Fine-Grained, Multi-Domain Network Resource Abstraction as a Fundamental Primitive to Enable High-Performance, Collaborative Data Sciences (Poster)

Abstract

Recently, a number of multi-domain network resource information and reservation systems have been developed and deployed, driven by the demand and substantial benefits of providing predictable network resources. A major lacking of such systems, however, is that they are based on coarse-grained or localized information, resulting in substantial inefficiencies. In this paper, we present Explorer, a simple, novel, highly efficient multi-domain network resource discovery system to provide fine-grained, global network resource information, to support high-performance, collaborative data sciences. The core component of Explorer is the use of linear inequalities, referred to as resource state abstraction (ReSA), as a compact, unifying representation of multi-domain network available bandwidth, which simplifies applications without exposing network details. We develop a ReSA obfuscating protocol and a proactive full-mesh ReSA discovery mechanism to ensure the privacy-preserving and scalability of Explorer. We fully implement Explorer and demonstrate its efficiency and efficacy through extensive experiments using real network topologies and traces.

Publication
In Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM)