".ISP": "BitsRus", ".ASN": "12345", ".state": "NJ"},
 "ipv4:192.0.2.17":
 {".ISP": "BitsRus", ".ASN": "12345", ".state": "CT"}
 }
 }

9.6 . Filtered Property Map Example #2

 The following example uses the filtered property map resource to
 request the "ASN", "country" and "state" properties for several IPv4
 prefixes.

 Note that the property values for both entities "ipv4:192.0.2.0/26"
 and "ipv4:192.0.3.0/26" are not explicitly defined. They are
 inherited from the entity "ipv4:192.0.2.0/23".

 Also note that some entities like "ipv4:192.0.2.0/28" and
 "ipv4:192.0.2.16/28" in the response are not listed in the request
 explicitly. The response includes them because they are refinements
 of the requested entities and have different values for the requested
 properties.

 The entity "ipv4:192.0.4.0/26" is not included in the response,
 because there are neither entities which it is inherited from, nor
 entities inherited from it.

Roome, et al. Expires March 7, 2020 [Page 31]

Internet-Draft Unified Properties September 2019

 POST /propmap/lookup/inet-iacs HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-propmap+json,application/alto-error+json
 Content-Length: ###
 Content-Type: application/alto-propmapparams+json

 {
 "entities" : ["ipv4:192.0.2.0/26",
 "ipv4:192.0.3.0/26",
 "ipv4:192.0.4.0/26"],
 "properties" : [".ASN", ".country", ".state"]
 }

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "meta": {
 "dependent-vtags": [
 {"resource-id": "default-network-map",
 "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"},
 {"resource-id": "alt-network-map",
 "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"}
]
 },
 "property-map": {
 "ipv4:192.0.2.0/26": {".country": "us"},
 "ipv4:192.0.2.0/28": {".ASN": "12345",
 ".state": "NJ"},
 "ipv4:192.0.2.16/28": {".ASN": "12345",
 ".state": "CT"},
 "ipv4:192.0.2.0": {".state": "PA"},
 "ipv4:192.0.3.0/26": {".country": "us"},
 "ipv4:192.0.3.0/28": {".ASN": "12345",
 ".state": "TX"},
 "ipv4:192.0.3.16/28": {".ASN": "12345",
 ".state": "MN"}
 }
 }

9.7 . Filtered Property Map Example #3

 The following example uses the filtered property map resource to
 request the "pid" property for several IPv4 addresses and prefixes.

 Note that the entity "ipv4:192.0.3.0/27" is redundant in the
 response. Although it can inherit a value of "defaultpid" for the

Roome, et al. Expires March 7, 2020 [Page 32]

Internet-Draft Unified Properties September 2019

 "pid" property from the entity "ipv4:0.0.0.0/0", none of addresses in
 it is in "defaultpid". Because blocks "ipv4:192.0.3.0/28" and
 "ipv4:192.0.3.16/28" have already cover all addresses in that block.
 So an ALTO server who wants a compact response can omit this entity.

 POST /propmap/lookup/pid HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-propmap+json,application/alto-error+json
 Content-Length: ###
 Content-Type: application/alto-propmapparams+json

 {
 "entities" : [
 "ipv4:192.0.2.128",
 "ipv4:192.0.3.0/27"],
 "properties" : ["default-network-map.pid"]
 }

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "meta": {
 "dependent-vtags": [
 {"resource-id": "default-network-map",
 "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"},
 {"resource-id": "alt-network-map",
 "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"}
]
 },
 "property-map": {
 "ipv4:192.0.2.128": {"default-network-map.pid": "defaultpid"},
 "ipv4:192.0.2.0/27": {"default-network-map.pid": "defaultpid"},
 "ipv4:192.0.3.0/28": {"default-network-map.pid": "pid3"},
 "ipv4:192.0.3.16/28": {"default-network-map.pid": "pid4"}
 }
 }

9.8 . Filtered Property Map Example #4

 The following example uses the filtered property map resource to
 request the "region" property for several PIDs defined in "default-
 network-map". The value of the "region" property for each PID is not
 defined by "default-network-map", but the reason why the PID is
 defined by the network operator.

Roome, et al. Expires March 7, 2020 [Page 33]

Internet-Draft Unified Properties September 2019

 POST /propmap/lookup/region HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-propmap+json,application/alto-error+json
 Content-Length: ###
 Content-Type: application/alto-propmapparams+json

 {
 "entities" : ["default-network-map.pid:pid1",
 "default-network-map.pid:pid2"],
 "properties" : [".region"]
 }

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "default-network-map",
 "tag": "7915dc0290c2705481c491a2b4ffbec482b3cf62"}
]
 },
 "property-map": {
 "default-network-map.pid:pid1": {
 ".region": "us-west"
 },
 "default-network-map.pid:pid2": {
 ".region": "us-east"
 }
 }
 }

10. Security Considerations

 Both Property Map and Filtered Property Map defined in this document
 fit into the architecture of the ALTO base protocol, and hence the
 Security Considerations (Section 15 of [RFC7285]) of the base
 protocol fully apply: authenticity and integrity of ALTO information
 (i.e., authenticity and integrity of Property Maps), potential
 undesirable guidance from authenticated ALTO information (e.g.,
 potentially imprecise or even wrong value of a property such as geo-
 location), confidentiality of ALTO information (e.g., exposure of a
 potentially sensitive entity property such as geo-location), privacy
 for ALTO users, and availability of ALTO services should all be
 considered.

Roome, et al. Expires March 7, 2020 [Page 34]

https://tools.ietf.org/pdf/rfc7285#section-15

Internet-Draft Unified Properties September 2019

 A particular fundamental security consideration when an ALTO server
 provides a Property Map is to define precisely the policies on who
 can access what properties for which entities. Security mechanisms
 such as authentication and confidentiality mechanisms then should be
 applied to enforce the policy. For example, a policy can be that a
 property P can be accessed only by its owner (e.g., the customer who
 is allocated a given IP address). Then, the ALTO server will need to
 deploy corresponding mechanisms to realize the policy. The policy
 may allow non-owners to access a coarse-grained value of the property
 P. In such a case, the ALTO server may provide a different URI to
 provide the information.

11. IANA Considerations

 This document defines additional application/alto-* media types, and
 extends the ALTO endpoint property registry.

11.1 . application/alto-* Media Types

 This document registers two additional ALTO media types, listed in
 Table 1.

 +--------------+--------------------------+------------------------+
 | Type | Subtype | Specification |
 +--------------+--------------------------+------------------------+
 | application | alto-propmap+json | Section 6.1 |
 | application | alto-propmapparams+json | Section 7.3 |
 +--------------+--------------------------+------------------------+

 Table 1: Additional ALTO Media Types.

 Type name: application

 Subtype name: This document registers multiple subtypes, as listed
 in Table 1.

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC7159].

 Security considerations: Security considerations related to the
 generation and consumption of ALTO Protocol messages are discussed
 in Section 15 of [RFC7285] .

Roome, et al. Expires March 7, 2020 [Page 35]

https://tools.ietf.org/pdf/rfc7159
https://tools.ietf.org/pdf/rfc7285#section-15

Internet-Draft Unified Properties September 2019

 Interoperability considerations: This document specifies formats of
 conforming messages and the interpretation thereof.

 Published specification: This document is the specification for
 these media types; see Table 1 for the section documenting each
 media type.

 Applications that use this media type: ALTO servers and ALTO clients
 either stand alone or are embedded within other applications.

 Additional information:

 Magic number(s): n/a

 File extension(s): This document uses the mime type to refer to
 protocol messages and thus does not require a file extension.

 Macintosh file type code(s): n/a

 Person & email address to contact for further information: See
 Authors’ Addresses section.

 Intended usage: COMMON

 Restrictions on usage: n/a

 Author: See Authors’ Addresses section.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

11.2 . ALTO Entity Domain Type Registry

 This document requests IANA to create and maintain the "ALTO Entity
 Domain Type Registry", listed in Table 2.

 +-------------+---------------------------+-------------------------+
 | Identifier | Entity Identifier | Hierarchy & Inheritance |
 | | Encoding | |
 +-------------+---------------------------+-------------------------+
ipv4	See Section 4.1.1	See Section 4.1.3
ipv6	See Section 4.1.2	See Section 4.1.3
pid	See Section 4.2	None
 +-------------+---------------------------+-------------------------+

 Table 2: ALTO Entity Domains.

Roome, et al. Expires March 7, 2020 [Page 36]

Internet-Draft Unified Properties September 2019

 This registry serves two purposes. First, it ensures uniqueness of
 identifiers referring to ALTO entity domains. Second, it states the
 requirements for allocated entity domains.

11.2.1 . Consistency Procedure between ALTO Address Type Registry and
 ALTO Entity Domain Type Registry

 One potential issue of introducing the "ALTO Entity Domain Type
 Registry" is its relationship with the "ALTO Address Types Registry"
 already defined in Section 14.4 of [RFC7285] . In particular, the
 entity identifier of a type of an entity domain registered in the
 "ALTO Entity Domain Type Registry" MAY match an address type defined
 in "ALTO Address Type Registry". It is necessary to precisely define
 and guarantee the consistency between "ALTO Address Type Registry"
 and "ALTO Entity Domain Registry".

 We define that the ALTO Entity Domain Type Registry is consistent
 with ALTO Address Type Registry if two conditions are satisfied:

 o When an address type is already or able to be registered in the
 ALTO Address Type Registry [RFC7285], the same identifier MUST be
 used when a corresponding entity domain type is registered in the
 ALTO Entity Domain Type Registry.

 o If an ALTO entity domain type has the same identifier as an ALTO
 address type, their addresses encoding MUST be compatible.

 To achieve this consistency, the following items MUST be checked
 before registering a new ALTO entity domain type in a future
 document:

 o Whether the ALTO Address Type Registry contains an address type
 that can be used as an entity identifier for the candidate domain
 identifier. This has been done for the identifiers "ipv4" and
 "ipv6" in Table 2.

 o Whether the candidate entity identifier of the type of the entity
 domain is able to be an endpoint address, as defined in Sections
 2.1 and 2.2 of [RFC7285].

 When a new ALTO entity domain type is registered, the consistency
 with the ALTO Address Type Registry MUST be ensured by the following
 procedure:

 o Test: Do corresponding entity identifiers match a known "network"
 address type?

 * If yes (e.g., cell, MAC or socket addresses):

Roome, et al. Expires March 7, 2020 [Page 37]

https://tools.ietf.org/pdf/rfc7285#section-14.4
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

 + Test: Is such an address type present in the ALTO Address
 Type Registry?

 - If yes: Set the new ALTO entity domain type identifier to
 be the found ALTO address type identifier.

 - If no: Define a new ALTO entity domain type identifier
 and use it to register a new address type in the ALTO
 Address Type Registry following Section 14.4 of
 [RFC7285] .

 + Use the new ALTO entity domain type identifier to register a
 new ALTO entity domain type in the ALTO Entity Domain Type
 Registry following Section 11.2.2 of this document.

 * If no (e.g., pid name, ane name or country code): Proceed with
 the ALTO Entity Domain Type registration as described in
 Section 11.2.2 .

11.2.2 . ALTO Entity Domain Type Registration Process

 New ALTO entity domain types are assigned after IETF Review [RFC5226]
 to ensure that proper documentation regarding the new ALTO entity
 domain types and their security considerations has been provided.
 RFCs defining new entity domain types SHOULD indicate how an entity
 in a registered type of domain is encoded as an EntityID, and, if
 applicable, the rules defining the entity hierarchy and property
 inheritance. Updates and deletions of ALTO entity domains follow the
 same procedure.

 Registered ALTO entity domain type identifiers MUST conform to the
 syntactical requirements specified in Section 3.1.2 . Identifiers are
 to be recorded and displayed as strings.

 Requests to the IANA to add a new value to the registry MUST include
 the following information:

 o Identifier: The name of the desired ALTO entity domain type.

 o Entity Identifier Encoding: The procedure for encoding the
 identifier of an entity of the registered type as an EntityID (see
 Section 3.1.3). If corresponding entity identifiers of an entity
 domain match a known "network" address type, the Entity Identifier
 Encoding of this domain identifier MUST include both Address
 Encoding and Prefix Encoding of the same identifier registered in
 the ALTO Address Type Registry [RFC7285]. For the purpose of
 defining properties, an individual entity identifier and the

Roome, et al. Expires March 7, 2020 [Page 38]

https://tools.ietf.org/pdf/rfc7285#section-14.4
https://tools.ietf.org/pdf/rfc7285#section-14.4
https://tools.ietf.org/pdf/rfc5226
https://tools.ietf.org/pdf/rfc7285

Internet-Draft Unified Properties September 2019

 corresponding full-length prefix MUST be considered aliases for
 the same entity.

 o Hierarchy: If the entities form a hierarchy, the procedure for
 determining that hierarchy.

 o Inheritance: If entities can inherit property values from other
 entities, the procedure for determining that inheritance.

 o Mapping to ALTO Address Type: A boolean value to indicate if the
 entity domain type can be mapped to the ALTO address type with the
 same identifier.

 o Security Considerations: In some usage scenarios, entity
 identifiers carried in ALTO Protocol messages may reveal
 information about an ALTO client or an ALTO service provider.
 Applications and ALTO service providers using addresses of the
 registered type should be made aware of how (or if) the addressing
 scheme relates to private information and network proximity.

 This specification requests registration of the identifiers "ipv4",
 "ipv6" and "pid", as shown in Table 2.

11.3 . ALTO Entity Property Type Registry

 This document requests IANA to create and maintain the "ALTO Entity
 Property Type Registry", listed in Table 3.

 To distinguish with the "ALTO Endpoint Property Type Registry", each
 entry in this registry is an ALTO entity property type defined in
 Section 3.2.1 . Thus, registered ALTO entity property type identifier
 MUST conform to the syntactical requirements specified in that
 section.

 The initial registered ALTO entity property types are listed in
 Table 3.

 +-------------+---------------------------------+
 | Identifier | Intended Semantics |
 +-------------+---------------------------------+
 | pid | See Section 7.1.1 of [RFC7285] |
 +-------------+---------------------------------+

 Table 3: ALTO Entity Property Types.

 Requests to the IANA to add a new value to the registry MUST include
 the following information:

Roome, et al. Expires March 7, 2020 [Page 39]

https://tools.ietf.org/pdf/rfc7285#section-7.1.1

Internet-Draft Unified Properties September 2019

 o Identifier: The unique id for the desired ALTO entity property
 type. The format MUST be as defined in Section 3.2.1 of this
 document. It includes the information of the applied ALTO entity
 domain and the property name.

 o Intended Semantics: ALTO entity properties carry with them
 semantics to guide their usage by ALTO clients. Hence, a document
 defining a new type SHOULD provide guidance to both ALTO service
 providers and applications utilizing ALTO clients as to how values
 of the registered ALTO entity property should be interpreted.

 This document requests registration of the identifier "pid", as shown
 in Table 3.

11.4 . ALTO Resource-Specific Entity Domain Registries

11.4.1 . Network Map

 Media-type: application/alto-networkmap+json

 +---------------------+---------------------+
 | Entity Domain Type | Intended Semantics |
 +---------------------+---------------------+
 | ipv4 | See Section 5.1.1 |
 | ipv6 | See Section 5.1.1 |
 | pid | See Section 5.1.1 |
 +---------------------+---------------------+

 Table 4: ALTO Network Map Resource-Specific Entity Domain.

11.4.2 . Endpoint Property

 Media-type: application/alto-endpointprop+json

 +---------------------+---------------------+
 | Entity Domain Type | Intended Semantics |
 +---------------------+---------------------+
 | ipv4 | See Section 5.2.1 |
 | ipv6 | See Section 5.2.1 |
 +---------------------+---------------------+

 Table 5: ALTO Endpoint Property Resource-Specific Entity Domain.

11.5 . ALTO Resource Entity Property Mapping Registries

Roome, et al. Expires March 7, 2020 [Page 40]

Internet-Draft Unified Properties September 2019

11.5.1 . Network Map

 Media-type: application/alto-networkmap+json

 +----------------+-----------------+-------------+------------------+
 | Mapping | Entity Domain | Property | Intended |
 | Descriptor | Type | Type | Semantics |
 +----------------+-----------------+-------------+------------------+
ipv4 -> pid	ipv4	pid	See
			Section 5.1.2
ipv6 -> pid	ipv6	pid	See
			Section 5.1.2
 +----------------+-----------------+-------------+------------------+

 Table 6: ALTO Network Map Entity Property Mapping.

12. Acknowledgments

 The authors would like to thank discussions with Kai Gao, Qiao Xiang,
 Shawn Lin, Xin Wang, Danny Perez, and Vijay Gurbani. The authors
 thank Dawn Chen (Tongji University), and Shenshen Chen (Tongji/Yale
 University) for their contributions to earlier drafts.

13. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < https://www.rfc-editor.org/info/rfc2119 >.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986 , DOI 10.17487/RFC3986, January 2005,
 < https://www.rfc-editor.org/info/rfc3986 >.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122 , RFC 4632 , DOI 10.17487/RFC4632, August
 2006, < https://www.rfc-editor.org/info/rfc4632 >.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226 ,
 DOI 10.17487/RFC5226, May 2008,
 < https://www.rfc-editor.org/info/rfc5226 >.

Roome, et al. Expires March 7, 2020 [Page 41]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://tools.ietf.org/pdf/bcp122
https://tools.ietf.org/pdf/rfc4632
https://www.rfc-editor.org/info/rfc4632
https://tools.ietf.org/pdf/rfc5226
https://www.rfc-editor.org/info/rfc5226

Internet-Draft Unified Properties September 2019

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952 ,
 DOI 10.17487/RFC5952, August 2010,
 < https://www.rfc-editor.org/info/rfc5952 >.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011 , DOI 10.17487/RFC7011, September 2013,
 < https://www.rfc-editor.org/info/rfc7011 >.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159 , DOI 10.17487/RFC7159, March
 2014, < https://www.rfc-editor.org/info/rfc7159 >.

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285 , DOI 10.17487/RFC7285, September 2014,
 < https://www.rfc-editor.org/info/rfc7285 >.

 [RFC7921] Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921 , DOI 10.17487/RFC7921, June 2016,
 < https://www.rfc-editor.org/info/rfc7921 >.

Authors’ Addresses

 Wendy Roome
 Nokia Bell Labs (Retired)
 124 Burlington Rd
 Murray Hill, NJ 07974
 USA

 Phone: +1-908-464-6975
 Email: wendy@wdroome.com

 Sabine Randriamasy
 Nokia Bell Labs
 Route de Villejust
 NOZAY 91460
 FRANCE

 Email: Sabine.Randriamasy@nokia-bell-labs.com

Roome, et al. Expires March 7, 2020 [Page 42]

https://tools.ietf.org/pdf/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://tools.ietf.org/pdf/rfc7011
https://www.rfc-editor.org/info/rfc7011
https://tools.ietf.org/pdf/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://tools.ietf.org/pdf/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://tools.ietf.org/pdf/rfc7921
https://www.rfc-editor.org/info/rfc7921

Internet-Draft Unified Properties September 2019

 Y. Richard Yang
 Yale University
 51 Prospect Street
 New Haven, CT 06511
 USA

 Phone: +1-203-432-6400
 Email: yry@cs.yale.edu

 Jingxuan Jensen Zhang
 Tongji University
 4800 Caoan Road
 Shanghai 201804
 China

 Email: jingxuan.n.zhang@gmail.com

 Kai Gao
 Sichuan University
 Chengdu 610000
 China

 Email: kaigao@scu.edu.cn

Roome, et al. Expires March 7, 2020 [Page 43]

CDNI J. Seedorf
Internet-Draft HFT Stuttgart - Univ. of Applied Sciences
Intended status: Standards Track Y. Yang
Expires: February 15, 2020 Tongji/Yale
 K. Ma
 Ericsson
 J. Peterson
 Neustar
 X. Lin
 J. Zhang
 Tongji
 August 14, 2019

 Content Delivery Network Interconnection (CDNI) Request Routing: CDNI
 Footprint and Capabilities Advertisement using ALTO
 draft-ietf-alto-cdni-request-routing-alto-07

Abstract

 The Content Delivery Networks Interconnection (CDNI) framework
 [RFC6707] defines a set of protocols to interconnect CDNs, to achieve
 multiple goals such as extending the reach of a given CDN to areas
 that are not covered by that particular CDN. One component that is
 needed to achieve the goal of CDNI described in [RFC7336] is the CDNI
 Request Routing Footprint & Capabilities Advertisement interface
 (FCI). [RFC8008] defines precisely the semantics of FCI and provides
 guidelines on the FCI protocol, but the exact protocol is explicitly
 outside the scope of that document. In this document, we follow the
 guidelines to define an FCI protocol using the Application-Layer
 Traffic Optimization (ALTO) protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 15, 2020.

Seedorf, et al. Expires February 15, 2020 [Page 1]

https://tools.ietf.org/pdf/rfc6707
https://tools.ietf.org/pdf/rfc7336
https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft CDNI FCI using ALTO August 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Background . 4
 2.1 . Semantics of FCI Advertisement 5
 2.2 . ALTO Background and Benefits 6
 3. CDNI FCI Service . 8
 3.1 . Media Type . 8
 3.2 . HTTP Method . 8
 3.3 . Accept Input Parameters 9
 3.4 . Capabilities . 9
 3.5 . Uses . 9
 3.6 . Response . 9
 3.7 . Examples . 11
 3.7.1 . IRD Example . 11
 3.7.2 . Basic Example . 14
 3.7.3 . Incremental Updates Example 15
 4. CDNI FCI Service using ALTO Network Map 17
 4.1 . Network Map Footprint Type: altopid 17
 4.2 . Examples . 17
 4.2.1 . IRD Example . 17
 4.2.2 . ALTO Network Map for CDNI FCI Footprints Example . . 17
 4.2.3 . ALTO PID Footprints in CDNI FCI 18
 4.2.4 . Incremental Updates Example 19
 5. Filtered CDNI FCI using Capabilities 21
 5.1 . Media Type . 21
 5.2 . HTTP Method . 21
 5.3 . Accept Input Parameters 21
 5.4 . Capabilities . 22
 5.5 . Uses . 22
 5.6 . Response . 22
 5.7 . Examples . 23
 5.7.1 . IRD Example . 23

Seedorf, et al. Expires February 15, 2020 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info

Internet-Draft CDNI FCI using ALTO August 2019

 5.7.2 . Basic Example . 23
 5.7.3 . Incremental Updates Example 25
 6. Query Footprint Properties using ALTO Property Map Service . 26
 6.1. Representing Footprint Objects as Unified Property Map
 Entities . 27
 6.1.1 . ASN Domain . 27
 6.1.2 . COUNTRYCODE Domain 28
 6.2 . Examples . 28
 6.2.1 . IRD Example . 28
 6.2.2 . Property Map Example 28
 6.2.3 . Filtered Property Map Example 30
 6.2.4 . Incremental Updates Example 31
 7. IANA Considerations . 33
 7.1 . CDNI Metadata Footprint Type Registry 33
 7.2 . ALTO Entity Domain Type Registry 33
 7.3 . ALTO Entity Property Type Registry 33
 8. Security Considerations 34
 9. Acknowledgments . 35
 10. References . 35
 10.1 . Normative References 35
 10.2 . Informative References 36
 Authors’ Addresses . 36

1. Introduction

 The ability to interconnect multiple content delivery networks (CDNs)
 has many benefits, including increased coverage, capability, and
 reliability. The Content Delivery Networks Interconnection (CDNI)
 framework [RFC6707] defines four interfaces to achieve
 interconnection of CDNs: (1) the CDNI Request Routing Interface; (2)
 the CDNI Metadata Interface; (3) the CDNI Logging Interface; and (4)
 the CDNI Control Interface.

 Among the four interfaces, the CDNI Request Routing Interface
 provides key functions, as specified in [RFC6707]: "The CDNI Request
 Routing interface enables a Request Routing function in an Upstream
 CDN to query a Request Routing function in a Downstream CDN to
 determine if the Downstream CDN is able (and willing) to accept the
 delegated Content Request. It also allows the Downstream CDN to
 control what should be returned to the User Agent in the redirection
 message by the upstream Request Routing function." On a high level,
 the scope of the CDNI Request Routing Interface, therefore, contains
 two main tasks: (1) determining if the downstream CDN (dCDN) is
 willing to accept a delegated content request; (2) redirecting the
 content request coming from an upstream CDN (uCDN) to the proper
 entry point or entity in the downstream CDN.

Seedorf, et al. Expires February 15, 2020 [Page 3]

https://tools.ietf.org/pdf/rfc6707
https://tools.ietf.org/pdf/rfc6707

Internet-Draft CDNI FCI using ALTO August 2019

 Correspondingly, the request routing interface is broadly divided
 into two functionalities: (1) CDNI Footprint & Capabilities
 Advertisement interface (FCI); (2) CDNI Request Routing Redirection
 interface (RI). Since this document focuses on the first
 functionality, CDNI FCI, we will describe it in a more detailed way.
 CDNI FCI is an advertisement from a dCDN to a uCDN (push) or a query
 from a uCDN to a dCDN (pull) so that the uCDN knows whether it can
 redirect a particular user request to that dCDN.

 A key component in defining CDNI FCI is defining objects describing
 the footprints and capabilities of a dCDN. Such objects are already
 in [RFC8008]. A protocol to transport and update such objects
 between a uCDN and a dCDN, however, is not defined. Hence, the scope
 of this document is to define such a protocol by introducing a new
 Application-Layer Traffic Optimization (ALTO) [RFC7285] service
 called "CDNI FCI Map Service".

 There are multiple benefits in using ALTO as a transport protocol, as
 we discuss in Section 2.2 .

 The rest of this document is organized as follows. Section 2
 provides non-normative background on both CDNI FCI and ALTO.
 Section 3 introduces the most basic service, called CDNI FCI Map, to
 realize CDNI FCI using ALTO. Section 4 demonstrates a key benefit of
 using ALTO: the ability to integrate CDNI FCI with ALTO network maps.
 Such integration provides a new granularity to describe footprints.
 Section 5 builds on filtered ALTO maps to introduce filtered CDNI FCI
 maps using capabilities so that a uCDN can get footprints with given
 capabilities instead of getting the full map which can be huge.
 Section 6 further shows a benefit of using ALTO: the ability to query
 footprint properties using ALTO unified properties. In this way, a
 uCDN can effectively fetch capabilities of some footprints in which
 it is interested. IANA and security considerations are discussed in
 Section 7 and Section 8 respectively.

 Throughout this document, we use the terminology for CDNI defined in
 [RFC6707], [RFC8006], [RFC8008] and we use the terminology for ALTO
 defined in [RFC7285], [I-D.ietf-alto-unified-props-new].

2. Background

 The design of CDNI FCI transport using ALTO depends on the
 understanding of both FCI semantics and ALTO. Hence, we start with a
 review of both.

Seedorf, et al. Expires February 15, 2020 [Page 4]

https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc6707
https://tools.ietf.org/pdf/rfc8006
https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/rfc7285

Internet-Draft CDNI FCI using ALTO August 2019

2.1 . Semantics of FCI Advertisement

 The CDNI document on "Footprint and Capabilities Semantics" [RFC8008]
 defines the semantics of CDNI FCI, and provides guidance on what
 Footprint and Capabilities mean in a CDNI context and how a protocol
 solution should in principle look like. The definitions in [RFC8008]
 depend on [RFC8006]. Here we briefly summarize key related points of
 [RFC8008] and [RFC8006]. For a detailed discussion, the reader is
 referred to the RFCs.

 o Footprint and capabilities are tied together and cannot be
 interpreted independently from each other. Hence, capabilities
 must be expressed on a per footprint basis. [RFC8008] integrates
 footprint and capabilities with an approach of "capabilities with
 footprint restrictions".

 o Given that a large part of Footprint and Capabilities
 Advertisement will actually happen in contractual agreements, the
 semantics of CDNI Footprint and Capabilities advertisement refers
 to answering the following question: what exactly still needs to
 be advertised by the CDNI FCI? For instance, updates about
 temporal failures of part of a footprint can be useful information
 to convey via the CDNI request routing interface. Such
 information would provide updates on information previously agreed
 in contracts between the participating CDNs. In other words, the
 CDNI FCI is a means for a dCDN to provide changes/updates
 regarding a footprint and/or capabilities that it has prior agreed
 to serve in a contract with a uCDN. Hence, server push and
 incremental encoding will be necessary techniques.

 o Multiple types of footprints (ipv4cidr, ipv6cidr, asn and
 countrycode) are defined in [RFC8006].

 o A "Set of IP-prefixes" can contain both full IP addresses (i.e., a
 /32 for IPv4 and a /128 for IPv6) and IP prefixes with an
 arbitrary prefix length. There must also be support for multiple
 IP address versions, i.e., IPv4 and IPv6, in such a footprint.

 o For all of these mandatory-to-implement footprint types,
 footprints can be viewed as constraints for delegating requests to
 a dCDN: A dCDN footprint advertisement tells the uCDN the
 limitations for delegating a request to the dCDN. For IP prefixes
 or ASN(s), the footprint signals to the uCDN that it should
 consider the dCDN a candidate only if the IP address of the
 request routing source falls within the prefix set (or ASN,
 respectively). The CDNI specifications do not define how a given
 uCDN determines what address ranges are in a particular ASN.
 Similarly, for country codes, a uCDN should only consider the dCDN

Seedorf, et al. Expires February 15, 2020 [Page 5]

https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/rfc8006
https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/rfc8006
https://tools.ietf.org/pdf/rfc8008
https://tools.ietf.org/pdf/rfc8006

Internet-Draft CDNI FCI using ALTO August 2019

 a candidate if it covers the country of the request routing
 source. The CDNI specifications do not define how a given uCDN
 determines the country of the request routing source. Multiple
 footprint constraints are additive, i.e., the advertisement of
 different types of footprint narrows the dCDN candidacy
 cumulatively.

 o The following capabilities are defined as "base" capabilities;
 that is, they are required in all cases and therefore constitute
 mandatory capabilities to be supported by the CDNI FCI: (1)
 Delivery Protocol; (2) Acquisition Protocol; (3) Redirection Mode;
 (4) Capabilities related to CDNI Logging; (5) Capabilities related
 to CDNI Metadata.

2.2 . ALTO Background and Benefits

 Application-Layer Traffic Optimization (ALTO) [RFC7285] is an
 approach for guiding the resource provider selection process in
 distributed applications that can choose among several candidate
 resources providers to retrieve a given resource. By conveying
 network layer (topology) information, an ALTO server can provide
 important information to "guide" the resource provider selection
 process in distributed applications. Usually, it is assumed that an
 ALTO server conveys information that these applications cannot or
 have difficulty to measure themselves [RFC5693].

 Originally, ALTO was motivated by optimizing cross-ISP traffic
 generated by P2P applications [RFC5693]. Recently, however, ALTO is
 also being considered for improving the request routing in CDNs
 [I-D.jenkins-alto-cdn-use-cases]. The CDNI problem statement
 explicitly mentions ALTO as a candidate protocol for "actual
 algorithms for selection of CDN or Surrogate by Request-Routing
 systems" [RFC6707].

 The following reasons make ALTO a suitable candidate protocol for
 downstream CDN selection as part of CDNI request routing and in
 particular for an FCI protocol:

 o ALTO is a protocol specifically designed to improve application
 layer traffic (and application layer connections among hosts on
 the Internet) by providing additional information to applications
 that these applications could not easily retrieve themselves. For
 CDNI, this is exactly the case: a uCDN wants to improve
 application layer CDN request routing by using dedicated
 information (provided by a dCDN) that the uCDN could not easily
 obtain otherwise. ALTO can help a uCDN to select a proper dCDN by
 first providing dCDNs’ capabilities as well as footprints (see

Seedorf, et al. Expires February 15, 2020 [Page 6]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc5693
https://tools.ietf.org/pdf/rfc5693
https://tools.ietf.org/pdf/rfc6707

Internet-Draft CDNI FCI using ALTO August 2019

 Section 3) and then providing costs of surrogates in a dCDN by
 ALTO cost maps.

 o The semantics of an ALTO network map is an exact match for the
 needed information to convey a footprint by a downstream CDN, in
 particular if such a footprint is being expressed by IP-prefix
 ranges. Please see Section 4 .

 o Security: Identifications between uCDNs and dCDNs are extremely
 important. ALTO maps can be signed and hence provide inherent
 integrity protection. Please see Section 8 .

 o RESTful-Design: The ALTO protocol has undergone extensive
 revisions in order to provide a RESTful design regarding the
 client-server interaction specified by the protocol. A CDNI FCI
 interface based on ALTO would inherit this RESTful design. Please
 see Section 3 .

 o Error-handling: The ALTO protocol has undergone extensive
 revisions in order to provide sophisticated error-handling, in
 particular regarding unexpected cases. A CDNI FCI interface based
 on ALTO would inherit this thought-through and mature error-
 handling. Please see Section 5 .

 o Filtered map service: The ALTO map filtering service would allow a
 uCDN to query only for parts of an ALTO map. For example,
 filtered unified property map service can enable a uCDN to query
 properties of a part of footprints in an effective way (see
 Section 6).

 o Server-initiated Notifications and Incremental Updates: When the
 footprint or the capabilities of a downstream CDN change (i.e.,
 unexpectedly from the perspective of an upstream CDN), server-
 initiated notifications would enable a dCDN to directly inform an
 upstream CDN about such changes. Consider the case where - due to
 failure - part of the footprint of the dCDN is not functioning,
 i.e., the CDN cannot serve content to such clients with reasonable
 QoS. Without server-initiated notifications, the uCDN might still
 use a very recent network and cost map from dCDN, and therefore
 redirect requests to dCDN which it cannot serve. Similarly, the
 possibility for incremental updates would enable efficient
 conveyance of the aforementioned (or similar) status changes by
 the dCDN to the uCDN. The newest design of ALTO supports server
 pushed incremental updates [I-D.ietf-alto-incr-update-sse].

 o Content Availability on Hosts: A dCDN might want to express CDN
 capabilities in terms of certain content types (e.g., codecs/
 formats, or content from certain content providers). The new

Seedorf, et al. Expires February 15, 2020 [Page 7]

Internet-Draft CDNI FCI using ALTO August 2019

 endpoint property for ALTO would enable a dCDN to make such
 information available to an upstream CDN. This would enable a
 uCDN to determine if a given dCDN actually has the capabilities
 for a given request with respect to the type of content requested.

 o Resource Availability on Hosts or Links: The capabilities on links
 (e.g. maximum bandwidth) or caches (e.g. average load) might be
 useful information for an upstream CDN for optimized downstream
 CDN selection. For instance, if a uCDN receives a streaming
 request for content with a certain bitrate, it needs to know if it
 is likely that a dCDN can fulfill such stringent application-level
 requirements (i.e., can be expected to have enough consistent
 bandwidth) before it redirects the request. In general, if ALTO
 could convey such information via new endpoint properties, it
 would enable more sophisticated means for downstream CDN selection
 with ALTO. ALTO Path Vector Extension [I-D.ietf-alto-path-vector]
 is designed to allow ALTO clients to query information such as
 capacity regions for a given set of flows.

3. CDNI FCI Service

 The ALTO protocol is based on an ALTO Information Service Framework
 which consists of several services, where all ALTO services are
 "provided through a common transport protocol, messaging structure
 and encoding, and transaction model" [RFC7285]. The ALTO protocol
 specification [RFC7285] defines several such services, e.g., the ALTO
 map service.

 This document defines a new ALTO Service called "CDNI FCI Service"
 which conveys JSON objects of media type "application/alto-
 cdnifci+json". These JSON objects are used to transport
 BaseAdvertisementObject objects defined in [RFC8008]; this document
 specifies how to transport such BaseAdvertisementObject objects via
 the ALTO protocol with the ALTO "CDNI FCI Service". Similar to other
 ALTO services, this document defines the ALTO information resource
 for the "CDNI FCI Service" as follows.

3.1 . Media Type

 The media type of the CDNI FCI resource is "application/alto-
 cdnifci+json".

3.2 . HTTP Method

 A CDNI FCI resource is requested using the HTTP GET method.

Seedorf, et al. Expires February 15, 2020 [Page 8]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc8008

Internet-Draft CDNI FCI using ALTO August 2019

3.3 . Accept Input Parameters

 None.

3.4 . Capabilities

 None.

3.5 . Uses

 The "uses" field SHOULD NOT appear unless the CDNI FCI resource
 depends on some ALTO information resources. If the CDNI FCI resource
 has some dependent resources, the resource IDs of its dependent
 resources MUST be included into the "uses" field. This document only
 defines one potential dependent resource for the CDNI FCI resource.
 See Section 4 for details of when and how to use it. The future
 documents may extend the CDNI FCI resource and allow other dependent
 resources.

3.6 . Response

 The "meta" field of a CDNI FCI response MUST include the "vtag" field
 defined in Section 10.3 of [RFC7285] . This field provides the
 version of the retrieved CDNI FCI map.

 If a CDNI FCI response depends on an ALTO information resource, it
 MUST include the "dependent-vtags" field, whose value is an array to
 indicate the version tags of the resources used, where each resource
 is specified in "uses" of its IRD entry.

 The data component of an ALTO CDNI FCI response is named "cdni-fci",
 which is a JSON object of type CDNIFCIData:

 object {
 CDNIFCIData cdni-fci;
 } InfoResourceCDNIFCI : ResponseEntityBase;

 object {
 BaseAdvertisementObject capabilities<1..*>;
 } CDNIFCIData;

 Specifically, a CDNIFCIData object is a JSON object that includes
 only one property named "capabilities", whose value is an array of
 BaseAdvertisementObject objects.

 The syntax and semantics of BaseAdvertisementObject are well defined
 in Section 5.1 of [RFC8008] . A BaseAdvertisementObject object
 includes multiple properties, including capability-type, capability-

Seedorf, et al. Expires February 15, 2020 [Page 9]

https://tools.ietf.org/pdf/rfc7285#section-10.3
https://tools.ietf.org/pdf/rfc8008#section-5.1

Internet-Draft CDNI FCI using ALTO August 2019

 value and footprints, where footprints are defined in Section 4.2.2.2
 of [RFC8006] .

 To be self-contained, we give a non-normative specification of
 BaseAdvertisementObject below. As mentioned above, the normative
 specification of BaseAdvertisementObject is in [RFC8008]

 object {
 JSONString capability-type;
 JSONValue capability-value;
 Footprint footprints<0..*>;
 } BaseAdvertisementObject;

 object {
 JSONString footprint-type;
 JSONString footprint-value<1..*>;
 } Footprint;

 For each BaseAdvertisementObject, the ALTO client MUST interpret
 footprints appearing multiple times as if they appeared only once.
 If footprints in a BaseAdvertisementObject is null or empty or not
 appearing, the ALTO client MUST understand that the capabilities in
 this BaseAdvertisementObject have the "global" coverage.

 Note: Further optimization of BaseAdvertisement objects to
 effectively provide the advertisement of capabilities with footprint
 restrictions is certainly possible. For example, these two examples
 below both describe that the dCDN can provide capabilities
 ["http/1.1", "https/1.1"] for the same footprints. However, the
 latter one is smaller in its size.

 EXAMPLE 1
 {
 "meta" : {...},
 "cdni-fci": {
 "capabilities": [
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "http/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 },
 {

Seedorf, et al. Expires February 15, 2020 [Page 10]

https://tools.ietf.org/pdf/rfc8006#section-4.2.2.2
https://tools.ietf.org/pdf/rfc8006#section-4.2.2.2
https://tools.ietf.org/pdf/rfc8008

Internet-Draft CDNI FCI using ALTO August 2019

 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "https/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 }
]
 }
 }

 EXAMPLE 2
 {
 "meta" : {...},
 "cdni-fci": {
 "capabilities": [
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "https/1.1",
 "http/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 }
]
 }
 }

 Since such optimizations are not required for the basic
 interconnection of CDNs, the specifics of such mechanisms are outside
 the scope of this document.

3.7 . Examples

3.7.1 . IRD Example

 Below is the information resource directory (IRD) of a simple,
 example ALTO server. The server provides both base ALTO information
 resources (e.g., network maps) and CDNI FCI related information
 resources (e.g., CDNI FCI resource), demonstrating a single,
 integrated environment.

Seedorf, et al. Expires February 15, 2020 [Page 11]

Internet-Draft CDNI FCI using ALTO August 2019

 Specifically, the IRD announces two network maps, one CDNI FCI
 resource without dependency, one CDNI FCI resource depending on a
 network map, one filtered CDNI FCI resource to be defined in
 Section 5 , one unified property map including "cdni-fci-capabilities"
 as its entity property, one filtered unified property map including
 "cdni-fci-capabilities" and "pid" as its entity properties, and two
 update stream services (one for updating CDNI FCI resources, and the
 other for updating property maps).

 GET /directory HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-directory+json,application/alto-error+json

 {
 "meta" : { ... },
 "resources": {
 "my-default-network-map": {
 "uri" : "http://alto.example.com/networkmap",
 "media-type" : "application/alto-networkmap+json"
 },
 "my-eu-netmap" : {
 "uri" : "http://alto.example.com/myeunetmap",
 "media-type" : "application/alto-networkmap+json"
 },
 "my-default-cdnifci": {
 "uri" : "http://alto.example.com/cdnifci",
 "media-type": "application/alto-cdnifci+json"
 },
 "my-filtered-cdnifci" : {
 "uri" : "http://alto.example.com/cdnifci/filtered",
 "media-type" : "application/alto-cdnifci+json",
 "accepts" : "application/alto-cdnifcifilter+json",
 "uses" : ["my-default-cdnifci"]
 },
 "my-cdnifci-with-pid-footprints": {
 "uri" : "http://alto.example.com/networkcdnifci",
 "media-type" : "application/alto-cdnifci+json",
 "uses" : ["my-eu-netmap"]
 },
 "cdnifci-property-map" : {
 "uri" : "http://alto.example.com/propmap/full/cdnifci",
 "media-type" : "application/alto-propmap+json",
 "uses": ["my-default-cdni"],
 "capabilities" : {
 "mappings": {
 "ipv4": ["my-default-cdni.cdni-fci-capabilities"],
 "ipv6": ["my-default-cdni.cdni-fci-capabilities"],
 "countrycode": [

Seedorf, et al. Expires February 15, 2020 [Page 12]

Internet-Draft CDNI FCI using ALTO August 2019

 "my-default-cdni.cdni-fci-capabilities"],
 "asn": ["my-default-cdni.cdni-fci-capabilities"],
 }
 }
 },
 "filtered-cdnifci-property-map" : {
 "uri" : "http://alto.example.com/propmap/lookup/cdnifci-pid",
 "media-type" : "application/alto-propmap+json",
 "accepts" : "application/alto-propmapparams+json",
 "uses": ["my-default-cdni", "my-default-network-map"],
 "capabilities" : {
 "mappings": {
 "ipv4": ["my-default-cdni.cdni-fci-capabilities",
 "my-default-network-map.pid"],
 "ipv6": ["my-default-cdni.cdni-fci-capabilities",
 "my-default-network-map.pid"],
 "countrycode": [
 "my-default-cdni.cdni-fci-capabilities"],
 "asn": ["my-default-cdni.cdni-fci-capabilities"],
 }
 }
 },
 "update-my-cdni-fci" : {
 "uri": " http:///alto.example.com/updates/cdnifci ",
 "media-type" : "text/event-stream",
 "accepts" : "application/alto-updatestreamparams+json",
 "uses" : [
 "my-default-network-map",
 "my-eu-netmap",
 "my-default-cdnifci",
 "my-filtered-cdnifci"
 "my-cdnifci-with-pid-footprints"
],
 "capabilities" : {
 "incremental-change-media-types" : {
 "my-default-network-map" : "application/json-patch+json",
 "my-eu-netmap" : "application/json-patch+json",
 "my-default-cdnifci" :
 "application/merge-patch+json,application/json-patch+json",
 "my-filtered-cdnifci" :
 "application/merge-patch+jso,application/json-patch+json",
 "my-cdnifci-with-pid-footprints" :
 "application/merge-patch+json,application/json-patch+json"
 }
 }
 },
 "update-my-props": {
 "uri" : "http://alto.example.com/updates/properties",

Seedorf, et al. Expires February 15, 2020 [Page 13]

http:///alto.example.com/updates/cdnifci

Internet-Draft CDNI FCI using ALTO August 2019

 "media-type" : "text/event-stream",
 "uses" : [
 "cdnifci-property-map",
 "filtered-cdnifci-property-map"
],
 "capabilities" : {
 "incremental-change-media-types": {
 "cdnifci-property-map" :
 "application/merge-patch+json,application/json-patch+json",
 "filtered-cdnifci-property-map":
 "application/merge-patch+json,application/json-patch+json"
 }
 }
 }
 }
 }

3.7.2 . Basic Example

 In this example, we demonstrate a simple CDNI FCI resource; this
 resource does not depend on other resources. There are three
 BaseAdvertisementObjects in this map and these objects’ capabilities
 are http/1.1 delivery protocol, [http/1.1, https/1.1] delivery
 protocol and https/1.1 acquisition protocol respectively.

 GET /cdnifci HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-cdnifci+json,
 application/alto-error+json

 HTTP/1.1 200 OK
 Content-Length: XXX
 Content-Type: application/alto-cdnifci+json
 {
 "meta" : {
 "vtag": {
 "resource-id": "my-default-cdnifci",
 "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 }
 },
 "cdni-fci": {
 "capabilities": [
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "http/1.1"
]

Seedorf, et al. Expires February 15, 2020 [Page 14]

Internet-Draft CDNI FCI using ALTO August 2019

 },
 "footprints": [
 <Footprint objects>
]
 },
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "https/1.1",
 "http/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 },
 {
 "capability-type": "FCI.AcquisitionProtocol",
 "capability-value": {
 "acquisition-protocols": [
 "https/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 }
]
 }
 }

3.7.3 . Incremental Updates Example

 A benefit of using ALTO to provide CDNI FCI maps is that such maps
 can be updated using ALTO incremental updates. Below is an example
 that also shows the benefit of having both JSON merge patch and JSON
 patch to encode updates.

 At first, an ALTO client requests updates for "my-default-cdnifci",
 and the ALTO server returns the "control-uri" followed by the full
 CDNI FCI response. Then when there is a change in the delivery-
 protocols in that ‘http/2‘ is removed (from http/1.1 and http/2 to
 only http/1.1) due to maintenance of the http/2 clusters, the ALTO
 server uses JSON merge patch to encode the change and pushes the
 change to the ALTO client. Later on, the ALTO server notifies the
 ALTO client that "ipv4:192.0.2.0/24" is added into the footprint for

Seedorf, et al. Expires February 15, 2020 [Page 15]

Internet-Draft CDNI FCI using ALTO August 2019

 delivery-protocol http/1.1 by sending the change encoded by JSON
 patch to the ALTO client.

 POST /updates/cdnifci HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "my-cdnifci-stream": {
 "resource-id": "my-default-cdnifci"
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/3141592653589"}

 event: application/alto-cdnifci+json,my-default-cdnifci
 data: { ... full CDNI FCI map ... }

 event: application/merge-patch+json,my-default-cdnifci
 data: {
 data: "meta": {
 data: "vtag": {
 data: "tag": "dasdfa10ce8b059740bddsfasd8eb1d47853716"
 data: }
 data: },
 data: "cdni-fci": {
 data: "capabilities": [
 data: {
 data: "capability-type": "FCI.DeliveryProtocol",
 data: "capability-value": {
 data: "delivery-protocols": [
 data: "http/1.1"
 data:]
 data: },
 data: "footprints": [
 data: <Footprint objects in only http/1.1>
 data:]
 data: }
 data:]
 data: }

Seedorf, et al. Expires February 15, 2020 [Page 16]

Internet-Draft CDNI FCI using ALTO August 2019

 data: }

 event: application/json-patch+json,my-default-cdnifci
 data: [
 data: {
 data: "op": "replace",
 data: "path": "/meta/vtag/tag",
 data: "value": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 data: },
 data: { "op": "add",
 data: "path": "/cdni-fci/capabilities/0/footprints/-",
 data: "value": "ipv4:192.0.2.0/24"
 data: }
 data:]

4. CDNI FCI Service using ALTO Network Map

4.1 . Network Map Footprint Type: altopid

 The ALTO protocol defines a concept called PID to represent a group
 of IPv4 or IPv6 addresses which can be applied the same management
 policy. The PID is an alternative to the pre-defined CDNI footprint
 types (i.e., ipv4cidr, ipv6cidr, asn, and countrycode).

 Specifically, a CDNI FCI resource can depend on an ALTO network map
 resource and use a new CDNI Footprint Type called "altopid" to
 compress its CDNI Footprint Payload.

 "altopid" footprint type indicates that the corresponding footprint
 value is a list of PIDNames as defined in [RFC7285]. These PIDNames
 are references of PIDs in a network map resource. Hence a CDNI FCI
 with "altopid" footprints depends on a network map. For such a CDNI
 FCI map, the resource id of its dependent network map MUST be
 included in the "uses" field of its IRD entry, and the "dependent-
 vtag" field with a reference to this network map MUST be included in
 its response (see the example in Section 4.2.3).

4.2 . Examples

4.2.1 . IRD Example

 We use the same IRD example given in Section 3.7.1 .

4.2.2 . ALTO Network Map for CDNI FCI Footprints Example

 Below is an example network map whose resource id is "my-eu-netmap",
 and this map is referenced by the CDNI FCI example in Section 4.2.3 .

Seedorf, et al. Expires February 15, 2020 [Page 17]

https://tools.ietf.org/pdf/rfc7285

Internet-Draft CDNI FCI using ALTO August 2019

 GET /networkmap HTTP/1.1
 Host: http://alto.example.com/myeunetmap
 Accept: application/alto-networkmap+json,application/alto-error+json

 HTTP/1.1 200 OK
 Content-Length: XXX
 Content-Type: application/alto-networkmap+json

 {
 "meta" : {
 "vtag": [
 {"resource-id": "my-eu-netmap",
 "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
 }
]
 },
 "network-map" : {
 "south-france" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"]
 },
 "germany" : {
 "ipv4" : ["192.0.3.0/24"]
 }
 }
 }

4.2.3 . ALTO PID Footprints in CDNI FCI

 In this example, we show a CDNI FCI resource that depends on a
 network map described in Section 4.2.2 .

 GET /networkcdnifci HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-cdnifci+json,application/alto-error+json

Seedorf, et al. Expires February 15, 2020 [Page 18]

Internet-Draft CDNI FCI using ALTO August 2019

 HTTP/1.1 200 OK
 Content-Length: 618
 Content-Type: application/alto-cdnifci+json

 {
 "meta" : {
 "dependent-vtags" : [
 {
 "resource-id": "my-eu-netmap",
 "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
 }
]
 },
 "cdni-fci": {
 "capabilities": [
 { "capability-type": "FCI.DeliveryProtocol",
 "capability-value": [
 "http/1.1"
]
 },
 { "capability-type": "FCI.DeliveryProtocol",
 "capability-value": [
 "https/1.1"
],
 "footprints": [
 { "footprint-type": "altopid",
 "footprint-value": [
 "germany",
 "south-france"
]
 }
]
 }
]
 }
 }

4.2.4 . Incremental Updates Example

 In this example, the ALTO client is interested in changes of "my-
 cdnifci-with-pid-footprints". Considering two changes, the first one
 is to change footprints of http/1.1 Delivery Protocol capability, and
 the second one is to remove "south-france" from the footprints of
 https/1.1 delivery protocol capability.

 POST /updates/cdnifci HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json

Seedorf, et al. Expires February 15, 2020 [Page 19]

Internet-Draft CDNI FCI using ALTO August 2019

 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "my-network-map-cdnifci-stream": {
 "resource-id": "my-cdnifci-with-pid-footprints"
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/3141592653590"}

 event: application/alto-cdnifci+json,my-fci-stream
 data: { ... full CDNI FCI resource ... }

 event: application/merge-patch+json,my-fci-stream
 data: {
 data: "meta": {
 data: "dependent-vtags" : [
 data: {
 data: "resource-id": "my-eu-netmap",
 data: "tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
 data: }
 data:],
 data: "vtag": {
 data: "tag": "dasdfa10ce8b059740bddsfasd8eb1d47853716"
 data: }
 data: },
 data: {
 data: "capability-type": "FCI.DeliveryProtocol",
 data: "capability-value": {
 data: "delivery-protocols": [
 data: "http/1.1"
 data:]
 data: },
 data: "footprints": [
 data: <All footprint objects in http/1.1>
 data:]
 data: }
 data: }

 event: application/json-patch+json,my-fci-stream
 data: [

Seedorf, et al. Expires February 15, 2020 [Page 20]

Internet-Draft CDNI FCI using ALTO August 2019

 data: {
 data: "op": "replace",
 data: "path": "/meta/vtag/tag",
 data: "value": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 data: },
 data: { "op": "remove",
 data: "path": "/cdni-fci/capabilities/2/footprints/0/
 data: footprint-value/1",
 data: }
 data:]

5. Filtered CDNI FCI using Capabilities

 Section 3 and Section 4 describe CDNI FCI Service which can be used
 to enable a uCDN to get capabilities with footprints constrains from
 dCDNs. However, always getting full CDNI FCI resources from dCDNs is
 very inefficient, hence we introduce a new service named "Filtered
 CDNI FCI Service" to allow a client to filter a CDNI FCI resource
 using a client-given set of capabilities. For each entry of the CDNI
 FCI response, only if the entry contains at least one of the client-
 given capabilities will it be returned to the client. The
 relationship between a filtered CDNI FCI resource and a CDNI FCI
 resource is similar to the relationship between a filtered network/
 cost map and a network/cost map.

5.1 . Media Type

 A filtered CDNI FCI resource uses the same media type defined for the
 CDNI FCI resource in Section 3.1 .

5.2 . HTTP Method

 A filtered CDNI FCI resource is requested using the HTTP POST method.

5.3 . Accept Input Parameters

 The input parameters for a filtered CDNI FCI resource are supplied in
 the entity body of the POST request. This document specifies the
 input parameters with a data format indicated by the media type
 "application/alto-cdnifcifilter+json" which is a JSON object of type
 ReqFilteredCDNIFCI, where:

Seedorf, et al. Expires February 15, 2020 [Page 21]

Internet-Draft CDNI FCI using ALTO August 2019

 object {
 JSONString capability-type;
 JSONValue capability-value;
 } CDNIFCICapability;

 object {
 [CDNIFCICapability cdni-fci-capabilities<0..*>;]
 } ReqFilteredCDNIFCI;

 with fields:

 capability-type: The same as Base Advertisement Object’s capability-
 type defined in Section 5.1 of [RFC8008] .

 capability-value: The same as Base Advertisement Object’s
 capability-value defined in Section 5.1 of [RFC8008] .

 cdni-fci-capabilities: A list of CDNI FCI capabilities defined in
 Section 5.1 of [RFC8008] for which footprints are to be returned.
 If a list is empty or not appearing, the ALTO server MUST
 interpret it as a request for the full CDNI FCI resource. The
 ALTO server MUST interpret entries appearing in a list multiple
 times as if they appeared only once. If the ALTO server does not
 define any footprints for a CDNI capability, it MUST omit this
 capability from the response.

5.4 . Capabilities

 None.

5.5 . Uses

 The resource ID of the CDNI FCI resource based on which the filtering
 is performed.

5.6 . Response

 The response MUST indicate an error, using ALTO protocol error
 handling specified in Section 8.5 of the ALTO protocol [RFC7285], if
 the request is invalid.

 Specifically, a filtered CDNI FCI request is invalid if:

 o the value of "capability-type" is null;

 o the value of "capability-value" is null;

Seedorf, et al. Expires February 15, 2020 [Page 22]

https://tools.ietf.org/pdf/rfc8008#section-5.1
https://tools.ietf.org/pdf/rfc8008#section-5.1
https://tools.ietf.org/pdf/rfc8008#section-5.1
https://tools.ietf.org/pdf/rfc7285

Internet-Draft CDNI FCI using ALTO August 2019

 o the value of "capability-value" is inconsistent with "capability-
 type".

 When a request is invalid, the ALTO server MUST return an
 "E_INVALID_FIELD_VALUE" error defined in Section 8.5.2 of [RFC7285] ,
 and the "value" field of the error message SHOULD indicate this CDNI
 FCI capability.

 The ALTO server returns a filtered CDNI FCI resource for a valid
 request. The format of a filtered CDNI FCI resource is the same as
 an full CDNI FCI resource (See Section 3.6 .)

 The returned CDNI FCI resource MUST contain only
 BaseAdvertisementObject objects whose CDNI capability object is the
 superset of one of CDNI capability object in "cdni-fci-capabilities".
 Specifically, that a CDNI capability object A is the superset of
 another CDNI capability object B means that these two CDNI capability
 objects have the same capability type and mandatory properties in
 capability value of A MUST include mandatory properties in capability
 value of B semantically. See Section 5.7.2 for a concrete example.

 The version tag included in the "vtag" field of the response MUST
 correspond to the full CDNI FCI resource from which the filtered CDNI
 FCI resource is provided. This ensures that a single, canonical
 version tag is used independently of any filtering that is requested
 by an ALTO client.

5.7 . Examples

5.7.1 . IRD Example

 We use the same IRD example by Section 3.7.1 .

5.7.2 . Basic Example

 This example filters the full CDNI FCI resource in Section 3.7.2 by
 selecting only http/1.1 delivery protocol capability. Only the first
 two BaseAdvertisementObjects in the full resource will be returned
 because the first object’s capability is http/1.1 delivery protocol
 and the second object’s capability is http/1.1 and https/1.1 delivery
 protocols which is the superset of http/1.1 delivery protocol.

 POST /cdnifci/filtered HTTP/1.1
 HOST: alto.example.com
 Content-Type: application/cdnifilter+json
 Accept: application/alto-cdnifci+json

 {

Seedorf, et al. Expires February 15, 2020 [Page 23]

https://tools.ietf.org/pdf/rfc7285#section-8.5.2

Internet-Draft CDNI FCI using ALTO August 2019

 "cdni-fci-capabilities": [
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "http/1.1"
]
 }
 }
]
 }

 HTTP/1.1 200 OK
 Content-Length: XXX
 Content-Type: application/alto-cdnifci+json
 {
 "meta" : {
 "vtag": {
 "resource-id": "my-default-cdnifci",
 "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 }
 },
 "cdni-fci": {
 "capabilities": [
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "http/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 },
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "https/1.1",
 "http/1.1"
]
 },
 "footprints": [
 <Footprint objects>
]
 }
]

Seedorf, et al. Expires February 15, 2020 [Page 24]

Internet-Draft CDNI FCI using ALTO August 2019

 }
 }

5.7.3 . Incremental Updates Example

 In this example, the ALTO client only cares about the updates of one
 Delivery Protocol object whose value is "http/1.1". So it adds its
 limitation of capabilities in "input" field of the POST request.

 POST /updates/cdnifci HTTP/1.1
 Host: fcialtoupdate.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "my-fci-stream": {
 "resource-id": "my-filtered-cdnifci",
 "input": {
 "cdni-fci-capabilities": [
 {
 "capability-type": "FCI.DeliveryProtocol",
 "capability-value": {
 "delivery-protocols": [
 "http/1.1"
]
 }
 }
]
 }
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/3141592653590"}

 event: application/alto-cdnifci+json,my-fci-stream
 data: { ... full filtered CDNI FCI resource ... }

 event: application/merge-patch+json,my-fci-stream
 data: {
 data: "meta": {

Seedorf, et al. Expires February 15, 2020 [Page 25]

Internet-Draft CDNI FCI using ALTO August 2019

 data: "vtag": {
 data: "tag": "dasdfa10ce8b059740bddsfasd8eb1d47853716"
 data: }
 data: },
 data: {
 data: "capability-type": "FCI.DeliveryProtocol",
 data: "capability-value": {
 data: "delivery-protocols": [
 data: "http/1.1"
 data:]
 data: },
 data: "footprints": [
 data: <All footprint objects in http/1.1>
 data:]
 data: }
 data: }

 event: application/json-patch+json,my-fci-stream
 data: [
 data: {
 data: "op": "replace",
 data: "path": "/meta/vtag/tag",
 data: "value": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 data: },
 data: { "op": "add",
 data: "path": "/cdni-fci/capabilities/0/footprints/-",
 data: "value": "ipv4:192.0.2.0/24"
 data: }
 data:]

6. Query Footprint Properties using ALTO Property Map Service

 Besides retrieving footprints of given capabilities, another common
 requirement for uCDN is to query CDNI capabilities of given
 footprints.

 Considering each footprint as an entity with properties including
 CDNI capabilities, the most natrual way to satisfy this requirement
 is to use the ALTO property map defined in
 [I-D.ietf-alto-unified-props-new]. In this section, we describe how
 ALTO clients look up properties for individual footprints. We
 firstly describe how to represent footprint objects as entities in
 the ALTO property map. And then we provide examples of the full
 property map and the filtered property map supporting CDNI
 capabilities, and their incremental updates.

Seedorf, et al. Expires February 15, 2020 [Page 26]

Internet-Draft CDNI FCI using ALTO August 2019

6.1 . Representing Footprint Objects as Unified Property Map Entities

 A footprint object has two properties: footprint-type and footprint-
 value. A footprint-value is an array of footprint values conforming
 to the specification associated with the registered footprint type
 ("ipv4cidr", "ipv6cidr", "asn", and "countrycode"). Considering each
 ALTO entity defined in [I-D.ietf-alto-unified-props-new] also has two
 properties: entity domain type and domain-specific identifier, a
 straightforward approach to represent a footprint as an ALTO entity
 is to regard its footprint-type as an entity domain type, and its
 footprint value as a domain-specific identifier. According to
 [I-D.ietf-alto-unified-props-new], "ipv4" and "ipv6" are two
 predefined entity domain types, which can be used to represent
 "ipv4cidr" and "ipv6cidr" footprints respectively. However, no
 existing entity domain type can represent "asn" and "countrycode"
 footprints. To represent footprint-type "asn" and "countrycode",
 this document registers two new domains in Section 7 in addition to
 the ones in [I-D.ietf-alto-unified-props-new].

 Here is an example of representing a footprint object as a set of
 entities in the ALTO property map.

 {"footprint-type": "ipv4cidr", "footprint-value": ["192.0.2.0/24",
 "198.51.100.0/24"]} --> "ipv4:192.168.2.0/24", "ipv4:198.51.100.0/24"

6.1.1 . ASN Domain

 The ASN domain associates property values with Autonomous Systems in
 the Internet.

6.1.1.1 . Entity Domain Type

 asn

6.1.1.2 . Domain-Specific Entity Identifiers

 The entity identifiers of entities in an asn domain is encoded as a
 string consisting of the characters "as" (in lowercase) followed by
 the Autonomous System Number [RFC6793].

6.1.1.3 . Hierarchy and Inheritance

 There is no hierarchy or inheritance for properties associated with
 ASN.

Seedorf, et al. Expires February 15, 2020 [Page 27]

https://tools.ietf.org/pdf/rfc6793

Internet-Draft CDNI FCI using ALTO August 2019

6.1.2 . COUNTRYCODE Domain

 The COUNTRYCODE domain associates property values with countries.

6.1.2.1 . Entity Domain Type

 countrycode

6.1.2.2 . Domain-Specific Entity Identifiers

 The entity identifiers of entities in a countrycode domain is encoded
 as an ISO 3166-1 alpha-2 code [ISO3166-1] in lowercase.

6.1.2.3 . Hierarchy and Inheritance

 There is no hierarchy or inheritance for properties associated with
 country codes.

6.2 . Examples

6.2.1 . IRD Example

 We use the same IRD example given by Section 3.7.1 .

6.2.2 . Property Map Example

 This example shows a full property map in which entities are
 footprints and entities’ property is "cdni-fci-capabilities".

Seedorf, et al. Expires February 15, 2020 [Page 28]

Internet-Draft CDNI FCI using ALTO August 2019

 GET /propmap/full/cdnifci HTTP/1.1
 HOST: alto.example.com
 Accept: application/alto-propmap+json,application/alto-error+json

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "property-map": {
 "meta": {
 "dependent-vtags": [
 {"resource-id": "my-default-cdnifci",
 "tag": "7915dc0290c2705481c491a2b4ffbec482b3cf62"}
]
 },
 "countrycode:us": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1"]}}]
 },
 "ipv4:192.0.2.0/24": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1"]}}]
 },
 "ipv4:198.51.100.0/24": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1"]}}]
 },
 "ipv6:2001:db8::/32": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1"]}}]
 },
 "asn:as64496": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1",
 "https/1.1"]}}]
 }
 }
 }

Seedorf, et al. Expires February 15, 2020 [Page 29]

Internet-Draft CDNI FCI using ALTO August 2019

6.2.3 . Filtered Property Map Example

 In this example, we use filtered property map service to get "pid"
 and "cdni-fci-capabilities" properties for two footprints
 "ipv4:192.0.2.0/24" and "ipv6:2001:db8::/32".

 POST /propmap/lookup/cdnifci-pid HTTP/1.1
 HOST: alto.example.com
 Content-Type: application/alto-propmapparams+json
 Accept: application/alto-propmap+json,application/alto-error+json
 Content-Length:

 {
 "entities": [
 "ipv4:192.0.2.0/24",
 "ipv6:2001:db8::/32"
],
 "properties": ["my-default-cdnifci.cdni-fci-capabilities",
 "my-default-networkmap.pid"]
 }

Seedorf, et al. Expires February 15, 2020 [Page 30]

Internet-Draft CDNI FCI using ALTO August 2019

 HTTP/1.1 200 OK
 Content-Length: ###
 Content-Type: application/alto-propmap+json

 {
 "property-map": {
 "meta": {
 "dependent-vtags": [
 {"resource-id": "my-default-cdnifci",
 "tag": "7915dc0290c2705481c491a2b4ffbec482b3cf62"},
 {"resource-id": "my-default-networkmap",
 "tag": "7915dc0290c2705481c491a2b4ffbec482b3cf63"}
]
 },
 "ipv4:192.0.2.0/24": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1"]}}],
 "my-default-networkmap.pid": "pid1"
 },
 "ipv6:2001:db8::/32": {
 "my-default-cdnifci.cdni-fci-capabilities": [
 {"capability-type": "FCI.DeliveryProtocol",
 "capability-value": {"delivery-protocols": ["http/1.1"]}}],
 "my-default-networkmap.pid": "pid3"
 }
 }
 }

6.2.4 . Incremental Updates Example

 In this example, here is a client want to request updates for the
 properties "cdni-fci-capabilities" and "pid" for two footprints
 "ipv4:192.0.2.0/24" and "countrycode:fr".

 POST /updates/properties HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: ###

 { "add": {
 "property-map-including-capability-property": {
 "resource-id": "filtered-cdnifci-property-map",
 "input": {
 "properties": ["my-default-cdnifci.cdni-fci-capabilities",
 "my-default-networkmap.pid"],
 "entities": [

Seedorf, et al. Expires February 15, 2020 [Page 31]

Internet-Draft CDNI FCI using ALTO August 2019

 "ipv4:192.0.2.0/24",
 "ipv6:2001:db8::/32"
]
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "http://alto.example.com/updates/streams/1414213562373"}

 event: application/alto-cdnifci+json,my-fci-stream
 data: { ... full filtered unified property map ... }

 event: application/merge-patch+json,my-fci-stream
 data: {
 data: "property-map":
 data: {
 data: "meta": {
 data: "dependent-vtags": [
 data: {"resource-id": "my-default-cdnifci",
 data: "tag": "2beeac8ee23c3dd1e98a73fd30df80ece9fa5627"},
 data: {"resource-id": "my-default-networkmap",
 data: "tag": "7915dc0290c2705481c491a2b4ffbec482b3cf63"}
 data:]
 data: },
 data: "ipv4:192.0.2.0/24":
 data: {
 data: "my-default-cdnifci.cdni-fci-capabilities": [
 data: {"capability-type": "FCI.DeliveryProtocol",
 data: "capability-value": {
 data: "delivery-protocols": ["http/1.1"]}}]
 data: }
 data: }
 data: }

 event: application/json-patch+json,my-fci-stream
 data: {[
 data: {
 data: { "op": "replace",
 data: "path": "/meta/dependent-vtags/0/tag",
 data: "value": "61b23185a50dc7b334577507e8f00ff8c3b409e4"
 data: },
 data: { "op": "replace",

Seedorf, et al. Expires February 15, 2020 [Page 32]

Internet-Draft CDNI FCI using ALTO August 2019

 data: "path":
 data: "/property-map/countrycode:fr/my-default-networkmap.pid",
 data: "value": "pid5"
 data: }
 data: }
 data:]}

7. IANA Considerations

7.1 . CDNI Metadata Footprint Type Registry

 +-----------------+-----------------------+-----------------------+
 | Footprint Type | Description | Specification |
 +-----------------+-----------------------+-----------------------+
 | altopid | A list of PID-names | RFCthis |
 +-----------------+-----------------------+-----------------------+

 Table 1: CDNI Metadata Footprint Type

 [RFC Editor: Please replace RFCthis with the published RFC number for
 this document.]

7.2 . ALTO Entity Domain Type Registry

 As proposed in Section 11.2 of [I-D.ietf-alto-unified-props-new],
 "ALTO Entity Domain Type Registry" is requested. Besides, two new
 entity domain types are to be registered, listed in Table 2.

 +--------------+-------------------------+--------------------------+
 | Identifier | Entity Address Encoding | Hierarchy & Inheritance |
 +--------------+-------------------------+--------------------------+
 | asn | See Section 6.1.1.2 | None |
 | countrycode | See Section 6.1.2.2 | None |
 +--------------+-------------------------+--------------------------+

 Table 2: ALTO Entity Domain Types

7.3 . ALTO Entity Property Type Registry

 As proposed in Section 11.3 of [I-D.ietf-alto-unified-props-new],
 "ALTO Entity Property Type Registry" is required. Besides, a new
 entity property type is to be registred, listed in Table 3.

Seedorf, et al. Expires February 15, 2020 [Page 33]

Internet-Draft CDNI FCI using ALTO August 2019

 +------------------------+--+
 | Identifier | Intended Semantics |
 +------------------------+--+
 | cdni-fci-capabilities | An array of CDNI FCI capability objects |
 +------------------------+--+

 Table 3: ALTO CDNI FCI Property Type

8. Security Considerations

 As an extension of the base ALTO protocol [RFC7285], this document
 fits into the architecture of the base protocol, and hence the
 Security Considerations (Section 15) of the base protocol fully apply
 when this extension is provided by an ALTO server.

 In the context of CDNI FCI, additional security considerations should
 be included as follows.

 For authenticity and integrity of ALTO information, an attacker may
 disguise itself as an ALTO server for a dCDN, and provide false
 capabilities and footprints to a uCDN using the CDNI FCI map. Such
 false information may lead a uCDN to (1) select an incorrect dCDN to
 serve user requests or (2) skip uCDNs in good conditions.

 For potential undesirable guidance from authenticated ALTO
 information, dCDNs can provide a uCDN with limited capabilities and
 smaller footprint coverage so that dCDNs can avoid transferring
 traffic for a uCDN which they should have to transfer.

 For confidentiality and privacy of ALTO information, footprint
 properties integrated with ALTO unified property may expose network
 location identifiers (e.g., IP addresses or fine-grained PIDs).

 For availability of ALTO services, an attacker may get the potential
 huge full CDNI FCI maps from an ALTO server in a dCDN continuously to
 run out of bandwidth resources of that ALTO server or may query
 filtered CDNI FCI services with complex capabilities to run out of
 computation resources of an ALTO server.

 Protection strategies described in RFC 7285 can solve problems
 mentioned above well. However, the isolation of full/filtered CDNI
 FCI maps should also be considered.

 If a dCDN signs agreements with multiple uCDNs, it must isolate full/
 filtered CDNI FCI maps for different uCDNs in that uCDNs will not
 redirect requests which should not have to served by this dCDN to
 this dCDN and it may not disclose extra information to uCDNs.

Seedorf, et al. Expires February 15, 2020 [Page 34]

https://tools.ietf.org/pdf/rfc7285
https://tools.ietf.org/pdf/rfc7285

Internet-Draft CDNI FCI using ALTO August 2019

 To avoid this risk, a dCDN may consider generating URIs of different
 full/filtered CDNI FCI maps by hashing its company ID, a uCDN’s
 company ID as well as their agreements. And it needs to avoid
 expoing all full/filtered CDNI FCI maps resources in one of its IRDs.

9. Acknowledgments

 The authors would like to thank Daryl Malas, Matt Caulfield for their
 timely reviews and invaluable comments.

 Jan Seedorf is partially supported by the GreenICN project (GreenICN:
 Architecture and Applications of Green Information Centric
 Networking), a research project supported jointly by the European
 Commission under its 7th Framework Program (contract no. 608518) and
 the National Institute of Information and Communications Technology
 (NICT) in Japan (contract no. 167). The views and conclusions
 contained herein are those of the authors and should not be
 interpreted as necessarily representing the official policies or
 endorsements, either expressed or implied, of the GreenICN project,
 the European Commission, or NICT.

10. References

10.1 . Normative References

 [ISO3166-1]
 The International Organization for Standardization, "Codes
 for the representation of names of countries and their
 subdivisions -- Part 1: Country codes", ISO 3166-1:2013,
 2013.

 [RFC5693] Seedorf, J. and E. Burger, "Application-Layer Traffic
 Optimization (ALTO) Problem Statement", RFC 5693 ,
 DOI 10.17487/RFC5693, October 2009,
 < https://www.rfc-editor.org/info/rfc5693 >.

 [RFC6707] Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement", RFC 6707 , DOI 10.17487/RFC6707, September
 2012, < https://www.rfc-editor.org/info/rfc6707 >.

 [RFC6793] Vohra, Q. and E. Chen, "BGP Support for Four-Octet
 Autonomous System (AS) Number Space", RFC 6793 ,
 DOI 10.17487/RFC6793, December 2012,
 < https://www.rfc-editor.org/info/rfc6793 >.

Seedorf, et al. Expires February 15, 2020 [Page 35]

https://tools.ietf.org/pdf/rfc5693
https://www.rfc-editor.org/info/rfc5693
https://tools.ietf.org/pdf/rfc6707
https://www.rfc-editor.org/info/rfc6707
https://tools.ietf.org/pdf/rfc6793
https://www.rfc-editor.org/info/rfc6793

Internet-Draft CDNI FCI using ALTO August 2019

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285 , DOI 10.17487/RFC7285, September 2014,
 < https://www.rfc-editor.org/info/rfc7285 >.

 [RFC8006] Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,
 "Content Delivery Network Interconnection (CDNI)
 Metadata", RFC 8006 , DOI 10.17487/RFC8006, December 2016,
 < https://www.rfc-editor.org/info/rfc8006 >.

 [RFC8008] Seedorf, J., Peterson, J., Previdi, S., van Brandenburg,
 R., and K. Ma, "Content Delivery Network Interconnection
 (CDNI) Request Routing: Footprint and Capabilities
 Semantics", RFC 8008 , DOI 10.17487/RFC8008, December 2016,
 < https://www.rfc-editor.org/info/rfc8008 >.

10.2 . Informative References

 [I-D.ietf-alto-incr-update-sse]
 Roome, W. and Y. Yang, "ALTO Incremental Updates Using
 Server-Sent Events (SSE)", draft-ietf-alto-incr-update-
 sse-17 (work in progress), July 2019.

 [I-D.ietf-alto-path-vector]
 Gao, K., Lee, Y., Randriamasy, S., Yang, Y., and J. Zhang,
 "ALTO Extension: Path Vector", draft-ietf-alto-path-
 vector-08 (work in progress), July 2019.

 [I-D.ietf-alto-unified-props-new]
 Roome, W., Randriamasy, S., Yang, Y., and J. Zhang,
 "Unified Properties for the ALTO Protocol", draft-ietf-
 alto-unified-props-new-08 (work in progress), July 2019.

 [I-D.jenkins-alto-cdn-use-cases]
 Niven-Jenkins, B., Watson, G., Bitar, N., Medved, J., and
 S. Previdi, "Use Cases for ALTO within CDNs", draft-
 jenkins-alto-cdn-use-cases-03 (work in progress), June
 2012.

Authors’ Addresses

Seedorf, et al. Expires February 15, 2020 [Page 36]

https://tools.ietf.org/pdf/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://tools.ietf.org/pdf/rfc8006
https://www.rfc-editor.org/info/rfc8006
https://tools.ietf.org/pdf/rfc8008
https://www.rfc-editor.org/info/rfc8008
https://tools.ietf.org/pdf/draft-ietf-alto-incr-update-sse-17
https://tools.ietf.org/pdf/draft-ietf-alto-incr-update-sse-17
https://tools.ietf.org/pdf/draft-ietf-alto-path-vector-08
https://tools.ietf.org/pdf/draft-ietf-alto-path-vector-08
https://tools.ietf.org/pdf/draft-ietf-alto-unified-props-new-08
https://tools.ietf.org/pdf/draft-ietf-alto-unified-props-new-08
https://tools.ietf.org/pdf/draft-jenkins-alto-cdn-use-cases-03
https://tools.ietf.org/pdf/draft-jenkins-alto-cdn-use-cases-03

Internet-Draft CDNI FCI using ALTO August 2019

 Jan Seedorf
 HFT Stuttgart - Univ. of Applied Sciences
 Schellingstrasse 24
 Stuttgart 70174
 Germany

 Phone: +49-0711-8926-2801
 Email: jan.seedorf@hft-stuttgart.de

 Y.R. Yang
 Tongji/Yale University
 51 Prospect Street
 New Haven, CT 06511
 United States of America

 Email: yry@cs.yale.edu
 URI: http://www.cs.yale.edu/~yry/

 Kevin J. Ma
 Ericsson
 43 Nagog Park
 Acton, MA 01720
 United States of America

 Phone: +1-978-844-5100
 Email: kevin.j.ma@ericsson.com

 Jon Peterson
 NeuStar
 1800 Sutter St Suite 570
 Concord, CA 94520
 United States of America

 Email: jon.peterson@neustar.biz

 Xiao Shawn Lin
 Tongji University
 4800 Cao’an Hwy
 Shanghai 201804
 China

 Email: x.shawn.lin@gmail.com

Seedorf, et al. Expires February 15, 2020 [Page 37]

http://www.cs.yale.edu/~yry/

Internet-Draft CDNI FCI using ALTO August 2019

 Jingxuan Jensen Zhang
 Tongji University
 4800 Cao’an Hwy
 Shanghai 201804
 China

 Email: jingxuan.zhang@tongji.edu.cn

Seedorf, et al. Expires February 15, 2020 [Page 38]

	tongji-yale-pub-list-2019
	PROCEEDINGS
	TONGJI-YALE NETWORKING SYSTEMS GROUP TONGJI CONTRIBUTIONS
	2016 – 2019
	Jiading, Shanghai, China
	New Haven, Connecticut, USA
	Table of Contents

	optbox-aaai19
	unicorn-fgcs19
	Unicorn: Unified resource orchestration for multi-domain, geo-distributed data analytics
	Introduction
	Motivation and Challenge
	Overview
	Cross-Domain Resource Discovery and Representation
	Intra-Domain Resource State Abstraction
	Cross-Domain Resource Discovery

	Global Resource Orchestration
	Implementation
	Performance Evaluation
	Methodology
	Results

	Conclusion and Future Work
	Acknowledgments
	References

	mercator-sc18
	sfp-poster-sigcomm18
	resa-poster-sigcomm18
	jms-dsc18
	unicorn-dais18
	ddp-icdcs18
	unicorn-indis17
	udn-d2d-wpc17
	Game-Theoretic User Association in Ultra-dense Networks with Device-to-Device Relays
	Abstract
	Introduction
	System Model
	User Association in Ultra-dense Networks with D2D Relays
	Problem Formulation
	Proposed Game-Theoretic User Association Scheme
	Step 1: Preparing for the Game
	Step 2: Selecting the Game Players in Each Cluster
	Step 3: Estimating the Cluster Sizes at the Nash-Stable State
	Step 4: Admission Control

	Complexity Analysis

	Performance Evaluation
	Simulation Setup
	Simulation Results

	Conclusions
	Acknowledgements
	References

	auc2reserve-rtsa16
	update-algebra-infocom19
	ms-wf-ccr-sigcomm18
	Abstract
	1 Introduction
	2 Network Model and Problem Formulation
	3 Approach Specification
	3.1 Flow-link Mapping Matrix and Traditional Water-Filling Algorithm
	3.2 MS-WF Algorithm with One Multi-source Transfer
	3.3 General MS-WF
	3.4 Discussion

	4 Performance Evaluation
	4.1 Simulation Methodology
	4.2 Simulation Results

	5 Related Work
	6 Conclusion
	References

	onv-ton19
	precedence-sosr19
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Pipeline Dependency Model
	2.2 Switch Architecture

	3 Precedence
	3.1 Architectural Model
	3.2 Dependency Resolution
	3.3 Combined Dependency Resolution
	3.4 Dependency Chain Resolution
	3.5 Out-of-Order Execution

	4 Evaluations
	4.1 Experimental Setup
	4.2 Resolvable Dependency Frequency
	4.3 Pipeline Stage Reduction
	4.4 Hardware Cost

	5 Related Work
	References

	trident-sigcomm18
	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	3.1 Trident Programming Primitives
	3.2 Trident Programming Workflow

	4 Live Kleene Variable
	4.1 Live Variable System
	4.2 Basic Live Variable

	5 Packet Selector
	5.1 Stream Attribute
	5.2 Packet Selector

	6 Route Algebra
	6.1 Route Object
	6.2 Route Algebra

	7 Implementation
	7.1 Live Variable Management
	7.2 Binding Generation and Translation
	7.3 Efficient Change Propagation

	8 Evaluation
	8.1 Programming with Trident
	8.2 Trident Runtime Performance

	9 Related Work
	10 Conclusion and Future Work
	References

	capacity-theorem-infocom18
	prophet-infocom18
	nova-iwqos17
	sfp-dais17
	compressive-sensing-ieee-cm16
	magellan-poster-sigcomm16
	fast-poster-sigcomm16
	orsap-poster-icnp16
	draft-ietf-alto-path-vector-08
	draft-ietf-alto-unified-props-new-09
	draft-ietf-alto-cdni-request-routing-alto-07
	空白页面
	空白页面
	空白页面
	空白页面
	空白页面
	空白页面
	空白页面

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

